

SAS for LIGO 2

The LIGO 2 Seismic Attenuation System Status Report

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO –

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type	DCC Number	Date
Presentation	LIGO- G000128-00-R	4 th of May 2000
PAC8 Meeting		
Caltech - May 1-2, 2000		
SAS for LIGO 2		
Seismic Attenuation System		
Status Report		
Riccardo DeSalvo		
California Institute of Technology		

Distribution of this draft: TBD This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Laboratory - MS 18-34 Pasadena CA 91125 Phone (626) 395-212 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

echnologyMassachusetts Institute of TechnologyIS 18-34LIGO Laboratory - MS 16NW-145125Cambridge, MA 01239212Phone (617) 253-4824IS34Fax (617) 253-7014tech.eduE-mail: info@ligo.mit.eduwww: http://www.ligo.caltech.edu/

- Seismic Attenuation System
- Passive seismic attenuation chain
 - Preceded by a passive pre-isolator
 - Complemented with inertial dampin
 - Followed by a multiple pendulum si

SAS Test Tower Prototype

Pre-Isolator

- Pre-isolator: tuned at Ultra Low Frequencies
- To minimize seismic excitation of normal modes of the passive attenuation chain
- To allow sub-micron positioning of multiple pendulum Suspension point
- To provide an optimized mechanical base for Inertial Active Damping of ALL Attenuation Chain Resonant Modes
 - (Inertial Damping is outside the frequency region of interest, it is not Active Attenuation !!!)
- APS April 2000, Long Beach, Szabolcs Marka, "Characterization of LIGO II/SAS Inverted Pendulum as Low Frequency Pre-Isolation"

Inverted Pendulum: Radial Frequency vs. Load

APS April 2000, Long Beach, Szabolcs Marka, "Characterization of LIGO II/SAS Inverted Pendulum as Low Frequency Pre-Isolation"

Pre-Isolator advantages

- IP naturally divides 3 + 1 degrees of freedom
 - Makes MIMO controls easy!
 - Much simpler than 6 d.o.f. feedback loops.
- IP is soft, 4 mN to move 1 ton by 1 mm at 10 mHz
 - » Figure Diagonalization of sensors.

Pre-Isolator performance

- In the micro-seismic peak frequency range
 - Attenuation >100
- In the passive chain resonance frequency band
 - Attenuation >1000

IP Leg + C.W Resonances

www.ligo.caltech.edu/~smarka

Positioning on Pre-Isolator

- Precision Positioning of Multiple Pendulum
 - Need good Passive Chain Modal Damping
 - APS April 2000, Long Beach, Virginio Sannibale, "Controls of Seismic Attenuation System (SAS) for the LIGO II Gravitational Wave Detector"
 - Need good well defined movements and soft mechanics
 - Need good position sensors
 - Need good zero force gradient actuators
 - Need good MIMO software

www.ligo.caltech.edu/~citsas

Hareem Tariq Chenyang Wang

Force vs. Coil Position (Actuator

Inertial Modal Damping in Pre-Isolator

- A Good Damping of the Passive Chain internal modes
 - Needs well defined movements and soft mechanics
 - Needs good accelerometers
 - High sensitivity, insensitive to orthogonal accelerations
- APS April 2000, Long Beach, Alessandro Bertolini, "A very low noise monolithic Horizontal accelerometer"
 - Needs good zero force-gradient actuators
 - Needs good MIMO software

Frequency (Hz)

SAS U Sensor ensor Actuator Map $(X, Y \text{ and } \theta_y)$

SAS-SUS Longitudinal Control Diagram

LVDT Sensors Diagonalization (Direct Transfer Functions)

Sun Apr 16 12:26:48 2000

SAS-SUS LVDT

(Diagonalized Transfer Function Degenerate case)

Normal Mode RingDown (Yaw Mode)

SAS Passive Attenuation Chain

- The Passive Attenuation Concept !
- Add pendulum stages to pile up $1/f^2$ attenuation factors until enough attenuation is reached.
- Done partly in SAS chain and partly in multiple pendulum suspensions
 - Note: the multiple pendulum main task is mainly to provide controls for the interferometer's locking and for thermal noise suppression
 - APS April 2000, Long Beach, Erika D'Ambrosio, "Characterization of a Low Frequency Power Spectral Density f^{-g} in a Threshold, Multi-stable Model"
 - APS April 2000, Long Beach, Eric Black "Thermal noise in coupled harmonic oscillators."
- Made of Modular and Simple Filters

What is the difficulty in a Passive Attenuation Chain?

