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Introduction

The direct observation of gravitational waves, even though they were predicted

one hundred years ago by the General Theory of Relativity, is one of the most

pursued phenomena in contemporary physics. Accelerating, non-axisymmetric

mass distributions radiate energy in the form of gravitational waves as they

distort the fabric of space-time. However, even with current state-of-the-art

sensors, ideal sources such as black holes and binary systems are not expected

to generate signals detectable from Earth with event rates greater than one per

several years. One of the ongoing efforts to detect this form of radiation, the

Laser Interferometer Gravitational Wave Observatory (LIGO) project, has built

two observatories. One is near Hanford, WA, and the other is near Livingston,

LA. Both house 4-km-long Michelson interferometers which are ideally suited

for detection of the quadrupolar strain in space-time induced by a gravitational

wave.

Accurate and precise calibration of kilometer-scale interferometric gravita-

tional wave detectors is crucial. Calibration errors in the instrument degrade

its ability to detect and then to interpret the properties of any received signals.

Several methods have been employed to calibrate the response of these inter-

ferometers to differential length variations. Most methods use interferometer

configurations that are different than that used during searches for gravita-

tional waves and induced displacements that are many orders of magnitude

larger than those expected from gravitational waves. Moreover, the calibration

function may change during the time when the interferometer is configured

to detect gravitational waves. For these reasons it is necessary to develop a

calibration procedure that can be used during the Science Mode operation of

the detector, thus providing important information about the stability of the

calibration without destabilizing the instrument. One such technique is the

so-called Photon Calibrator.

The Photon Calibrator method uses an auxiliary, power-modulated laser

reflected from the mirror at the end of one of the interferometer arms to in-

duce calibrated displacements via the recoil of photons from the surface of the

optic. Photon Calibrators have been operating continuously at both of LIGO’s

observatories during the entire Science Run, designated S6, that began on July

7, 2009 and is expected to end on October 6, 2010. The principal objective of
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INTRODUCTION iv

the Photon Calibrators during S6 was investigation of the long-term stability of

the calibration of the actuators that control the lengths of the interferometer

arms. Characterization of the Photon Calibrators data is the subject of the

research for this thesis that was carried out while the author was resident at

the LIGO Hanford Observatory for ten weeks during the summer of 2010.



Chapter 1

The search for gravitational

waves

1.1 Gravitational waves and LIGO

One of the most important predictions of the General Theory of Relativity is

the existence of gravitational waves. This theory depicts space and time as in-

timately connected, as a common fabric, known as space-time, that permeates

the entire Universe. The Gravitational Force is not a force separate from the

space-time. The gravitational field of a massive body is the way in which it

curves space-time due to the presence of that body. This phenomenon causes

another effect: every accelerating massive body radiates energy by distorting

the fabric of space-time, the emission of gravitational waves. Just as electro-

magnetic waves are time-dependent vacuum solutions to Maxwell Equations,

gravitational waves are time-dependent vacuum solutions to the Einstein Field

Equations. Like electromagnetic waves, gravitational waves travel at the speed

of light, transmitting the variations of the gravitational field in the space-time.

Despite this great generality, the weakness of gravity imposes stringent crite-

ria on the bodies that can emit measurable amounts of energy via gravitational

waves: only very massive astrophysical objects are candidates for being de-

tectable sources of this form of radiation. Even strong sources of gravitational

waves (black holes and Neutron Stars) that may exist in our galaxy or nearby

galaxies are expected to radiate waves on Earth that do not exceed strains of

one part in 1021.

The intrinsic differential nature of the effects of a gravitational wave on

a set of test masses makes the Michelson interferometers very efficient detec-

tion instruments, as they are extremely sensitive to changes in the relative

lengths of the two orthogonal arms [1]. The Laser Interferometer Gravitational

Wave Observatory (LIGO), as well as Virgo, use Michelson interferometers with

Fabry-Perot arm cavities. An observatory in Hanford, WA houses two interfer-

1



CHAPTER 1. THE SEARCH FOR GRAVITATIONAL WAVES 2

ometers, a 4 km-long (“H1”) and a 2 km-long (“H2”, no longer active) detector,

and an observatory in Livingston, LA houses a 4 km-long (“L1”) detector.

Figure 1.1: Schematic of the interferometers layout. Both the power-recycling
mirror and the Fabry-Perot cavities are shown.

