Sapphire Development Program

Jordan Camp

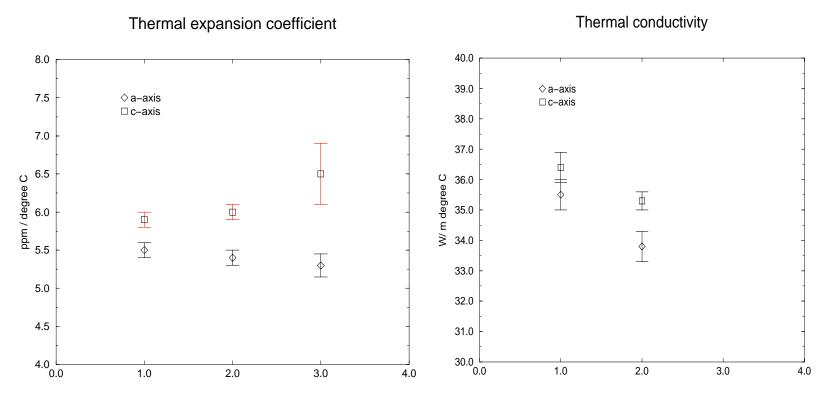
LSC meeting LIGO Livingston Observatory Mar. 15, 2001

Why Sapphire ?

- Sapphire performance comparable to fused silica
 - >> ~ 200 Mpc range for NS inspiral from sapphire (165 Mpc for fused silica)
 - >> sapphire narrow-band sensitivity ~ 2 x higher than fs from 500-1000 Hz
 - >> Thermoelastic damping noise is limit to sapphire performance
- Sapphire much better material for high power
 - >> Thermal conductivity 30 x higher than fused silica
 - >> Rayleigh scattering ~ 30 x lower than fused silica
- R&D effort for both sapphire, fused silica continues
 - >> effect of coating, bonding on thermal noise of materials
 - >> other surface effects, absorption, etc.

LSC Sapphire Test Program

• Measure thermophysical constants


>> establish thermoelastic damping noise for sapphire

Measure optical and mechanical characteristics

- >> absorption (Stanford, Southern University)
- >> polishibility (Caltech)
- >> optical homogeneity (Caltech)
- >> mechanical Q (Stanford, U. Glasgow)
- >> birefringence (Caltech)
- >> low frequency losses (Syracuse)

Sapphire Thermophysical Constants

• thermoelastic damping noise ~ $\alpha^2 \sigma / w_0^{3/2}$

Sapphire vs. Fused Silica Thermal Noise

- Fused Silica
 - >> Q of 3 x 10⁷
 - >> thermal noise tail from mechanical resonances

• Sapphire

>> Q of 2 x 10⁸

>> thermal noise from low-frequency temperature fluctuations coupling to material expansion

• Ultimate NS inspiral sensitivity achievable with these optical materials is very close (within 20%)

Thermal Distortion in Advanced LIGO

Source of Absorption	Test Mass Optical Distortion (nm)	
	Sapphire	Fused Silica
Substrate	40 nm	40 nm
(Sapphire: 20 ppm/cm)		
(Fused Silica: 1 ppm/cm)		
Coating	25 nm	400 nm
(0.5 ppm)		

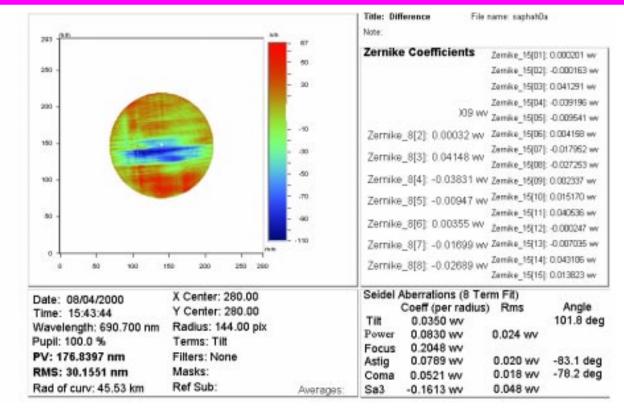
- Design optic sag of 60 nm
- Arm cavity stored power ~ 800 kW
- Thermal distortion could also be lowered by reducing coating absorption, or implementing thermal compensation

