Optical absorption measurements in sapphire

Alexei Alexandrovski

Martin Fejer

Roger Route

Ginzton Laboratory, Stanford University

LIGO-G000072-00-D

Optical absorption measurements in sapphire

OUTLINE

- Background
- Photothermal technique
- > As-grown sapphire
- > Annealed sapphire
- ➢ How to go below 40 ppm/cm
- > Prospects

Space resolution

Space resolution: surface-to-surface scan

Photothermal Common-path Interferometer (PCI)

- ac-component of probe distortion is detected by photodiode + lock-in
- absorption coefficient of 10⁻⁷ cm⁻¹ can be detected with a 5 W pump
- crossed beams help to avoid false signals from optics and surfaces of the sample

Data on sapphire crystals (1998)

Crystal	α (ppm/cm)		Scattering	Fluorescenc
	532nm	1064nm		е
				2
'Window' 3mm- thick	1400*	81	No	2 x 10⁻³ F, Ti ³⁺
CS 'White' #0	415*	41	Large near the	1 x 10 ⁻³ F,
	(bulk, anomaly	(bulk, anomaly	surface	Ti ³⁺
	near the surface)	near the surface)		(bulk)
CS 'White' #1	1600	84	No	3 x 10⁻⁴ F
CS 'White' #2	1310	72	Weak band in the bulk	1 x 10 ⁻³ F
CS 'White' (Perth)	1910	129	Yes, broad band near one face	3 x 10 ⁻³ F
CS 'Hemex Ultra'	1150	188	No	1 x 10 ⁻⁴ F
0.1% Ti-doped	0.68/cm (total)	6400	Yes, macro-	F, Ti ³⁺
(reference #2)	0.145/cm		defects	
	(thermal part)			
0.05% Ti-doped	-	19000**	-	0.7F, Ti ^{3∓}
laser rod				
(reference #1)				

* 514 nm

** Absorption measured directly

Relative fluorescence brightness estimated with calibrated neutral filters,

Ti-doped reference #2 brightness denoted as F

Data on sapphire crystals (1999)

Crystal	α (ppm/cm)		Scattering	Fluorescence
	514nm	1064nm		
CS 'White', H ₂ - annealed	605	53	No	≈ 2 x 10 ⁻⁴ F
CS 'White', O ₂ - annealed	600 (bulk, anomaly near the surface)	47 (bulk, anomaly near the surface)	Large near the surface	≈ 2 x 10 ⁻⁴ F (bulk)
Substrate (TRW)	-	66	No	-
'Window' 3mm- thick	1400*	81	No	2 x 10 ⁻³ F, Ti ³⁺
0.1% Ti-doped (reference #2)	0.68/cm (total) 0.145/cm (thermal part)	6400	Yes, macro- defects	F, Ti ³⁺

Relative fluorescence brightness estimated with calibrated neutral filters, Ti-doped reference #2 brightness denoted as F

Data on sapphire crystals (2000)

Crystal	α (ppm/cm)		Scattering	Fluorescence
	514nm	1064nm		
1T	1730	124	No	10 x10 ⁻⁵ F
1M	1800	103	No	5 x 10 ⁻⁵ F
1B	1430	91	No	2.5 x 10 ⁻⁵ F
2T	900	57	No	4 x 10 ⁻⁴ F
2M	900	87	No	10 x 10 ⁻⁴ F
2B	1410	92	No	40 x 10 ⁻⁴ F
3T	920	62	No	10 x10 ⁻⁵ F
3M	1470	121	No	5 x 10 ⁻⁵ F
3B	840	66	No	5 x 10 ⁻⁵ F
4T	830	46	No	10 x 10 ⁻⁴ F
4M	1200	126	No	2×10^{-4} F
4B	1200	94	No	1 x 10 ⁻⁴ F

Crystal Systems, Inc.

Nuclear Research Center – Negev, ISRAEL

Crystal	α (ppm/cm)		Scattering	Fluorescence
	514nm	1064nm		
1579	1570	147	No	2 x 10 ⁻³ F
1958	1600	140	No	2 x 10 ⁻³ F
1741	1560	211	No	2 x 10 ⁻³ F

20 mm-long, H₂-annealed sample

• Reference sample: Ti-doped sapphire with the absorption of 6400 ppm/cm at 1064 nm

20 mm-long, H₂-annealed sample

Absorption at 514 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 1064 nm, scan from surface to surface

Annealed sapphire data

20 mm-long, O₂-annealed sample

Absorption at 1064 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 514 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 514 nm, scan from surface to surface

Model

O₂-annealed sample

Conclusions

- The best as-grown sapphire shows 40 ppm/cm of absorption at 1064 nm
- ***** H₂-annealed sapphire shows no change in absorption, fluorescence or scattering
- O₂-annealed sapphire shows a complex response to oxidation with local decrease of both IR and green absorption
- Defects responsible for current IR and green absorption levels are yet to be identified
- Proper annealing may offer means to reach the 10-15 ppm/cm level. Further decreases will depend on the ability to identify and eliminate specific defects