In all the interferometers of LIGO, the Fabry-Perot cavities enhance the

sensitivity by resonating the laser light in the arms. The laser source emits

a 20 W beam with a wavelength of 1064 nm. Power, mode and frequency

are actively stabilized before the beam enters the interferometer. After that,

the beam passes into the vacuum system: all of the main interferometer opti-

cal components and beam paths are enclosed in an ultra high vacuum. Each

mirror in the beam path is suspended as a pendulum by a loop of steel wire,

which provides vibration isolation. The pendulum suspension also allows free

movement, in the transverse plane, of the test mass in the gravitational wave

frequency band, from 40 Hz to 6 kHz. The position and orientation of a sus-

pended optic is controlled by electromagnetic actuators: small magnets are

bonded to the optic and coils are mounted to the support structure. Each arm

contains a resonant Fabry-Perot optical cavity made up of a partially-reflective

input mirror and a highly-reflective end mirror. The cavities cause the light

to effectively reflect back and forth 100 times in each arm, thus increasing the

strain and the phase shift caused by a gravitational wave. The cavities require

an active feedback system. The round trip length of each cavity must be held

to an integer multiple of the laser wavelength so that newly introduced light

interferes constructively with light from previous round trips, so the light inside
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the cavities resonates and increases in power [2].

The Michelson arm lengths are set such that the light interferes almost com-

pletely destructively at the antisymmetric port. This configuration is called

dark fringe condition. A passing gravitational wave with polarization oriented

along the arms, will impress a phase modulation on the light in each arm of the

Michelson, with a relative phase shift of 180 degrees between the arms, when

impinging normally to the interferometer. Only differential motion of the arms

appears at the dark port, with an amplitude proportional to the wave strain

and the input power. All of the instruments described above are supplemented

with a set of sensors to monitor the local environment. Seismometers and

accelerometers measure vibration, microphones monitor acoustic noise, magne-

tometers monitor fields. These sensors are used to detect external noises that

could hinder gravitational wave detection.

The LIGO Scientific Collaboration decides when the interferometers are in

commissioning or detection period. A detection period is called Science Run.

Currently LIGO is in the sixth Science Run (S6), beginning on July 7, 2009

and ending on October 20, 2010. During a Science Run, the interferometers

should be functional for 24 hours a day, every day. Of course, it is impossi-

ble to guarantee that the detector remains continuously in lock for the whole

time, capable to detect successfully a gravitational wave. For example, exter-

nal noises, e.g. an earthquake, wind or close human activities, could disturb

or inhibit the functioning of the detector. The status of a detector when it

is operating optimally is called Science Mode, because those data are fit for

scientific analysis.

1.2 The calibration of the interferometers

Precise calibration of kilometer-scale interferometric gravitational wave detec-

tors is crucial. Calibration errors in the instrument degrade its ability to detect

and then to interpret the properties of any received signals. Passing gravita-

tional waves that cause space to stretch and compress along the arm cavities

would be sensed by the interferometer as differential changes in the lengths of

the arms. Feedback control loops are used to maintain the nominal separation

of the mirrors required for a signal detection. In particular, the differential

arm length (DARM) control loop, depicted in figure (1.2), uses magnets glued

to the back surfaces of the end test masses surrounded by coils of wire (called

voice coil actuators) to control the positions of the suspended optics without

touching the mirrors. The DARM readout signal is measured, amplified, fil-

tered and then sent again to the voice coil actuators, to maintain the resonance

condition in the interferometer.

When an external disturbance causes variations in the lengths of the arms,
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Figure 1.2: The Differential ARM control loop.

these change are sensed by the interferometer via the antisymmetric port (γ ·C
in figure (1.2)). This steps is called sensing function, and its purpose is to

convert length variations into a digital, calibrated signal. The readout of the

sensing function is sent back to the loop. Digital filters (D) tailor the signal,

which is then sent to the voice coil actuators. The actuators (A) drive the mir-

rors, via the coils, using the digital signal from the loop as a guide, to counter

(−) the original length variation and maintain the DARM length near its orig-

inal value. If all the parts of the loop are working correctly, length variations

in the interferometer should be compensated by the reaction of the actuators.

Calibrate the interferometer means to measure the DARM closed loop transfer

function in response to a length fiducial. The DARM response function R(f)

allows conversion of the DARM signal to absolute displacement at all relevant

frequencies. Multiplying the DARM readout signal by this response function

yields the calibrated DARM error signal [3].

There are two ways to inject length variations in the loop. One is the

recoil of the photons from the auxiliary power modulated laser on the mirror

(Pcal). The other one uses the actuators as source of displacements. This

excitation is called DARM Control Excitation (DCE) and is injected directly

on the actuators. During S6 both the excitations were contemporary activated

every time the interferometer was in Science Mode.

The complex interaction of this control loop with the mechanical plant, and

with the possible gravitational waves makes the calibration of the instrument

challenging.

Presently, the principal calibration method used for the LIGO interferom-

eters is the Free-swinging Michelson technique. It relies on measurement of
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Michelson interference fringes when the suspended optics are swinging freely.

With the feedback control switched off, the free motion of the mirrors is mea-

sured both in the antisymmetric port and in the actuator coils: comparing

those two measurements provides a length calibration of the antisymmetric

photodetector and, thus, of the DARM signal. This calibration technique, due

to its structure, can be used only to calibrate the whole DARM control loop,

and not to measure the open loop transfer function [4].

