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My, Introduction
A series of pulses in the driving force of a violin mode are in

k principle capable of reproducing any output data signal. This is a
m rather serious noise problem since an accidental series of such
pulses can produce results that might be confused with a gravity
k wave. Fortunately the complete set needed to reproduce most
signals is fairly large. An incomplete set has a signature in the
B M, form of spurious bumps in the data that do not correspond to the

expected signal.
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The differential equation
So that the equation for the signal from a violin mode in the time domain is

(r) + dmwd (1) + (2, (1) = o)

In the frequency domain this is

[/ = 2wf + £3 )(27) D(f) = P(f)

In the case that p(t) = §(t - tO) , P(f) = J‘ooé‘(t B to )eﬂﬂﬁdt = ejzﬂﬁo ,this

yields

D(f)=

__ejzﬂﬂo

(275)2[]‘2 +2jwf—f02]
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Two pulses canceling the center of the natural peak
Suppose I have a pulse at ty = 0 and a second at t; sometime later. Then

—(1 +c,e/?7 " ) - —-(1 +c, cos(27f t,)+ je, sin(27f ¢,

P)= Caf[r2+2mr - fi] @A) [ 2w - ]

The object is to make the central peak disappear. There are three parameters, Re(c,),
Im(c,) and t;. There are two conditions, that the real part and imaginary part of D;(fy)
equal zero. If I choose c; to be real, the imaginary condition is satisfied by

m .
t, =——, m=any Integer L
271, . Then the cosine is given by

COS(?ZTI’I) - (_ l)m so that the real part of c; is given by

m m+1
¢y (_ 1) +1=0; ¢ = (_ 1) . The value a short distance from f;, can be
found from the expansion
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oD,
of

jzmlcl(f"'fo)(_) (fo) (o = —j2mm

IIZ

D) =D+ 1| = (s - ) eor2atn )G

(f"fo)
2£,

The last term is the peak from a delta function response. The derivative of this with
respect to f at f=f; is zero owing to f; being the value at the peak. Note that a two-term
attempt to eliminate the peak will have the most success for small m. In fact m=01is a
positive and negative peak at exactly the same time, which totally eliminates the peak for

all values of f.

G(fo)
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Figure 1 Two pulses ~40 seconds apart. The peaks are narrow relative to the size of
the natural line.
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Figure 2 Two pulses ~4 seconds apart. The peaks are about the same width as those
in the natural line.
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Figure 3 Two pulses on the order of 2 seconds apart are shown. The peaks are
much wider than the natural shape.
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The width of a pulse is the change in frequency required to go through = in the imaginary
exponent. Thus Af ly, = 1 or af =1/1,, with a natural width of 0.1 cycles per second,

the time required to get to this width is ty = 10sec . Thus a good approximation to
the peak may be a series of ty's between 1 and 10 seconds. If the times are allowed to

_ J27f (8 o+9;
adjust so that ;=1 0; T 51‘ , the adjustments will change the value of € (0% :

These changes approximately repeat for s, = 1meaning that the changes will be found to
vary the value of §; only by 1/f.
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Figure 4 Two peaks ~1 second apart.
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Finding P (t )
For any observed data D(f), there exists a P(f) given by

P(f)=~(22)[f* +2)uf ~ £2]D(/)

Example 1 A displaced violin mode
In particular suppose that D(f) is a violin mode at a frequency other than the original

D(f)=e"*™V(f;fs,w')
flw=if)" + 7]

. _ /2
= o) =€ fo|w = i) + 7]
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This can be solved analytically to yield

p(t;ro,fo,fvo,w,w')=§‘ia(ro—r)

0

~N

bt —1,) P < [(W —w) + -1 ] sin(27f;(¢ - t,))

So L—[2 Jf(w— w')] cos(27#0’(t —t, ))
The data can also be fitted as a series of delta functions. The fit below is to a series
of 257 delta functions in which the heights and times are both varied.

J
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Figure 5 This is the fit produced by 257 starting times. The violin mode is at 500.87
cycles/second. The data is assumed to consist of a single violin mode at 507 cycles
per second.
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Figure 6 This is a plot rho(t) as found by the fit - Black dots and the analytical
"result" line connecting points.
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Figure 7 Now all of the points in the analytical result are shown, rather than just the
uniformly spaced 257 points between 0 and 4.
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Figure 8 Greater detail of the fit results versus the analytical solution.
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Example 2 A Gaussian data peak
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In this case the data is a Gaussian peak centered at 507 cycles/sec near a violin mode
at 500.87 cycles/second.

Figure 9 Expansion of the peak region.
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Figdé 10 Distribution of times leading to above fit.
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