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• LIGO Mechanical limitations.
• Present LIGO

– Limited by metallic suspensions

• Advanced LIGO
– Limited by fused silica thermal noise

• Cryo-LIGO
– Will use crystals (sapphire)

– Reduce thermal noise by
• Reducing KT        (To K-1/2    only!!  Gain of

10 at 3 o K)

• Take advantage of higher Q factors at low K

• At  cryogenic temperature thermo-eleasticity
and other problems fade away
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• Present LIGO
– From 50-80 Hz up

• Advanced LIGO
– From 10-20 Hz up

• Cryo LIGO
– Below 10 Hz

• Low frequency low power
interferometer

– Few Kelvins

• High frequency high power
interferometer

– ~30o  Kelvins
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• A Possible Option:
– Referencing the mirror surface to

a cold auxiliary test mass
• Require cryogenic test mass close

by

• Require multiple beams to explore
beam spot

• High finesse beams, high specific
power

• Simply displace problem

• Add complexity



Riccardo DeSalvo Aspen CO, 7th February 2001 5

• DISCLAIMER

• All the following ideas are     Hypothetical

• Some tentative techniques have been
identified

• None has been confirmed or validated

• Most are potential show stoppers

• Expect lots of basic R&D

• Lots of different groups collaborating

• Need to create specialized test labs
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• Cryo-LIGO will be heat
evacuation limited

• Radiative cooling is not an option
because  It behaves like T4

• Heat conduction or heat
extraction?

• Need both sequentially ! ! !
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• To put things in perspective:

• A 1 ppm absorption mirror with 1 MW
circulating power dissipates 1 W on mirror

• At cryogenic temperatures 1 W is
problematic  !!!

• Conducting it through the isolation system
is daunting.
– Classical conduction through ultra-pure and

annealed copper or aluminum.  But metals in
contact with  mirrors would destroy quality
factor

• Must conduct all heat through crystalline
struts
– Need large cross sections for conductivity

– Need thin flex joints for isolation and thermal
noise

• All power must transit through flex joints
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The LCGT test

• Used four 250 µm diameter 100
mm long sapphire fibers

• Extract of the order of 10 mW
of power

• Thermal drop of order of 20o K

• =>  Mirror above 25o K

• If and only if can produce a
mechanically quiet cold finger
at <4o K
– No Helium boiling, no thick heat

conductors to ground
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• Cryo-LIGO will be heat
evacuation limited

• Waste heat reduction
– Mirror coating losses reduction <0.1 ppm

– Substrate losses reduction ~ ppm/cm

• Heat conductivity (from mirror)
– Cube with temperature in crystals

– Increasing with decreasing defect density

• Heat extraction technique
– Metal conduction ?

– Heat piping (Superfluid Helium)  ?

– Active extraction  ?
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First developments
needed

Conservation !!

• Need a long term mirror coating
R&D  to develop lower mirror
absorption

• Need long term crystal growth
R&D to reduce bulk absorption
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• Dual Frequency ranges

• Dual Cooling techniques

– Low Frequency,  local cooling
• Optical chiller

– High Frequency extensive
conduction cooling

• Superfluid Helium

– Metal conduction
• To boiling Helium

– (Peltier pumps ruled out)
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Sensitivity Options

With gravity gradient subtraction  and suspension point interferometer
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• In the low frequency range
lower shot noise requirements
– Can reduce circulating power by factors

of 10 to 100

– Can increase finesse and further reduce
input power

– Possibly use optical chilling after just one
isolation stage

• In the high frequency range
– Must use temperature drop  to feed power

across multiple isolation stages to noisy
heat pipe.

– Less isolation constraints

– Can use  shorter, thicker links for better
conductivity
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Comparative advantages of a
low/high frequency,

low/high power interferometer

• 4oK/30oK

• 1kW/25kW B.S. power

• 250/50 Finesse

• 250 kW/1.25MW circulating power

• 0.1 ppm  coating absorption

• 3 ppm/cm bulk absorption

• 25+30 mW/125+750 mW deposited
power

• Radiation Pressure Fluctuation / Shot
noise limited

• Starts looking feasible



Riccardo DeSalvo Aspen CO, 7th February 2001 15

• In all cases

• need Sapphire suspensions from
mirror leading to at least one
recessed cooling stage.
– Need cross section to carry heat

– Need low defect crystals for higher
conductivity

– Fibers are ruled out
• Wrong aspect ratio   (LCGT test)

– Will need rods with short flex
joints

• Mass of rods will limit isolation
properties

– Will need rods with
counterweights
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• How to make rods with
– Counterweights and

– Flex joints

– Low defect crystal material

• UltraSound machining

• Ar-cluster polishing

• Crystal bull re-melting for
defect reduction?

• (Like in Silicon purification ovens?)
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Shaping the
flex joint

links

Mirror
attachment

Cold finger
attachment

Flexures

counterweight
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Advantages of flex joint
links

• If 3x3 rods instead of 250 µm 
fibers                 => Gain of 180 in
cross section (conductance)

• Flex joint over < mm (instead of ~300

mm fibers)  =>Gain of >300 in
thermal resistance

• Low defect crystals
=> ballistic heat transport
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Shape of a flex joint link

• Counterweights will restore
attenuation properties as in IPs
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UltraSound machining
of crystals

• Tool energized with
U.S.