The current generation of gravitational wave detectors are sensitive to

DARM variations with amplitude spectral densities on the order of 10−19 m/
√

Hz,

at a frequency near 100 Hz [2].

Figure 1.3: The DARM−ERR channel (Differential ARM ERRor) is a repre-
sentation of the sensitivity of the interferometer at all the frequencies.

The working conditions of the interferometers change with time, and contin-

uous or at least periodic calibrations are necessary. There are several methods

to calibrate the test mass displacement and they are all employed to eliminate

systematic errors in the calibration procedure. Unfortunately, in most cases

the interferometer cannot detects gravitational waves during the calibration,

because calibration methods need invasive operations or produce effects on the

test mass displacements that are much larger than the expected apparent dis-

placements that would be caused by the gravitational waves. At this time,

the calibration of all the interferometers of the LIGO is done with an off-line

method, which has several restrictions: because of the inability to acquire data

during the calibration, one is forced to allow for long periods of time between

two calibration runs and therefore the reliability required of the results is de-

creased. For these reasons it is necessary to develop a calibration procedure that

can be used during the whole Science Run, thus providing important informa-

tion about the stability of the calibration, without destabilizing the instrument.

One of these techniques is the one so-called Photon Calibrator.



Chapter 2

The Photon Calibrator

2.1 Principle of operation

The Photon Calibrator method uses an auxiliary, power-modulated laser re-

flected on the end test masses (ETMs) to induce calibrated displacements via

the recoil of photons from the surface of the mirror. The principle on which

the Photon Calibrator relies is the comparison of the movement of the mirror

induced by the photons against the movements of the same mirror induced

by the voice coil actuators. The same optic is subjected to both the excita-

tions, at different frequencies, at the same time. A measurement of the effects

on the sensitivity of the interferometer caused by these perturbations allows

the determination of the actuation coefficient of the corresponding actuator,

which is the purpose of a calibration procedure. The laser source of the Photon

Calibrator is located on an optical table outside of the vacuum system of the

interferometer. It has a wavelength of 1047 nm, slightly different from that of

the main beam, and an average power of 100 mW. Using an optical modulator

the power is changed introducing a sinusoidal pattern with an amplitude of

about 50 mW. Therefore, the exit power of the laser can be written as

P (t) = P0 + Pm sin (ωt) (2.1)

where P0 is the average power, Pm is the amplitude of the power modu-

lation and ω is its frequency. When the beam is incident upon the surface of

the mirror, the beam reflects from the surface, transfers momentum from the

recoiling photons and thus exerts a force on the mirror. Like in the case of the

gravitational waves, if the frequency of the modulation is far above the pen-

dulum resonance frequency of the suspension system, the mirror is essentially

free to move in the horizontal plane. Thus, we can use the free-mass transfer

function to determine the displacement of the optic.

F (t) = Mẍ(t) =
dp

dt
(2.2)

6
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where M is the mass of the mirror. The impulse produced by the recoil

of the photons from the test mass produces a change in the momentum of the

optic. Every photon, reflecting from the mirror with an angle of incidence

equal to θ, transfers a longitudinal momentum equal to 2 ~ k cos θ, where k =

2π/λ = 2πν/c is the wavenumber of the laser source, λ is its wavelength, ν is

its frequency, c is the speed of light, ~ is the reduced Planck constant and the

factor 2 is given by the elastic reflection of the photon. Thus, for a flux of n

photons per second, the variation of momentum is

dp

dt
= 2n ~ k cos θ = 2n ~ · 2π ν cos θ

c
=

2nh ν cos θ

c
(2.3)

If the laser source has a power of P , because every photon carries an energy

of h ν, the power of a source with n photons per second is

P = nh ν (2.4)

thus, due to the eq. (2.3) and the eq. (2.1),

dp

dt
=

2nh ν cos θ

c
=

2P cos θ

c
=
Pm sin (ωt) cos θ

c
(2.5)

Because we are looking only for temporal variations of the momentum of

the mass at the power modulation frequency, ω, we can disregard the constant

component of the power. Using the equation (2.5) into the equation (2.2) gives

Mẍ(t) =
Pm sin (ωt) cos θ

c
(2.6)

Assuming that the solution of the equation (2.6) has the form of x(t) =

sin (ωt) for a power modulation that has this form, leads to the amplitude of

the induced motion xm , given by

xm(ω) = −2Pm cos θ

Mcω2
(2.7)

The minus sign indicates that the motion is 180 degrees out of phase with

the applied force [5].

2.2 Experimental setup

When the applied force is not directed through the center of mass of the optic,

the induced torque caused an angular deflection of the test mass, that can de-

grade the calibration. However, the center of the mirrors is already used during

the Science Mode by the main laser of the interferometer and it is undesirable

to apply forces directly onto it, because of elastic deformation caused by the

Photon Calibrator beam. Therefore, to avoid an angular displacement and, at

the same time, allow the interferometer to be operational during calibration,
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the Photon Calibrator uses two beams, instead of one, balanced in power and

displaced symmetrically about the center of the face of the optic.

