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Abstract

An important component of the residual motions of the LIGO mirror surfaces is
due to propogation of ground seismic noise through the stacks and suspensions to
the masses. I discuss the first version of a simulation intended to produce realistic
Monte–Carlo data of the machine output due to this noise source.

1 Simulating LIGO I Seismic Noise

1.1 Aim of the Seismic Simulation

The aim of this work is to generate Monte Carlo simulated data for the displacement of the
LIGO I optics in response to seismic noise in the ground. Initially, we concentrate on the
frequency range 10 to 500Hz.

1.2 The LIGO I Vibration Isolation Stacks

Two different stack designs are employed, one in the so-called ‘beam splitter chambers’
(BSCs) and the other in the ‘horizontal access modules’ (HAMs). We concentrate on the
BSC assembly as both the end test masses (ETMs) and intermediate test masses (ITMs) of
LIGO I are located in BSC chambers.

The BSC vibration isolation stack has been described in detail elsewhere. A picture of
an assembled BSC vibration isolation stack is shown in figure 1. We wish to simulate motion
of the surfaces of the ITMs and ETMs in response to seismic noise in the ground.

The coupling of ground motion to motion of the reflecting surface of a suspended mirror is
considered as two couplings in series. The first coupling is of ground motion to motion of the
optical table on which the pendulum suspension is mounted. For now we use a state space
model developed by Hytec as a physical model for this coupling. The second coupling is from
the optical table through the steel wire suspension to the mass itself. For this coupling we
employ a simple analysis of the transfer function of a pendulum with a resonant frequency
of 0.74Hz and structural damping.
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Figure 1: A BSC vibration isolation stack.
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1.3 The BSC Stack Transfer Function

We concentrate on mirror motion parallel to the beam direction. There are 6 ground coor-
dinates that couple noise into this mirror coordinate. They are translation parallel to the
beam axis (the u axis), horizontal translation perpendicular to the beam axis (along the
v axis), vertical translation (along the w axis), and the three rotation or ‘tilt’ coordinates
about u, v, and w referred to as α, β and γ, respectively.

1.4 The Hytec Model of the BSC Stacks

Figure 2 shows the model parameterization of the mechanical elements of the stack. Element
1 is the floor. Element 2 is the model representation of the support tubes. Element 3
represents the support table on which the masses and springs shown in figure 1 are seated.
The three mass elements in each of the four columns are elements 4 through 15 as shown in
the figure. The optical table and the down tube are represented by element 16.

The Hytec state space model employs the 3 displacements and 3 rotations of each of the
16 mass elements, and the time rates of change of each of these coordinates, as the 192 basis
degrees of freedom. The differential equations of the state space model relating these degrees
of freedom are

ẋ = Āx+ B̄u

y = C̄x+ D̄u,

(1)

where x is a 180 element ‘vector’ of the degrees of freedom of all the elements excluding
the floor, ẋ are the rates of change of the elements of x, u are the 12 floor (element 1) degrees
of freedom, the ‘inputs’ to the system, and y are the 12 optical table (element 16) degrees
of freedom, the ‘outputs’. The Hytec state space model provides the matrix elements of Ā,
a 180× 180 matrix, B̄, a 180× 12 matrix, C̄, a 12× 180 matrix, and D̄, a 12× 12 matrix.

The Hytec state space model of the stack is used to generate the magnitude of the
frequency response between various stack ground and table degrees of freedom Figure 3
shows the results.

1.5 Designing Filters to Replicate Measured Frequency Response

We concentrate on one significant coupling between the ground and the table, the u1 → u16

coupling. Between 10 and 500Hz we notice that the frequency falloff is very well approxi-
mated by frequency response magnitude |A(f)| given by

|A(f)| = 1

1 +
[

f
10Hz

]8 . (2)

We therefore divide the frequency response by this function to obtain a ‘whitened’ re-
sponse. Figure 4 shows the whitened frequency response between 10 and 1kHz. The smooth
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Figure 2: Hytec model representation of the elements of the stack.
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Figure 3: Frequency response of the u component of table motion to excitations in the 6
ground degrees of freedom. Also shown is the frequency response between vertical motion of
the ground and vertical motion of the optical table.
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Figure 4: Whitened frequency response between 10 and 500Hz, and results of fit to four
zeros and four poles
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line is the response given by the model. The dotted line is a fit to the whitened response to
be discussed below.