- To build a vertical oscillator at low enough frequency
 - So that it has a fundamental frequency easy to damp (<400 mHz)
 - So that its attenuation properties are on in the frequency ROI (>10 Hz)
- To avoid making creaking or creeping noises.
- The solution is GASF or MGASF
- APS April 2000, Long Beach, Akiteru Takamori, "Performance of Geometric Anti-Spring Filter (GASF) for Seismic Attenuation in Advanced Gravitational Wave Detectors"
- APS April 2000, Long Beach, Hareem Tariq, "Novel Design and Preliminary Testing of Linkless Geometric Anti Spring Filter Pre-Isolation"

Geometric Anti Spring Filter

APS April 2000, Long Beach, Akiteru Takamori, "Performance of Geometric Anti-Spring Filter (GASF) for Seismic Attenuation in Advanced Gravitational Wave Detectors"

Monolithic GASF

APS April 2000, Long Beach, Hareem Tariq, "Novel Design and Preliminary Testing of Linkless Geometric Anti Spring Filter Pre-Isolation"

LIGO SAS Tuning of Resonant Frequency

Compression of the Blade

Weight of the Load

Resonant Frequency vs Height

SAS Advantages of Passive Attenuation chains

- Simple Chain of modular pre-tested units
- It is passive, it always work,
- Losses of power, ineffectual,
- Irreversible drooping < 10⁻¹² m/day
- No software => no bugs
- No actuators => no excess noise in frequency ROI
- More defensible when finding a signal

SAS Advantages of Passive Attenuation chains

- A passive system means no active components in vacuum
 - (including the active inertial damping system)
- No need for encapsulated sensors

(no entrapped gases)

• Full Bakeability for ULF performance

SAS Expected Performances of Passive Attenuation chains

- Multiple pendulum suspensions positioning < 0.1 microns
- (1 micron achieved by Virgo, 0.01 micron calculated,
 - 0.1 micron aimed at)
 - \Rightarrow fully electrostatic plus photon drive
 - \Rightarrow possible in triple pendulum!!
 - \Rightarrow totally free test mass during interferometer running
- Large passive seismic attenuation overkill.
- APS April 2000, Long Beach, Giancarlo Cella, "MSE: a mechanical simulation engine for the LIGO end to end model"
- Not only more defensible, but also impervious to earthquakes
 - » <u>earthquake performance figure</u>

CAPE MENDOCINO EARTHQUAKE, 04/25/1992 11:06 40.026N, 124.069W, SHELTER COVE - AIRPORT

Expected Performances of Passive Attenuation chains

- Multiple pendulum suspensions positioning < 0.1 microns
- Large passive seismic attenuation overkill.
- APS April 2000, Long Beach, Giancarlo Cella, "MSE: a mechanical simulation engine for the LIGO end to end model"
- Not only more defensible, but also impervious to earthquakes

Simulated Residual Motion Performance

Attenuation Performance of a SAS chain

F. Nocera, A. Bertolini, R. DeSalvo, S. Marka

Why?

- kill a source of non-Gaussian noise

Force requirements:

- 1 mN to control 1 μm RMS residual motion

A possible solution:

- optical transmission of power
- use strip array capacitors to increase capacitance and linearity
- drive the actuator with a high Q resonant circuit to have high voltage and low power consumption

Single capacitance driving scheme

Figure 6-5. Amplitude spectra (median and r.m.s.) for a quiet one-hour period at the West End. This period corresponds to the same time period as the spectra shown in Figure 6-1. Vertical component is shown.

www.ligo.caltech.edu/~smarka