Sapphire Development Program Status

Jordan Camp

LSC meeting Aug. 16, 2000

Sapphire as Test Mass Material

- High mechanical Q, increased density for Sapphire relative to fused silica
- Range for NS-NS coalescence
 - >> ~ 220 Mpc for sapphire
 - >> ~ 180 Mpc for fused silica
 - >> assumes 6 cm beam spot, 30 40 kg test masses
 - >> uncertanties in materials parameters (thermal conductivity, expansion coefficient, etc.) at 10% level

Sapphire Test Program

- Evaluate small samples from sapphire vendors (200)
 - >> Crystal Systems, Boston
 - >> SIOM, Shangai
- Feed back info to vendors to grow full size samples (2001)
- Sapphire parameters
 - >> Mechanical Q
 - >> Absorption
 - >> Birefringence
 - >> Polish

Mechanical Q

- Measured for a number of samples
 - >> 15 cm dia. x 6 cm
 - >> 8 cm dia. x 2 cm
 - >> 2 cm dia, x 10 cm
- Q consistently greater than 2 x 10⁸
- Need to measure effect of coating, attachments on Q
- · Anclastic loss measurements at Syracuse: off-resonance
 TNI thermal noise

Absorption

- Coating absorption < 1 ppm, c and m axis
- Substrate absorption
 - >> 80 ppm/cm average, no correlation with starting material or location
 - >> 20 ppm/cm sample identified (Australia)
 - may have to do with sample annealing
 - >> next series of absorption measurements to study annealing
 - vary temperature, pressure, compostion of anneal
- 80 ppm/cm requires factor of 4 in thermal compensation

Birefringence

- Concern for m-axis crystal
 - >> full size crystals grown by CS in m-axis direction
 - >> concern for both substrate and coating
- Preliminary coating measurement gives Δφ ~ 10 mrad
 - >> measured birefringent splitting of resonant mode of FP cavity
 - >> acceptable level if optic aligned to 1 degree with polarization of light

$$(\theta_{align} \Delta \phi \ G_{arm})^2 < \frac{1}{G_{RC}}$$

- >> need to map birefringence over large area
- Substrate not expected to be problem but will study

Polish

- Half size test pieces to test sapphire polishing capabilities of vendors (CSIRO, GO)
 - >> microroughness requirement 0.2 nm already demonstrated
 - >> surface figure requirement 0.5 nm rms needs to be demonstrated
- Optical homogeneity ~ 150 nm P-V for 8 cm thick CS pieces
 - >> surprisingly good!
 - >> needs to be reduced by factor ~ 3 by compensating polish of 2nd side (hard)

Date: 08/04/2000 Time: 15:43:44

Wavelength: 690.700 nm

Pupil: 100.0 %

PV: 176.8397 nm

RMS: 30.1551 nm

Rad of curv: 0.00 km

X Center: 280.00 Y Center: 280.00

Radius: 144.00 plx

Terms: Tilt

Filters: None

Masks:

Ref Sub:

Averages:

Summary

- Mechanical Q OK
 - >> need to measure effect of coating, attachments
- Coating absorption OK
- Birefringence probably OK
- Polish probably OK
- Absorption too high, but still working on it.
- Does the modest (~20 %) benifit justify the effort to develop sapphire?

