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Impulse Response of FP Cavity

Let input �eld = impulse

cavity �eld:

En = E0(rarb)
n

where n is the number of round-trips:

n= oor

�
t

2T

�

for large n:

n � t

2T

continuous approximation:

En = E0(rarb)
t

2T

exponential decay:

En = E0 e
�

t

�

where

� =
2T

ln

�
1
rarb

�

is the storage time.



Staircase Exponential Processes

equation for �eld dynamics:

E(t) = taEin(t) + rarbE(t� 2T)

abrupt shutdown of incident �eld:

Ein(t) = A �(�t);
where �(t) is Heaviside step function.

�eld in the cavity (sum over round-trips):

E(t) = (rarb)
n(t)+1 �E;

where �E is the amplitude of the equilibrium �eld:

�E =
taA

1� rarb
:

for large n

E(t) = �E e�t=�
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Square-Wave Intensity Modulation

amplitude buildup:

E(t) = A�Be�t=�

power buildup:

P(t) � E(t)2

= A2 � 2ABe�t=� + B2e�2t=�

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

time (ms)

In
te

ns
ity

Ringdown of 2km LIGO Hanford Mode−Cleaner

τ = 45 µs

data
fit 



Power Transients in Detuned Cavity

detuning phase: � = k�

q = rarbe
�2i�

�eld in the cavity:

E(t) =
h
1� qn(t)+1

i
�E

equilibrium amplitude:

�E =
taA

1� q
:
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Oscillations as Function of Detuning

frequency of the oscillations:

! = �=T:

similar to Cornu spirals

(di�erence: the spirals are parametric functions of time)
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Doppler Transient

Shutdown of power and simultaneous push on one of the
mirrors at t = 0.

mirror velocity v then the cavity length:

�(t) = v(t� T):

cavity �eld:

E(t) = rarbe
�2ikv(t�T )E(t� 2T);

The solution is

E(t) = (rarb)
n(t)+1ei�(t)E0;

where �(t) is the phase of the �eld, and n(t) is the number
of round-trips, and E0 is the initial amplitude.

to �nd the phase:

1) �nd frequency shift in one reection:

�! = �2v
c
! = �2kv

2) �nd total frequency shift by the time t:

!s(t) = n(t+ T) �!

3) integrate the frequency shift:

�(t) = �2kv [t� Tn(t+ T)]n(t+ T)

continuous approximation (large n):

�(t) � � kv

2T
t2



Frequency of Oscillations

the solution is

E(t) � E0 exp

�
� t

�
� i

kv

2T
t2
�
;

frequency of oscillations = accumulated Doppler shift

j!s(t)j �
����d�dt

���� = kjvj
T

t;
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cavity �eld.



LIGO Hanford 2km FP Transient
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Length Sweep Transient

constant incident �eld:

Ein(t) = A

pendular mirror motion (constant velocity within one res-

onance):

x(t) = vt:

�eld in the cavity:

E(t) = taA+ rarbe
�2ikx(t�T )E(t� 2T):
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Dynamic Regimes and Critical Velocity

adiabatic regime:

E(t) =
taA

1� rarbe�2ikvt
:

delay regime:

E(t) � D0 exp

�
� t

�
� i

kv

2T
t2
�
+

taA

1� rarbe�2ikvt
:

for t > 0.

critical velocity:

vcr �
�

2�F
� �c�

4LF2
:
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Measurement of Cavity Finesse

Adjusted Pound-Drever signal (with adiabatic component

removed):

VD(t) = Ae�(t�t0)=� sin

�
 � kv

2T
(t� t0)

2

�
;

 is an oscillator phase.

envelop of oscillations:

jVD(t)j= A e�(t�t0)=�

exponential �t to the envelope ! storage time.

storage time ! coeÆcient of �nesse:

F =
1

sinh2 T

�

;

�nesse:

F =
2

�

p
F;

result of the �t:

F = 1066� 58

for comparison, the measurement of the mirror reectivi-

ties:

F =
4rarb

(1� rarb)2
;

lead to

F � 1050



Doppler Shift Accumulation

tn = peak positions (or zero-crossings):

�tn = tn+1 � tn; �tn = (tn + tn+1)=2

average frequency of oscillations: ��n =
1

2�tn
.

linear function:

��n =
v

�T
(�tn � t0):

rate of frequency shift:

slope = 86:8� 0:6 MHz=s

velocity of the mirror:

v = (5:7� 0:4)� 10�6 m=s
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Frequency Sweep Transient

the rate of the frequency scan: u = d!=dt.

critical rate:

ucr =
1

2

� �c

LF

�2
: (1)

the amplitude of the input beam:

Ein(t) = Aeiut
2
=2 (2)

the amplitude of the �eld in the cavity:

E(t) = taAe
iut

2
=2 + rarbE(t� 2T) (3)

equivalence:

kv ! uT

the approximate solution:

E(t) � taA eiut
2
=2

1� rarbe�2iuT t
+D0e

�t=�

natural identity:

ucrT = kvcr

(the critical rate does not depend on the laser frequency.)