The task is to find a set of poles and zeros having a frequency response close to that
given by the model. One approach is to take the magnitude and phase of the frequency
response from the model, inverse fourier transform it, and use the resulting time series as a
set of FIR filter taps. While this method yields the correct frequency response, the number
of filter taps needed is given roughly by the ratio of the Nyquist frequency (8192Hz) to the
minimum frequency important in the simulation (10Hz) . An 800 point convolution for every
data point makes the Monte Carlo very inefficient.

The frequency response is very smooth, so we try instead to find an IIR filter capable of
producing the frequency response shown in figure 4. We notice that the frequency response
contains peakes, that the peaks are skewed to one side and that the peaks seem to sit on a
pedestal that is roughly frequency independent. The last point causes us to look for a filter
with an equal number of poles and zeros. The first point causes us to look for a filter that
resembles two ordinary Breit-Wigner resonances, one for each peak. In terms of frequency
response, our fit function |T (f)| takes the form

|T (f)| = g

√√√√√
(
(f 2 − f z10

2
)2 + Γz12f 2

)
(
(f 2 − fp10

2
)2 + Γp12f 2

)
(
(f 2 − f z20

2
)2 + Γz22f 2

)
(
(f 2 − fp20

2
)2 + Γp22f 2

) , (3)

where g is a gain, fpi0 and Γpi are the approximate frequency and full width of the ith
peak (2 of them in this case), and f zi0 and Γzi0 are of similar magnitude, being properties of
inverse Breit Wigner peaks introduced to make the number of poles and zeros equal, and to
provide the skewness.

How do these quantities relate to the positions of poles and zeros in the s plane? To
ensure that the differential equation representing the filter we construct has real solutions,
we require that the poles and zeros are in complex conjugate pairs. To ensure the stability
of the filter, we require that the real parts of the pole frequencies are negative, and the real
parts of the zero frequencies are positive. Equation 3 has two roots in the numerator and
two in the denominator per peak, so the s plane representation of our fit function should
have a pair of poles and a pair of zeros for each peak, each pair being complex conjugates of
each other. For each peak, the poles and zeros are therefore of the form

sp1 = −α2 + iβ2 (4)

sp2 = −α2 − iβ2

sz1 = +γ2 + iδ2

sz1 = +γ2 − iδ2,

where sp1 and sp2 are the two pole frequencies, and sz1 and sz2 are the two zero frequencies.
In terms of these quantities, the transfer function in the s plane T (s) factors into a product
of terms of the form
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T (s) = g
(s− sz1)(s− sz2)

(s− sp1)(s− sp2)
. (5)

Substituting with s = i2πf and finding the modulus of the result we obtain the modulus
of the transfer function in frequency space

|T (f)| = g

√√√√√√
(
f 2 − 1

(2π)2 (γ4 + δ4)
)2

+ γ4f2

π2(
f 2 − 1

(2π)2 (α4 + β4)
)2

+ α4f2

π2

(6)

Comparing equations 3 and 6 we see that

f p =
1

2π

√
α4 + β4 (7)

Γp =
α2

π

f z =
1

2π

√
γ4 + δ4

Γz =
γ2

π
.

Our procedure is to guess the values of the parameters fp, f z, Γp, Γz for each peak,
compute initial guesses for α, β, γ, δ using equations 7, and perform a nonlinear fit to the
whitened transfer function from the Hytec model using equation 6 as a fit function. The zero
and pole positions are calculated using equations 4. Because the fit parameters are squared
to get the zero and pole positions, the stability of the resulting filter is garunteed as long as
the fit converges.

The solid line in figure 4 is the result of the nonlinear fit with initial guesses fp1 = f z1 =
18Hz, Γp1 = Γz1 = 10Hz, fp2 = f z2 = 140Hz, Γp2 = Γz2 = 100Hz, and g = 0.4. After the fit
the final values of these parameters were fp1 = 15.8945Hz, f z1 = 18.0299Hz, Γp1 = 5.1310Hz,
Γz1 = 36.0553Hz fp2 = 131.3042Hz, f z2 = 110.1697Hz, Γp2 = 60.1579Hz, Γz2 = 147.8138Hz,
and g = 0.5340.

