Laser and Optics Advanced R&D

Jordan Camp

May 1, 2000

LIGO II Laser Requirements

- Power: 180 W
- Mode Shape: 90% of light in TEM₀₀ mode
- Frequency Noise: 5 x 10² Hz / sqrt (Hz)
- Intensity Noise: 1 x 10⁻⁵ / sqrt (Hz)
- Stability: 1%

Path to 180 W Laser

- MOPA (Master Oscillator Power Amplifier)
 - >> under development at Stanford University
 - >> 30W TEM₀₀ output power achieved using LIGO I laser as MO
 - >> investigation of intensity noise at various levels of gain saturation
 - >> modeling of thermal management key to advance in power
- Injection Locked Stable Unstable Resonator
 - >> under development at Adelaide University, Australia
 - >> 30W unstabilized output power achieved
 - >> effort to injection lock resonator continuing

Industrial Vendors

- Markets growing for 100 W class IR laser
 - >> laser diode price dropping rapidly
- Letter of Solicitation of Interest sent to 12 laser companies
 - >> included 180 W laser specifications document
 - >> response from Lightwave Electronics (LIGO I laser builder), TRW
 - >> verbal response from Laser Zentrum / Hannover
- Time frame for laser fabrication
 - >> industrial R&D in 01
 - >> fabrication in 02, integration in LIGO II subsystem in 03

Sapphire Optics for LIGO II

• Low Internal Thermal Noise

)) Q ~ 4 x 10⁸

>> Thermoelastic noise lower limit to low frequency noise (factor ~5 below fused silica)

• Increased Density

>> reduced radiation pressure noise

- Optical performance must satisfy LIGO II requirements
 - \rightarrow G_{rc} = 100
 - >> Arm cavity stored power = 700 kW

Sapphire Development in 2000

- Measure optical and mechanical properties of small sapphire samples
 - >> Q
 - >> optical homogeneity
 - >> ability to polish
 - >> absorption
 - >> birefringence of coatings
- Feed back information to Crystal Systems to grow full size pieces for 2001
- An LSC effort: Caltech, Stanford, Glasgow, Syracuse

Q and Loss Measurements

- Measure Q's > 10^8 for a variety of sapphire pieces
 - >> effect of polish
 - >> effect of coating, attachments
- Cross check measurements with different groups
 - >> Caltech, Stanford, Glasgow
- Anelastic low frequency loss studies at Syracuse
 -)) few x 10^{-7} loss measurement now
 - >> development proceeding to loss levels of interest for sapphire
 - >> effect of coating, surface loss

Polish and Optical Homogeneity

• LIGO II recycling gain ~ 100 requires:

- >> optics surface figure 1 nm rms
- >> microroughness 0.1 nm rms
- >> bulk homogeneity 10 nm rms
 - requires compensating polish of back surface
- Polish tests
 - >> CSIRO
 - >> General Optics
 - >> metrology supported by Caltech Fizeau interferometer

Bulk Absorption

• Nominal sapphire absorption 40 ppm / cm

>> requires factor 50 reduction in bulk distortion through adaptive thermal compensation

• Program to identify and eliminate sources of absorption

>> Stanford Photothermal Common-Path Interferometer

>> examine samples from different sapphire starting materials, locations in boule, annealing processes, etc.

- >> measured absorption 40 120 ppm
- >> absorption due to Ti, other impurities

Coating Absorption and Birefringence

- LIGO II coating requirements
 - >> birefringence < 10^{-3} rad
 - >> absorption < 1 ppm
- Measure by probing resonant cavity with transmitted sideband as function of input polarization

>> low loss coating possible on c-axis sapphire

- Determine if m-axis sapphire optics are practical
 - >> m-axis anisotropy may stress coating
 - >>c-axis sapphire requires double-size boule

Schedule of Tests

Sapphire Development Tests for 2000

#	Axis	Size	Test	Dates	Place
1	m	15 cm ø	Optical Homogeneity	May - July	CSIRO
		x 8 cm	and Surface Figure		
			Q	July - Aug	Caltech, Stanford
1	m	15 cm ø	Optical Homogeneity	May - July	GO
		x 8 cm	and Surface Figure		
			Q	July - Aug	Caltech, Stanford
2a	m	25 cm ø	Q	June - July	Stanford, Caltech
		x 10 cm	Surface Figure	Aug - Sept	-
			Coating Stress Birefringence	Oct	Caltech
			Q	Nov - Dec	Caltech, Stanford
2b	m	7.5 cm ø	Coating Stress Birefringence	June	Caltech
		x 3 cm			

Tests (cont.)

#	Axis	Size	Test	Dates	Place
3	m,c	1 cm x 1 cm x 1 cm	Bulk Absorption	Mar - Dec	Stanford
4	m,c	2.5 cm φ x 1 cm	Coating Absorption Coating Stress Birefringence	May May	Caltech Caltech
5	m,c	3 cm φ x 10 cm	Q and Silicate Bonding	May - Aug	Stanford, Glasgow
6	m,c	13 cm φ x 6 cm	Q and Coating	April - Aug	Stanford, Glasgow, Caltech

