# Comparison of Line Removal Techniques

Bernard F. Whiting University of Florida

(LSC 7, Hanford, Aug. 2000)

LIGO-G000281-00-D

### This Report Includes Work From:

- Philip Charlton (ANU & CalTech)
- Bob Coldwell (UF)
- Gordon Deane (ANU)
- Chris Hawkins (UF)
- Sergei Klimenko (UF)
- Bernard Whiting (UF & ANU)

# Nature of Lines

Mains (Line) Harmonics
Large Amplitude (Coherent)
Highly Non-Gaussian
Violin Resonances
Others (Known and Unknown)

### **Benefits of Line Removal**

# Reduces Data VolumeImproves Gaussianity

- Better Matched Filter Implementation
- Enables Better Use of Wavelets

# Catalog of Methods

|   |                                                                                                               | MAINS<br>HARM | RES | OTHER | C OM M NTS                |
|---|---------------------------------------------------------------------------------------------------------------|---------------|-----|-------|---------------------------|
|   | Multi-Taper (Allen – Ottewill: GRASP)<br>GRG 32, 385-98 (2000)                                                | Y             | Y   | Y     |                           |
| • | CLR (Sintes – Schutz: LAL)<br>PRD <u>58</u> , 122003 (1998), see also PRD <u>60</u> , 062001 (1998)           | Y             |     |       |                           |
| • | Kalman (Finn – Mukherjee: PSU)<br>GR-QC 9911098                                                               |               | Y   |       | Needs<br>Model            |
| • | Adaptive Filter (Chassande-Mottin – Dhurandhar)<br>INT.J.MOD.PHYS.D <u>9</u> , 275-9 (2000)                   | Y             | Y   |       |                           |
| • | Magnetometer (Finn – Mohanty: PSU)<br>3 <sup>rd</sup> Amaldi Proceedings, AIP Conf. Proc. 523, 451-458 (2000) | Y             |     |       |                           |
| • | QMLR (Klimenko: DMT)<br>LSC: Livingston (2000), Hanford (2000)                                                | Y             | Ρ   |       |                           |
| • | CLR' (Charlton – Deane: dctools)<br>B. Eng thesis, ANU, June (2000)                                           | Y             |     |       |                           |
| • | Cross Correlation (Allen – Ottewill: GRASP)<br>GR-QC 9909083                                                  |               |     |       | Removes<br>Other<br>Noise |

### **Comparison** via:

- Statistical Properties
  - expect Gaussianity to be improved
  - actually find residual non-Gaussian components
- Spectral Properties
  - "complete" removal of a line introduces artificial "glitch" in spectrum, whereas
  - "cleaned" data should have residual noise which is <u>not</u> strongly dependent on frequency
- Signal Detect Ability
  - Filter banks trigger even without GW signal (false detection due to noise)
  - Filter banks may fail to trigger on embedded signal (false rejection due to "threshold")
  - How do line removal techniques affect false rejection rate for a given SNR threshold?

# Following Pages Show:

- "Other" Coherent Line Removal by GRASP code.
- "Incoherent" mains noise at 600 Hz, and comparison with line removal codes at that frequency.
- "Other" lines near 180 & 300 Hz mains lines.
- Superimposed effects of removal in Klimenko code.
- Different levels of removal in Klimenko code.
- Spectral properties of Sintes LAL code.
- Superimposed effects of Sintes LAL & GRASP codes.
- Non-Gaussian residual at 180 & 300 Hz.

#### A. "Other" Coherent Line Removal by GRASP code.



#### B.i) "Incoherent" mains noise at 600 Hz.



#### B.ii) Comparison of line removal codes at 600 Hz.



#### C.i) "Other" lines near 180 Hz mains lines.



#### C.ii) "Other" lines near 300 Hz mains lines.



#### D.i) Superimposed with no removal.



#### D.ii) Superimposed effects of removal in Klimenko code.

![](_page_13_Figure_1.jpeg)

#### E. Different levels of removal in Klimenko code (full).

![](_page_14_Figure_1.jpeg)

#### F. Spectral properties of Sintes LAL code.

![](_page_15_Figure_1.jpeg)

#### G.i) Superimposed effects of Sintes LAL code.

![](_page_16_Figure_1.jpeg)

#### G.ii) Superimposed effects of GRASP code.

![](_page_17_Figure_1.jpeg)

#### H.i) Non-Gaussian residual at 180 Hz.

![](_page_18_Figure_1.jpeg)

#### H.ii) Non-Gaussian residual at 300 Hz.

![](_page_19_Figure_1.jpeg)

FFT Histograms at 299.955669 Hz of the Real Part.

### **Future** Plans:

- Capitalize on correlation technique benefits.
- Inspect engineering run data.
- Prepare for short science run next year.

### **Conclusions:**

- There is a need for search algorithms to implement and compare line removal techniques.
- Need more uniform treatment for bad data.
- Short blocks currently give better results.