Sapphire Absorption

- Nominal CS sapphire absorption 80 ppm / cm
- Attempt to identify impurities

>> 15 ppm / cm seen in one high purity starting material at one boule location>> most starting materials show no correlation with absorption

- Annealing study undertaken to reduce absorption
 - >> 1600 C air bake gives 20 ppm / cm absorption uniform through sample
 - >> tests to continue at higher bake temperatures


Polishing Tests

- CSIRO surface polish of 15 cm x 8 cm test piece: preliminary results meets advanced LIGO requirements
 - >> < 1 nm rms surface figure</pre>
 - >> 0.2 nm rms microroughness
 - >> ROC target of 50 km +/- 10 km

Additional effort underway at General Optics

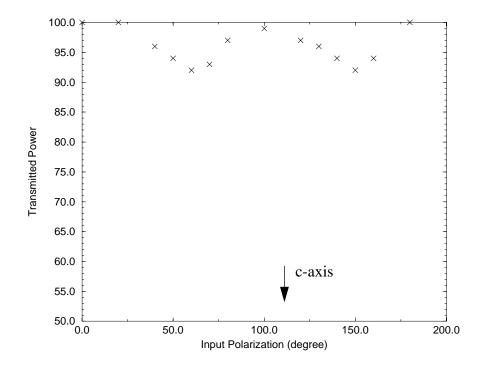
Polishing Tests: Optical Homogeneity

- need factor 5 10 reduction of inhomogeneity
 - >> spot polish by Raytheon-Danbury

Mechanical Q

- Mechanical Q's of > 2 x 10⁸ confirmed for variety of sapphire substrate shapes
- Tests underway for effect of (lossy) coating on thermal noise
 - >> preliminary result: coating has effect on Q (both fs and sapphire)
 - effect of order tens of %
 - >> thermal noise of coating itself ?
- Other effects: surface loss, bonding effects, etc.
 - >> TNI
 - >> Syracuse low-frequency anelastic loss measurements

Birefringence


- Surface of m-axis crystal has anisotropic properties
 - >> light not precisely aligned with optical axis will suffer polarization rotation
 - >> result is power loss at beamsplitter
 - >> birefringence in both coating and substrate
- Test measurement of birefringence of 3" x 1.5" sapphire

>> monitor transmission of high finesse Fabry-Perot cavity as function of input polarization of light

>> compare coating optical axes with substrate optical axes

Birefringence

 Alignment of input polarization within 10 degree of c-axis of crystal gives recycling gain loss of < 5% in advanced LIGO

Sapphire Summary

- Absorption at 20 ppm / cm, almost OK
 - >> annealing direction established, will try to push absorption lower
- Polish OK
 - >> need to demonstrate spot polish, but expect to work
- Birefringence OK
 - >> need to measure full size optic, expect to work
- Mechanical Q: coating, bonding effects under study
- Sapphire performance comparable to fused silica, but significantly less thermal distortion
 - >> this is present picture, but R&D continues

What's Next

• Futher sapphire tests

- >> quantify effect of coating on thermal noise
- >> drive substrate absorption lower
- >> measure birefringence of full size part
- >> lab test of spot polish
- >> grow 35 cm dia. substrate
- >> attempt large crystal growth at SIOM (alternate sapphire vendor)
- >> direct thermal noise measurements at TNI, Syracuse
- Fused silica tests
 - >> verify low absorption for large substrates
 - >> effect of coating on Q

What's Next (cont.)

- Test Mass material selection 6/02: sapphire or fused silica
 - >> performance, cost of both materials
 - >> R&D to lower coating absorption
 - >> thermal compensation system performance