Figure 2.1: Optical table layout of the Photon Calibrator. The laser is sent to
an acousto-optic modulator, which variates the power of the laser sinusoidally.
This modulated laser is sent to a 99:1 beam splitter, the weaker fraction is used
to measure the power modulation using a photodetector. The remaining 99%
of the power crosses another 50:50 beam splitter, which creates the two parallel
beams, with the same power, that will be send to the end test mass [5].

After the power modulation, the laser is split in two portions via a beam

splitter, which produces a secondary beam with 1% of the power. This fraction

is sent to a photodetector that monitors the power directed to the test mass

with high precision. The rest of the beam is sent to a second beam splitter,

which divides the power in two equal parts, to prepare the two output beams.

A calibration standard provides high accuracy calibration of the internal power

monitor [6]. This optical layout is shown in figure (2.1).

The Photon Calibrator beams enter the vacuum envelope through a glass

viewport and impinge on the test mass as shown in figure (2.2). The angle

of incidence of both the beams is approximately 9.6 degrees. The laser power

reflected from the test mass can be continuously monitored by computing the

product of the photodetector signal with the overall optical efficiency coefficient

(from the mirror and the viewport).

The Photon Calibrator can be used to find the closed loop transfer function,

as the Free-swinging Michelson method, or to calibrate directly the voice coil

actuators. During S6, the main purpose of the Photon Calibrator was to assess

the long-term stability of the calibration of the DCE channel. To determine

the voice coil actuation function, the Photon Calibrator and the voice coil

actuators sinusoidally dither the position of the optic while the interferometer
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Figure 2.2: The Photon Calibrator global layout during S6. The optical table
is located outside the vacuum envelope at the end station of the X arm. The
two beams enter the vacuum via a viewport, then reach the end test mass, with
an angle of incidence θ, and excite the mirror [5].

is operating in the Science Mode configuration. The sine wave frequencies of the

two excitations are separated by 7.1 Hz, close enough to minimize differences

in the response of the interferometer, but far enough apart to minimize two

cross-contamination by the induced length modulations.

DCE Pcal

H1 393.1 Hz 400.2 Hz

L1 396.7 Hz 403.8 Hz

Table 2.1: Excitation frequencies for the Photon Calibrator and the DARM
Control Excitation for both the interferometers.

Both actuation are detected by the instrument as a length modulation, and

the signal appears as a peak above noise in the amplitude spectral density of

the DARM error signal. During the measurement, the peaks in the excitation

channels are also measured.

2.3 Computing the voice coil actuation coefficient

Using the solution of the equation of motion for the mirror, equation (2.7), we

calculated the absolute displacement caused by the recoil of the photons. The

amplitude of the signal from the internal photodetector of the Photon Calibra-

tor (Pcal laser peak) measures the power of the auxiliary laser in counts.1 To

obtain the absolute power directed to the end test mass we calibrate separately

the internal power monitor, via the measure of its calibration coefficient η, ex-

pressed in W/ctPcal. Thus, the amplitude of the power modulation, Pm (see

1From now on we will use the abbreviation ct to indicate the counts of any digital signal,
and ctchannel name to indicate the source channel.
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equation (2.1)), is given by

Pm = Pcal laser peak · η (2.8)

This power readout can be used, via the equation (2.7), to determine the

displacement of the mirror in meters. The ratio between this fiducial and

the amplitude of the corresponding peak in the DARM error (DARM Pcal

peak), which has the same frequency of the power modulation of the Photon

Calibrator laser fPcal, leads to the calibration of the DARM error signal (DE )

at the frequency of the modulation, expressed in m/ctDE .

DE−cal|Pcal =
2Pm cos θ

Mc (2πfPcal)
2 ·

1

DARM Pcal peak
(2.9)

Using the response functionR(f) of the interferometer, expressed inm/ctDE ,

and the DE calibration coefficient at the Photon Calibrator frequency, given

by equation (2.9), we can calculate the calibration coefficient at any frequency.

Because we want to compare the Photon Calibrator and the DCE excitations,

we calculated the coefficient at the DCE excitation frequency (fDCE).

DE−cal|DCE = DE−cal|Pcal ·
R(fDCE)

R(fPcal)
(2.10)

Our goal was to calibrate the DCE channel, not the DE. Therefore, we

compared this calibration of the DARM error with the amplitude of the peaks

at the DCE excitation frequencies in both the DE signal (DARM DCE peak)

and the excitation monitor (DCE coil excitation). Taking the ratio of these

peaks yields the transfer coefficient that converts the DE calibration to the

DCE calibration, at the same frequency.