1.6 Model for the ground noise

Measurements at the sites indicate that the power spectral density of seismic noise in the
ground is roughly flat at a level of few × 10−9m/

√
Hz between 1 and 5Hz, falling as f−2 above

5Hz. For simplicity we assume that the ground noise is Gaussian and uncorrelated and has a
power spectral densith of 3 × 10−9m/

√
Hz below 5 Hz. If the Nyquist frequency is fN , then

the procedure for obtaining noise with power spectral density PN is to take the output of a
Gaussian random number generator generating numbers with unit standard deviation and
multiply by a factor of PN

√
fN .

The falloff above 5Hz is simulated by filtering the initially flat noise with a 2 pole But-
terworth filter at 5Hz. The poles of this Butterworth filter are at 5× 2π/

√
2[−1± i] in the s
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plane. This simplistic set of assumptions will be relaxed in better developed versions of the
Monte Carlo.

1.7 Stack Transfer Function Poles and Zeros in the s plane

The procedure for obtaining table-like noise is to take noise representing the motion of the
floor, apply a time-domain filter to yield noise having the same power spectral shape as the
whitened frequency response of figure 4, and finally apply a Butterworth filter equivalent to
the dewhitening function of equation 2 to yield the transfer function initially predicted by
the Hytec model for motion of the table.

Equation 2 is equivalent to an 8 pole Butterworth filter, with a cutoff frequency of 10Hz.
In practice it was discovered that 8 pole digital Butterworth filters in the z-plane (discrete
time) representation tended to be unstable. We chose instead to dewhiten with two cascaded
4-pole Butterworth filters, which was always stable. Table 1.7 shows the zeros and poles in
the s plane.

stack model poles −16.119521327446± 98.558544441585i
−188.991668072757± 803.070248556014i

zeros 113.271084624815± 1.774071354679i
464.370753369455± 513.345428504745i

butterworth poles 10× 2πexp[i(n+ 5/2)π/4], n = 0, 1, 2, 3

Figure 5 shows the power spectral density of uncorrelated Gaussian noise treated as if it
was produced at 16384 samples per second, filtered using the 3 stages (1 for whitened model
response and 2 4–pole Butterworths) discussed above. Overlaid on the plot is the stack
response directly from the model, multiplied by the power spectral density of the noise. The
agreement is very good in the important region between 10 and 50Hz, and continues to be
very good up to 500Hz.

1.8 Transfer Function of the Pendulum

We treat the table transfer function as that of a simple pendulum. The resonant frequency
of the pendulum is 0.74Hz, the Q of the resonance being 1.85× 105 if the pendulum swings
freely. In practice, however, the differential and common length servos will considerably
reduce the Q of the pendulum mode, so it is unrealisic to use the value of Q to derive the
pendulum motion. Furthermore, the resonant frequency is a factor of ∼ 10 below the lower
bound of our target frequency range of 10-50Hz. For now, therefore, we treat the pendulum
transfer function as a Butterworth filter having 2 poles at 0.74Hz. In the s plane, the pole
positions are spM = 0.74× 2π[−1± i]. Again, the digital filter poles and zeros are related to
these by a bilinear transform.

1.9 Summary of the Simulation Method

The simulation is implemented in matlab. An initialization function imports the Hytec
model of a BSC stack, calculates the transfer function from the ground to the table and
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Figure 5: Simulation filter on uncorrelated Gaussian noise compared to the transfer function
predicted by the Hytec stack model.

performs the nonlinear fit to deduce IIR filter poles and zeros. The Butterworth filters for
dewhitening the stack frequency response, for representing the pendulum transfer function
above 10Hz, and for representing the f−2 falloff in ground noise amplitude above 5Hz, are
calculated. One second of Gaussian distributed random numbers, normalized to represent a
power spectral density of 3× 10−9m/

√
Hz is generated and run through the filter banks. The

states of the filters (taps kept to allow smooth continuation between 1 second data segments)
are stored in a state structure. Subsequent 1 second segments of data are generated by calling
a second function with the structure containing the filter states and random number seeds
as arguments.

Practical details on running the simulation can be found at:

http://gravity.phys.psu.edu/∼lsf/SimData.

The current release version of the code is preliminary and will be modified to account for
couplings of other floor degrees of freedom to the motion of the mirror. A more sophisticated
model for the filtering effect of the pendulum suspension will also be included. Questions or
comments on this work or the seismic part of the simulated data code can be sent to me at:

edaw@ligo.mit.edu


