Current Status of the Anelastic Aftereffect Experiment Prospects for Measuring the Internal Fiction

Prospects for Measuring the Internal Fiction in Fused Silica and Sapphire at $f = 1-10^3$ Hz

Steve Penn, Scott Kittleberger, Peter Saulson, Andri Gretarsson, Gregg Harry, Mark Beilby (PSU),William Startin (CNA) Syracuse University Experimental Relativity Group

REASONS FOR THE ANELASTIC AFTEREFFECT EXPT.

- Anelastic Aftereffect is a function of Dissipation in Bulk Mass in the 1 Hz – 1 kHz Frequency Range
 - Provides a Direct Measure of $\phi(f)$ in contrast to at Resonance: $\phi(f_0) = 1/Q_{f_0}$
 - Tests our Assumptions for Structural Damping, and Thermoelastic Damping
- For Glass Test Masses, Anelastic Aftereffect can be Measured using the Stress-Induced Birefringence (see *RSI* paper by M. Beilby, P. Saulson and A. Abramovici)

FLUCTUATION-DISSIPATION THEOREM

•
$$x_{\text{therm}}^2(f) = \frac{k_{\text{B}}T}{\pi^2 f^2}$$
 $(Y(f))$

where Y(f) = v(f)/F(f) and $\operatorname{Re}[Y(f)] = 2\pi f \phi(f)/k$ and the spring constant is $k(1 + i\phi(f))$

• At resonance
$$\phi(f_n) = \frac{1}{Q_n}$$

- For a test mass under an harmonic stress, ϕ is the phase shift in the strain.
- \bullet OR, we can derive φ from measurements of the anelastic aftereffect or creep

ANELASTIC AFTEREFFECT EXPERIMENT

MOTIVATION:

- Measure Loss, ϕ_1 , in the Test Mass in the LIGO Frequency Range of Iinterest (1 Hz 1 kHz)
- Resonant Q Measurements determine ϕ only at the resonant frequencies, (> 1 kHz) J 1 A/J₀

$$\phi \quad f = \frac{1}{2\pi\tau} \qquad \frac{\pi}{2} \frac{\mathrm{d}J(\tau)}{\mathrm{d}\ln\tau}$$

We measure the Anelastic Aftereffect in Optically Transparent Test Masses via Stress-Induced Birefringence.

UN-SQUEEZED STATE

PZT Polarized Polarized Laser Beam 3 mW Splitter 635 nm /4 Detector 1 Test Mass plate (Vert. Pol.) PZT Detector 2 (Horz. Pol.)

SQUEEZED STATE

Where the Detector Difference Signal is proportional to the Stress in the Test Mass

RECENT IMPROVEMENTS IN THE ANELASTIC AFTEREFFECT EXPERIMENT

- PZT Frame is more rigid (for greater squeeze), self-centering (better alignment)
- PZTs individually controlled to correct for individual hysteresis
- PreAmp (10^4 amplification) and detectors now battery powered (no 60 Hz)
- New Quieter Higher Power Laser should bring us close to shot noise (Temperature controlled, Low Noise Current Supply, Single-mode polarizedpreserving optical fiber)
- Insulated experimental shelter minimizes thermal fluctuations

Graph 5: Summary: SUMslowfs_e.m, Data: slowfs.m, Time: 17-Mar-2000 01:56:10

Prospects for Measuring ϕ of Sapphire with Anelastic Aftereffect

- Fused silica $\phi < 10^{-6}$ but systematics from the test mass mount limit our sensitivity
- Thermoelastic Noise in Sapphire is calculated to be $\phi(f = 1 \text{ Hz}) \quad 10^{-5}$ (quite detectable?)
- Inherent Birefringence may prove troublesome for our suspended mounts
- Large Stress-induced birefringence must be achievable with our PZT vise

CURRENT STATUS OF THE ANELASTIC AFTEREFFECT EXPT.

- Statistical error at 10^{-8} , but Systematic errors from the mounts are on the 10^{-7} level.
- Sapphire φ should be easily measurable barring any problems with birefringence.
- Fused Silica has been just beyond our reach. Mounting and alignment difficult with vise which squeezes with 10⁴ N and 1 mil clearance on either side. Two new mounts ready to be tested. Ultimately we could resort to silicate bonding.