DCE−cal|DCE = DE−cal|DCE ·
DARM DCE peak

DCE coil excitation
(2.11)

To provide a calibration coefficient that allows calibration of the DCE signal

at any frequency by multiplying this coefficient by the DCE readout and the

corresponding frequency squared, we multiply this coefficient, in the eq. (2.11),

by the DCE excitation frequency squared:

DCE−cal|1 Hz = DCE−cal|DCE · (fDCE)2 (2.12)

Equation (2.12) gives the calibration coefficient of the DCE channel, ex-

pressed in m/ctDCE . Because the DCE excitation is injected at the input of the

voice coil actuation chain, it induces a length variation that can be compared

to the length variation induced by the Photon Calibrator. Thus, comparison

of the amplitudes of the two excitation peaks provides the direct calibration of

the voice coils actuators of the interferometer. The calibration coefficient can
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be also expressed in terms of the ratio of the amplitudes of the peaks as:

DCE−cal|1 Hz =

Pcal laser peak
DARM Pcal peak

DCE coil excitation
DARM DCE peak

· R(fDCE)

R(fPcal)
· 2 η cos θ

Mc (2πfPcal)
2 · (fDCE)2 (2.13)

The Photon Calibrator can be used either to determine the DE sensitivity

directly or to measure the voice coil actuation function, via the method outlined

above. A key advantage of the Photon Calibrator is that it can be used while

the interferometer is in Science Mode. Data were collected with this method

during the entire S6 Science Run. Characterization of this Photon Calibrator

data from LIGO’s sixth Science Run is the subject of this thesis.

2.4 The Photon Calibrator Code

To analyze this stream of data from the Photon Calibrator, Dr. Roberto

Grosso, from the Universität of Erlangen-Nürnberg, Germany, has written a

C++ program, which calculates calibration quantities and some other statistic

parameters that could be useful for a better analysis. We called this program

Photon Calibrator Code or PCalCode. This software is continuously running

on the Caltech computer clusters and provides a text file as output, which

contains one row per minute and 31 columns. This script calculates the two

excitation values for both the Photon Calibrator laser and the voice coil actu-

ator, and also the two corresponding amplitudes into the DARM signal. The

DARM error channel has a sampling frequency of 16384 Hz, thus for every

minute this channel outputs 16384 · 60 = 983040 samples. The program takes

all these values; calculates the Fast Fourier Transform of all the bins; filters

them with a band-pass window, centered on the required excitation frequency;

estimates the noise floor by calculating the mean of the points from adjacent

frequencies; measures the peak value and then outputs the peak amplitude

without the noise. All those calculations are repeated for every minute of data.

For this characterization work, we looked only at the following columns:

1. GPStime – it is the number of seconds since 1/1/1970 12:00:00 AM UTC.

This time measurement system is used in the GPS devices, thus the name.

2. StateVector – it is a binary number of 16 bits that summarizes the status

of the interferometer. When the instrument is in Science Mode, the state

vector is (FFFF)16 or 65535.

3. DCExc – it is the amplitude value of the length modulation injected into

the coil actuators (DCE coil excitation in the eq. (2.13)).
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5. DE DCE raw – it is the peak amplitude in the DARM error at the fre-

quency of the coil excitation (DARM DCE peak in the eq. (2.13)).

7. Pcal – it is the power of the Photon Calibrator laser, measured by the

internal photodetector (Pcal laser peak in the eq. (2.13)).

9. DE Pcal raw – it is the peak amplitude in the DARM error at the fre-

quency of the Photon Calibrator laser modulation. (DARM Pcal peak in

the eq. (2.13)).

25. DE Pcal rawNoiseEstimate – it is the noise in the DARM error at the

Photon Calibrator modulation frequency. The noise floor is estimated via

a linear fit of the the 5 nearest points outside the excitation frequency,

on both sides.

There are two text files, one for the data from the Hanford interferometer

and one for the data from the Livingston interferometer. At the time of this

writing, both the text file are updated to July 27, 2010 and contain every

minute of data since the begin of the S6 Run. Of course only the times in

which the interferometer was in Science Mode are taken for this analysis.

Total Science

H1 545594 265468

L1 543585 231656

Table 2.2: Total minutes of data and Science Mode data for both the interfer-
ometers.

To plot those data and to analyze them, we used and modified a MAT-

LAB script, originally written by Dr. Richard Savage, Dr. Greg Mendell and

Jonathan Berliner. This program removes all the entries in which the inter-

ferometer was not in Science Mode, and computes the calibration coefficient

basing on the equation (2.13).



Chapter 3

Characterization of the data

3.1 Removing outliers

In the figure (3.1) the result of the calculations done by the PcalCode for

all of the S6 data are plotted. First, we removed the data from the days in

(a) Hanford

(b) Livingston

Figure 3.1: The calibration coefficient computed for all the minutes of Science
Mode during S6. The biggest outliers are not shown.

