

Top level options: operating modes (broad vs. narrow band)

- Assumption: no detections in LIGO I, so broad-band is response most likely to 'net' a signal
- broadband signal recycling or just broadband (phasing of improvements?)
 - » ITM T 1% or 3%? Consistent with both modes?
- can we get deep holes in the sensing-limited response given sapphire noise?
- technical threshold for all response curves in each interferometer.
 - » requires new technology (variable output coupler) for one design to be good for both narrow- and broad-band
 - » trade number of interferometers against complexity of individual ifos

Number of interferometers

- statistics of LIGO I will decide the value of 3 identical ifos in LIGO II
 - » no interest in simple 1/2 length additional interferometer
- astrophysical arguments
 - » have broad-band initial detection and then narrow-band tracking?
 - » Would one tuned ifo be enough fo a detection?
 - Both confidence and #DOF measured are issues
 - » Periodic sources: narrow-band only needed for HF sources
- cost
- improvement timing
 - » LHO, LLO, then LHO? 2k or 4k LHO first? (Gary later)
 - » need for continuous observations

LIGO II

How to set overall noise requirement

- difficult to believe that astrophysical source models should drive design very hard
 - » inspiral:curves of many forms give similar seeing distances
 - » stochastic: thermoelastic acts as 'cutoff' (steeper than structural damping)
 - » HF narrow-band searches: argues for sapphire
- so: best technical effort, point of diminishing returns
 - » realize best thermal noise and thermal management for given materials
 - » infamous LF cutoff: is 10 Hz right? Check suspension noise
 - » RMS motion (displacement, velocity): grail of adiabatic passage through resonances (~1 nm/sec)
 - » HF cutoff: lots of work to get noise down at 7 kHz
 - lots of data 'no-one' wants
 - 1 kHz? 2?
- Secondary noises at 1/10 Principal noise sources: naive
 - want some cost function having to do with difficulty of achieving

LIGO II

Process

- Choose improvement phasing; choose key technologies
- establish 'cost' functions for internal thermal noise and quantum noise
- perform trade
- adopt optimistic suspension parameters, then choose seismic cutoff
- form sensing and servo model, collect input data (feasible RMS spectrum)
- flow down secondary noise sources, actuator authority
- add 10%

LIGO II 4