• Optical polishing
powder carried in
slurry

• Abrasive renewed
by oscillating tool
(static US
machining) or
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Ultrasound machining of
crystals

• Abrasive renewed by
rotating tool

• Examples:
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Ultrasound
machining
of crystals

• More
examples;
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• How to remove possible
machining induced surface
defects?
– US machining does not stress

parts,

– Uses same abrasives used in
mirror coatings,

– Can reach high polishing levels

• Still flex joints  are thin,

• Small surface defects may
induce fractures

• Need equivalent of flame
polishing
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Ar- cluster polishing

• A jet of Argon droplets
electrostatically accelerated
abrades the surface
– (Gutta cavat lapidem)
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Ar- cluster polishing

• Argon cluster has
effective high
temperature

• Locally remelts
material that then
recrystallize
(flame polishing
equiv.)

• Mechanically
remove excess
material
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Effects of Ar-cluster
polish
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Flex joints development
line

• Need prototyping (CIT) buying
machine

• Need Q factor testing (SU)

• Need  cryogenic Q factor testing

• Need cryogenic conductance
tests

• Need long low defect Sapphire

• Need . . .  . . . .
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How to evacuate the heat

• Options

• Optical chiller
– (LASSOR proposed by Richard

Epstein)

• Superfluid Helium
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Basic Optical Refrigeration

Energy Level 1

Energy Level 2

Energy Level 3

Radiative
Transitions

Laser
Pumping

Phonon Absorption

Radiative decay 3 1 followed by 
phonon absorption cools material

Three-level “atom” in a transparent solid

Efficiency ≈ 1

2
 absorbed phonon energy

laser photon energy
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few kT

~kT

Rare-earth-based
Optical Refrigeration

Semiconductor-based
Optical Refrigeration

~kT

Elaser ~ 1 eV

~kT

Practical Optical Refrigeration

Yb-, Tm- or Ho-doped
glasses and crystals

Direct-band-gap
Semiconductors; e.g., InGaAs
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Yb-doped ZBLANP Fluoride
Glass:

The first solid cooler
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Schematic Optical Refrigerator

♦ Laser diode produces light
♦ Optical fiber carries it to cooling element
♦ Light enters through pin hole in one mirror
♦ Light  is trapped, absorbed and re-emitted
♦ Fluorescence is absorbed on chamber walls
♦ “Load” is connected in shadow region
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Results with
Yb-ZBLAN
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Normalized temperature measured as a function of  the incident
laser wavelength. The line is the theoretical fit assuming a
background absorption of 0.0002 cm-1.

Tm:ZBLANP
heating

cooling

Laser REFRIGERATION IN A TM-DOPED SOLID
(UNM, FEB. 2000)
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Laser

Yb:YAG crystal
(1x1x1 cm)

Mirror

Reference Sample

Supports

T ~ 0.3 C with 1.2W at 1030 nm

First Laser Cooling of 
Yb:YAG Crystal (April 10, 2000)
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Semiconductor test Cooling
Element For LIGO

InGaAs/GaInP Cooling Heterostructure 
(1µm x100µm x 100µm)

GaAs hemisphere 
(~1 cm radius)

Laser beam
~815 nm

Escaping
Fluorescence

Anti reflective
coating
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Problems with optical
chiller

• Need large optical power

• Efficiency ~ kT/1eV       ~10-4

@3oK

• Must evacuate to better  than
~10-4

• Must extract from high
refractive index medium
– Will need extensive A.R coatings
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Problems with
superfluid helium

• Above ~ 0.1 W/cm2 goes normal
– (boils off)

– Requires ~ 10 cm2 /W

• Conducts phonons coherently, so
short circuits thermal,

• But also acoustic conductor to all
outer surfaces
– (Pumping noise, ambient noise)

• Must be recessed from test mass at
least two sapphire isolation stages
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• Other needs
• To match the low displacement noise

possibly achievable.

• Need matching seismic attenuation
system that also allows suspension
of “uncontrolled” mirrors (OK with
SAS)

• Need to develop wireless, low power
electrostatic actuators for lock
acquisition and for actuation of
masses above mirror
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The battle plan

• UT Cryogenic
thermal noise
test

• Not the final
solution

• Learning curve

• Test bed for
different
solutions
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The battle plan

• Coating developments
– Parassite Advanced LIGO  (Tests in UT)

• Sapphire substrate developments
– Parassite Advanced LIGO  (Tests in UT)

• Flex struts
– Engineering studies (INSA)

– Machining tests (CIT)

– Q testing (SU), . . . .

• Optical chiller
– Development tests (LANL)

• Superfluid Helium (LNF?….)

• Electrostatic drive (UP)
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Conclusions

• Cryogenic interferometers have
great promises (see Fidecaro’s
evaluation)

• They are not proven unfeasible

• Will need massive amount of
basic R&D

• Need more collaborators
– Cannot burden Advanced LIGO