13
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which there were known problems in the interferometers, such as non-standard

detector setups, maintenance work and other known issues. For example, the

first 80 days of the Run for L1 cannot be used for this characterization due to

a faulty connection inside the photodetector. Then, we removed all the time

Before After Removed Removed %

H1 265468 251404 14064 5.3%

L1 231656 194893 36763 15.9%

Table 3.1: Points removed because of known issues of the interferometer.

intervals during which the Photon Calibrator laser was turned off (or for some

other reason unreadable). The results are shown in figure (3.2). After that,

some large glitches were still evident in the calibration plots.1

Before After Removed Removed %

H1 251404 233725 17679 7.0%

L1 194893 193910 983 0.5%

Table 3.2: Points removed because of Photon Calibrator laser unable to reach
the internal power monitor.

To veto the glitches, we looked at the other columns of the text file for

the same GPS time, comparing all the values with the previous and the next

row. A field that seems to be affected by the glitches is one of the noise levels

calculated by PCalCode: the DE Pcal rawNoiseEstimate. After more manual

inspections, we removed all the points that had a noise value greater than a

certain threshold, scaling the threshold with the noise level within the same

day. The characterization of this veto is in the table 3.4.

Thresholds Before After Removed Removed %

H1 µ± 5σ 233725 233194 531 0.2%

L1 µ± 5σ 193910 192902 1008 0.5%

Table 3.3: Points removed by DE Pcal rawNoiseEstimate veto.

Due to the low accuracy of the veto, we decided not to apply it. Instead, we

applied a statistical criterion to remove the outliers. We calculated the number

of points outside n standard deviations (σ) from the mean, and compared the

results with what would be expected if the data were normally distributed. See

table (3.5) for further details.

Outside three standard deviations from the mean, there were a factor of

2 or 3 times more outliers in the data than would be expected for a Normal

1A glitch is a transient in a data channel, which usually lasts less then a second. In many
cases a glitch is recorded by more than one sensors at the same time. This often allows a
better identification of what caused it.
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(a) Hanford

(b) Livingston

Figure 3.2: The calibration coefficients, after the known issues times removal.

Removed Outl.rem. Outl. tot. Accuracy % Efficiency %

H1 531 41 58 7.7% 70.7%

L1 1008 278 378 27.6% 73.5%

Table 3.4: Characterization of the DE Pcal rawNoiseEstimate veto. The ac-
curacy is the ratio between the number of removed outliers and the number
of points removed. The efficiency is the ratio between the number of outliers
removed and the total number of outliers in the data.

Distribution. Because the additional outliers only represented less than 1% of

the data, we removed a-priori all the points that were three standard deviations

below and above the mean of their day, and focused on the rest of the points

for this characterization work.2

In figure (3.3) the normalized plots of the calibration coefficients for both

interferometers after the filters are shown. The mean of the points within a

2We first removed the largest outliers (farther than 10σ) before to calculate the means and
the standard deviations.
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σ
Pcal Normal
data distribution

H1 L1 H1 L1

2
10861 8900 10672 8854
4.66% 4.63% 4.56%

3
821 1515 631 524

0.35% 0.78% 0.26%

4
104 405 15 12

0.05% 0.21% 0.006%

5
57 298 0 0

0.02% 0.15% 5 · 10−7%

Table 3.5: Comparison of the number of the outliers for the data and a sample
with the same number of points generated using a Normal Distribution.

Before After Removed Removed %

H1 233725 232904 821 0.35%

L1 193910 192395 1515 0.78%

Table 3.6: Points outside 3σ from the daily mean

Mean σ

H1 1.28 · 10−9 m/ct 1.39 · 10−11 m/ct

L1 1.08 · 10−9 m/ct 0.64 · 10−11 m/ct

Table 3.7: Statistical quantities of the data

day is plotted as a red line, while the green lines are three standard deviation

above and below the mean of the day. The yellow dashed line represent the

mean of the whole Science Run.

3.2 Identification of a linear trend in the data

Looking at the data from H1, a small increasing trend is visible, especially in

the last part. We fit those data with a linear regression.

The results of the fit are shown in the figure (3.4). One of the advantages

of the identification of a trend in the data, is that the data quality can be

improved by removing the trend from those. We removed the linear trend to

calculate the statistical distribution of the data in the paragraph 3.3.

Looking at the figure (3.5) from L1, there is no evident increasing or de-

creasing linear trend in the data. The long-term variations are larger, but the

overall linear trend is smaller than in the H1 data.

