

LIGO Status and Plans

Barry Barish March 13, 2000 LIGO-G000170-00-M

LIGO Plans

schedule

1996	Construction Underway (mostly civil)
1997	Facility Construction (vacuum system)
1998	Interferometer Construction (complete facilities)
1999	Construction Complete (interferometers in vacuum)
2000	Detector Installation (commissioning subsystems)
2001	Commission Interferometers (first coincidences)
2002	Sensitivity studies (initiate LIGOI Science Run)
2003+	LIGO I data run (one year integrated data at $h \sim 10^{-21}$)

2005 Begin LIGO II installation

LIGO Sites

LIGO Livingston Observatory

LIGO Hanford Observatory

LIGO Facilities

Beam Tube Enclosure

LIGO *Beam Tube*

- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

LIGO

vacuum equipment

Vacuum Chambers

Seismic Isolation

Constrained layer damped Springs

Seismic Isolation Systems

Progress

- » production and delivery of components almost complete
- » early quality problems have mostly disappeared
- > the coarse actuation system for the BSC seismic isolation systems has been installed and tested successfully in the LVEA at both Observatories
- » Hanford 2km & Livingston seismic isolation system installation has been completed, with the exception of the tidal compensation (fine actuation) system
- » Hanford 4km seismic isolation installation is ~75% complete

HAM Door Removal (Hanford 4km)

Seismic Isolation Systems

Support Tube Installation

Installation

LIGO I interferometer

Initial LIGO Interferometer Configuration

Optics *mirrors, coating and polishing*

- All optics polished & coated
 - Microroughness within spec. (<10 ppm scatter)
 - » Radius of curvature within spec. $(\delta R/R < 5\%)$
 - Coating defects within spec. (pt. defects < 2 ppm, 10 optics tested)
 - Coating absorption within spec.
 (<1 ppm, 40 optics tested)

Input Optics

installation & commissioning

- The 2km Input Optics subsystem installation has been completed
 - » The Mode Cleaner routinely holds length servo-control lock for days
 - » Mode cleaner parameters are close to design specs, including the length, cavity linewidth and visibility
 - » Further characterization is underway

Input Optics Hanford 2 km

Control System Racks

Right Beam Manifold MMT3 Optical Lever PSL Electronics Racks Input Optics Section

Recycling Cavity Alignment

Projected reticule pattern & PSL beam on target in front of MMT2

 alignment of the mode match telescope to the recycling cavity was accomplished by aligning the PSL beam to the projected reticule pattern & then by retroreflection from the recycling mirror

Recycling Cavity Alignment

Adjusting the Fold Mirror Alignment

Initial Alignment System

Optical Levers

• Optical levers have been installed, aligned & are operational for all core optics in the 2km interferometer

Input Test Mass Optical Lever

LIGO-G9900XX-00-M

Transmit & Receive modules visible with spool piece removed for input test mass alignment

Commissioning Configurations

- Mode cleaner and Pre-Stabilized Laser
- Michelson interferometer
- 2km one-arm cavity
- At present, activity focussed on Hanford Observatory
- Mode cleaner locking imminent at Livingston

Schematic of system

Commissioning

Pre-Stabilized Laser-Mode Cleaner

- Suspension characterization
 - » actuation / diagonalization
 - » sensitivity of local controls to stray Nd:YAG light
 - » Qs of elements measured, 3 10⁻⁵ 1 10⁻⁶
- Laser Mode Cleaner control system shakedown
- Laser frequency noise measurement

Wavefront sensing

Mode Cleaner cavity

• Alignment system function verified

Michelson Interferometer

2km Fabry-Perot cavity

- Includes all interferometer subsystems
 - » many in definitive form; analog servo on cavity length for test configuration
- confirmation of initial alignment
 - » ~100 microrad errors; beams easily found in both arms
- ability to lock cavity improves with understanding 0 sec 12/1 flashes of light
 - » 0.2 sec 12/9
 - » 2 min 1/14
 - » 60 sec 1/19
 - » 5 min 1/21 (and on a different arm)
 - » 18 min 2/12
 - » 1.5 hrs 3/4 (temperature stabalize pre modecleaner)