The parameters of the fit are shown in the table 3.8. The high dispersion

of the data is causing the low χ2 values for both the regressions.
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(a) Hanford

(b) Livingston

Figure 3.3: The calibration coefficients for the S6, after the removal of the
outliers.
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Figure 3.4: Linear fit of the data from Hanford. The density of points is
represented using a color scale.
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L1 DARM_CTRL_EXC actuation coefficient  linear regression
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Figure 3.5: Linear fit of the data from Livingston. The density of points is
represented using a color scale.

a b ν χ2

H1 1.99 · 10−5 0.995 232902 26.17

L1 0.33 · 10−5 0.999 192393 6.76

Table 3.8: Linear regression results – model: (ax+ b) – x are S6 days

3.3 Statistical description of the data

We reported the histograms (3.6) of the calibration data, without the outliers,

for both H1 and L1 data. All the values are divided in 100 intervals and

the occurrences of every interval are counted and reported in the plots. The

histogram for H1 is made with the data obtained after the removal of the linear

trend.
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Figure 3.6: Histograms of the calibration coefficients.

We fit those histograms with a Normal Distribution, using the least-squares

method. First, the occurrences were normalized by the constraint that the area
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below the points was about 1. To calculate a rough estimate of the area we

chose to use the trapezoidal rule. Then the values of the calibration coefficient

were normalized dividing by their mean, so we expect from the fits a mean

value of about 1. Thus, we can take the Normal Distribution as model

f(x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 (3.1)

In figure (3.7) there are the histograms of the calibration coefficient after

the normalization described above. Both the histograms were fitted with the

equation (3.1) as model.
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Figure 3.7: Normalized histograms of the calibration coefficients, with the fit
using a Normal Distribution as model.

The output parameters of the fits are in the table (3.9).

Norm. µ ∆µ σ ∆σ ν χ2

H1 4.67 · 10−3 0.99981 3 · 10−5 0.01035 2 · 10−5 98 119.35

L1 1.16 · 10−2 1.0002 3 · 10−5 0.00579 2 · 10−5 98 9.47

Table 3.9: Parameters and goodness of the fits

Using the result provided by the fits, it can be inferred from the χ2 test that

the H1 data (apart from the noise) are normally distributed with a probability

of 90% and the L1 data are normally distributed with a probability of 5%.

3.4 Averaging the data

To provide a better visualization of the data, we grouped the data into single

points and plot the mean value of the groups of points. This is more useful

than the raw data points for identifying long-term trends. Thus, for each mean

value we want to plot error bars that represent the plus and minus one standard

deviation estimate of the error of the mean. The usual estimator of the error
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Figure 3.8: Error improvement diagrams for the calibration coefficients. The
scale is logarithmic for both the axes. The blue points are the standard devi-
ations of the means of the samples in which we divided the data, for different
sample widths. The green line is 1/

√
n, which is how the Standard Error of

the Mean improves.

of the mean is called Standard Error of the Mean, and is calculated as

σn =
σ1√
n

(3.2)

where σ1 is the standard deviation of the raw data, n is the number of data

points within a sample and σn is the standard deviation of the means of the

groups of samples. We calculated σn for various values of n, to see if the error

really improves as the square root of the number of points within each sample.

For each value of n, we divided the data in samples of n points. Then, we

calculated the mean of each sample and the standard deviation of the means.

Each point of figure (3.8) is obtained dividing the standard deviations of

the sample means by the standard deviation of the raw data. The green lines

in figure (3.8) are 1/
√
n, which is what we expect for the Standard Error of

the Mean. Clearly, the points do not follow those lines; the uncertainty in

the estimates of the means improves more slowly than the square root of the

number of points, even though the histograms were closely modeled by Normal

Distributions.

The Standard Error of the Mean can be used only if the data within different

samples are uncorrelated, otherwise one must consider the cross-correlation

contributions to the improvement of the error. During the construction of a

histogram, all the points are grouped in different bins looking only at their

value, no matter when that point occurred in time. So, a temporal correlation

in the data cannot be seen in a histogram and thus cannot influence the results

of the fits.

To find out if there is a temporal correlation in our data, we randomized
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Figure 3.9: Comparisons of the improvement of the error between the cali-
bration data and the random selected data. The red points are the standard
deviation of the means of the samples, selected in a random way in time.

the order of the samples. Instead of choosing points sequentially, we chose

the points randomly to build each sample. Thus, all the values of the points

are the same, just chosen in a random order. We then repeated the previous

calculation with the randomized data. The results are shown by the red circles

in figure (3.9).
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Figure 3.10: Error bar sizes interpolating functions. The purple line is the
interpolating function A(n) used to calculate the error bars for every sample
width.

Because the data are correlated, we cannot use the Standard Error of the

Meant to estimate the error bars for the averages. Using the calculated values

of σn for the sequential data, we can interpolate to give a function, A(n), that

can be used to estimate error bars for any value of n.

σn =
σ1
A(n)

(3.3)
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The results of the interpolation are shown in figure (3.10). For both the

interferometers our interpolating function was smaller than the square root of

the number, which means that the error of our averages improved less than the

Standard Error of the Mean, due to the correlation. Thus, the error bars in

the following plots are several time larger than the error bars calculated using

the Standard Error of the Mean.

3.5 Long-term trend plots with averaged data

To better visualize the long-term trends in the data we first divided the data

into hour-long segments and then into day-long segments.

In figure (3.11), all the data are divided in segments of one hour long. Only

contiguous Science Mode hours are taken, thus all the Science intervals shorter

than 60 minutes are ignored in this plot. Every point is the mean value of
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Figure 3.11: Calibration coefficients, grouped into hours. Each point represents
a contiguous hour of Science data.

the 60 points within the hour, versus the mean time of the hour, expressed
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in days from the beginning of S6, and has an error bar, estimated using the

interpolating function calculated in the paragraph 3.4.

The figure (3.12) is obtained dividing the data into days instead of hours.

This time, we removed the constraint of the adjacency of the data within an

hour. The script takes all the points within a day and calculates their mean to

generate a day point. Again, the error bars are calculated via the interpolating

function obtained above.
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Figure 3.12: Calibration coefficients, grouped into days. Each point represents
a day of Science data.

There is no obvious reason to divide the data in hours or in days, they

are simply the convenient ways in which long spans of time can be divided.

However, the arbitrary divisions introduce some other constraints, e.g. the

contiguity of the data within an hour or the different amount of Science Mode

within a day, which are not necessarily caused by the statistics of the data.

Thus, we chose to provide a third plot (3.13), in which every point is made by

the mean of 1000 measurements, without other constraints.

Every block of 1000 points is further improved by removing the worst 10
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Figure 3.13: Calibration coefficients, grouped into blocks of 1000 points each
one.

points in the block. To determine the worst points we used the Maximum

Absolute Deviation from the mean of the vector of points x

MAD(x, i) = |xi − µ(x)| (3.4)

where µ(x) is the mean of the block and xi is an element of the vector.

The point which has the largest value of the quantity is removed from the

block. This operation is repeated 10 times for every block. Thus, after this

cleaning step, every block contains 990 measurements. Again, the abscissa

is the mean time of the points within the block, expressed in days since the

beginning of S6. The error bars are the same for every point, calculated using

the interpolating function obtained in the paragraph 3.4.



Conclusions

In figures (3.12) and (3.13) long-term trends are visible, even though these

trends are less than 1% and the two-σ variations of the 60-second-long FFT

data are on the order of 5%. This enhanced visibility was achieved by grouping

the data and plotting the mean values of the data groups. The plotted error

bars were determined by a statistical characterization of the data and found to

be several times larger than what would be predicted by the Standard Error of

the Mean. The cause of the increased error bars was determined to be temporal

correlations in the data.

Because the excitation frequencies of the Photon Calibrator and DARM

Control excitations differ by 7.1 Hz, changes in the response function over this

frequency span could lead to variations in the calibration coefficient. In this

analysis, we did not include changes in the sensing function caused by the

variations of the γ factor in the DARM loop sensing function (see figure (1.2)).

Another possible cause of variations in the DCE calibration coefficient is

changes in the absolute power calibration of the internal photodetector of the

Photon Calibrator. This photodetector is calibrated against a stable standard

to provide an accurate measurement of the power modulation and thus of the

displacement amplitude of the end test mass. Potential variations in the cal-

ibration coefficient η (see equation (2.8)) of this internal power monitor were

not considered in this analysis [6].

The voice coil actuation coefficient, measured using the Photon Calibrator,

is affected by the whole voice coil actuation chain, which includes, for both

ETMs, the drivers, the coils near the optics, the digital filters and all the

electrical connections. Variations in any of these could cause trends in the

calibration data. Also, because the Photon Calibrator table is located outside

the vacuum envelope (see figure (2.1)), the auxiliary laser beams pass through

a viewport before they reach the mirror. The transmission of this viewport

could change over the duration of the S6 Run (more than an year), due to

contamination or to variations of its index of refraction caused by temperature

changes inside the end station.

The overall goal of the Photon Calibrator during S6 was to quantify the

long-term stability of the voice coil actuators. We analyzed more than one year

of data from both LIGO observatories and found that the voice coil actuation

25
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coefficients were stable to better than 1.4% peak to peak at H1 and 1.8% peak

to peak at L1.

The stability of the actuation coefficients implies that the DARM actuation

chain, for both the end test masses; the Photon Calibrator layout, including the

internal power monitor, beam splitters, and the power modulator; the proce-

dure applied – simultaneous excitation of the optic at two different frequencies

via the Photon Calibrator and the DCE; and the sensing function of the in-

terferometer, at both observatories, was stable at this level during all of the

S6.

The analysis completed for this report satisfies the main goal of the S6

Photon Calibrator effort by quantifying the long-term trends in the voice coil

actuation coefficients. Furthermore, the observed overall stability of the mea-

surement procedure indicates that the Photon Calibrators are an attractive

option for stable and accurate calibration of the next generation of gravita-

tional wave detectors.
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