2km Fabry-Perot cavity

• models of environment

- » temperature changes on laser frequency
- » tidal forces changing baselines
- » seismometer/tilt correlations with microseismic peak
- mirror characterization
 - » losses: ~6% dip, excess probably due to poor centering
 - » scatter: appears to be better than requirements
 - » figure 12/03 beam profile

2km Fabry-Perot cavity

15 minute locked stretch

Schedule

commissioning and testing

		1998			1999				2000				2001				2002			
ID	Task Name	Q2	Q3	Q4	Q1	Q2	Q3 (24	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	LHO 2km IFO										∇									
14	LLO 4km IFO			$\overline{\nabla}$							$\overline{\nabla}$									
30	LHO 4km IFO											/					•			
44	Coincidence Engineering Run starts											\langle	> 12	2/22(آری	7/18				
45	Observatory Operations & improvements																		B-1	
46	Science Run starts															\langle	> 12	/20 (57	/17

Significant Events

Hanford	Single arm test complete	6/00	
2km	installation complete	8/00	
interferometer	interferometer locked	12/00	
Livingston	Input Optics completed	7/00	
4km	interferometer installed	10/00	
interferometer	interferometer locked	2/01	
Coincidence Engineering Run	Initiate	7/01	
(Hanford 2km & Livingston 4km)	Complete	7/02	
Hanford	All in-vacuum components installed	10/00	
4km	interferometer installed	6/01	
interferometer	interferometer locked	8/01	
LIGO I Science Run	Initiate	7/02	
(3 interferometers)	Complete (obtain 1 yr @ $h \sim 10^{-21}$)	1/05	

LIGO

astrophysical sources

Sensitivity of LIGO to coalescing binaries

Phase Noise

splitting the fringe

• spectral sensitivity of MIT phase noise interferometer

• above 500 Hz shot noise limited near LIGO I goal

• additional features are from 60 Hz powerline harmonics, wire resonances (600 Hz), mount resonances, etc

Noise Floor

40 m prototype

• displacement sensitivity in 40 m prototype.

 comparison to predicted contributions from various noise sources

Detection Strategy

Coincidences

Two Sites - Three Interferometers

》	Single Interferometer	non-gaussian level	~50/hr
»	Hanford (Doubles)	correlated rate (x1000)	~1/day
»	Hanford + Livingston	uncorrelated (x5000)	<0.1/yr

- Data Recording (time series)
 - » gravitational wave signal (0.2 MB/sec)
 - » total data (16 MB/s)
 - » on-line filters, diagnostics, data compression
 - » off line data analysis, archive etc
- Signal Extraction
 - » signal from noise (vetoes, noise analysis)
 - » templates, wavelets, etc

LIGO Sites

Interferometer Data

40 m

Real interferometer data is UGLY!!! (Gliches - known and unknown)

The Problem

How much does real data degrade complicate the data analysis and degrade the sensitivity ??

Test with real data by setting an upper limit on galactic neutron star inspiral rate using 40 m data

"Clean up" data stream

Inspiral 'Chirp' Signal

Detection Efficiency

• Simulated inspiral events provide end to end test of analysis and simulation code for reconstruction efficiency

• Errors in distance measurements from presence of noise are consistent with SNR fluctuations

Setting a limit

Upper limit on event rate can be determined from SNR of 'loudest' event

Limit on rate: R < 0.5/hour with 90% CL $\epsilon = 0.33 = detection efficiency$

An ideal detector would set a limit: R < 0.16/hour

Conclusions

- LIGO I construction complete
- LIGO I commissioning and testing 'on track'
- Interferometer characterization underway
- Data analysis schemes are being developed, including tests with 40 m data