

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990097-07 E- 07/31/2000

The wrapper API’s
baseline requirements

James Kent Blackburn
Jolien Creighton

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\SIRIUS\kent\documents\LDAS\wrapperAPI\wrapperAPIReqCover.fm - printed July 31, 2000

Page 1 of 37

The wrapper API’s
baseline requirements

James Kent Blackburn

California Institute of Technology
LIGO Data Analysis Group

July 31, 2000

I. Introduction

A. General Description:

1. The wrapperAPI is responsible for executing the advanced analysis pro-
cesses which are based on MPI and executing in the LDAS distributed com-
puting parallel cluster of nodes using an interpreted command language.

2. The wrapperAPI will be written entirely in C and C++. No TCL/TK will be
used in this LDAS API.

3. The wrapperAPI will be initiated using the mpirun command. This command
will be started solely by the mpiAPI. The mpiAPI will determine the appro-
priate values for the mpirun command, as well as the appropriate commands
for the wrapperAPI and pass these as command line arguments to mpirun.
The wrapperAPI will interpret its own command line arguments which are
automatically passed to the wrapperAPI by the mpirun command.

4. The wrapperAPI will process a “chunk” of data of finite length. For each
new “chunk” of data a new wrapperAPI will be started up by the mpiAPI.

B. The wrapperAPI TCL/TK Script’s Requirements:

1. None applicable to the wrapperAPI since it will not have TCL/TK code.

C. The wrapperAPI Shared Object Package Requirements:

1. The wrapperAPI will be written as an MPI executable, not as a shared object
library. However, the wrapperAPI will make extensive use of other LDAS
shared object libraries.

2. The wrapperAPI will dynamically load a shared object containing the tem-
plated filter algorithms used for LIGO data analysis.

D. The mpirun command Requirements:

The basic format of the mpirun command as it will be used by LDAS is the
following:
mpirun {mpirun options} wrapperAPI {wrapperAPI options}
where mpirun is a command script distributed with MPICH and wrapperAPI
is the name of the MPI executable developed by LDAS for parallel computa-
tion of template based algorithms.

1. The mpirun options requirements are:

The wrapper API’s baseline requirements

Page 2 of 37

a) -np N which is used to specify the number of processors N to used in the
parallel computation. The value of N is always an integer less than or
equal to the total number of processors in the LDAS Beowulf Cluster and
is set by mpiAPI and its queue management facilities. If N exceeds the
number of processors in the Beowulf Cluster, it will automatically be set
to the corresponding value.

b) -machinefile /path/file which is used to identify the list of machine host
names used to select our the first N processors required in the previous
-np N option. The full path and filename for this option must be speci-
fied. It is also possible that different instances of the mpirun could use
different machinefiles (at the discretion of the mpiAPI). The format of
the machinefile is simple:
hostname1[:n]
hostname2[:n]
...
where the hostname most be of the form return by the unix “hostname”
command. This hostname may be followed by an optional “:” and an
integer number representing the number of CPUs on that particular host
for SMP nodes.

c) -nolocal is an option which specifies to mpirun that the local host is not
to be used in the configuration of the parallel processing job. This option
may be necessary when the mpiAPI starts a parallel processing job from
a host that is not in the core of the Beowulf Cluster (as will be the case in
general).

d) other mpirun options used to test and debug MPI processing will likely
be used during commissioning of the mpiAPI and the wrapperAPI. How-
ever, they will not be used in general. Their use must not conflict with the
operation of the wrapperAPI and its own set of command line arguments.
For more detail on these testing and debugging mpirun command line
arguments see the MPICH Users’ Guide and Installation Guide.

2. The wrapperAPI options requirements are:

a) -nodelist={i-j,k,l,m-n,...} which is used to specify the subset of nodes to
be used by the MPI slave processes in actual calculation of the templated
filters. This list of nodes contains comma delimited node numbers and/or
ranges of nodes. All node numbers appearing in this list must be from 0
to N-1, where N is the number of nodes in the commworld specified in
the mpirun option -np described above. Any integer values in the list
greater than N will be ignored.

b) -dynlib=/path/libname.a is used to specify the full (absolute) path and
file name of the dynamically loaded shared object library containing the
templated filter algorithms. Note: This library must be a shared object
library.

The wrapper API’s baseline requirements

Page 3 of 37

c) -mpiAPIport={hostname, socketport} is used to specify the port on the
mpiAPI to connect with in order to communicate state information,
warnings, errors, job progress, and make requests to balance the load by
increasing or decreasing the number of processes associated with the
nodelist. The hostname parameter specifies the name of the host the
mpiAPI is running on and the socketport parameter specifies the port the
mpiAPI is listening at for the purpose of communications with the wrap-
perAPI.

d) -dataAPI={hostname, socketport} is used to specify the LDAS API
used to provide (serve) data in the ILWD format to the wrapperAPI. Typ-
ically this will be the dataConditioningAPI, but others are possible
through this argument. Again, the hostname specifies the name of the
host at with the LDAS API to serve data is running on and the socketport
parameter specifies the port the data serving LDAS API will be listening
at for the purpose of transmitting ILWD formatted data.

e) -resultAPI={hostname, socketport} is used to specify the LDAS API
which will receive data products that result from the parallel computa-
tion. Again, this data will be shared using the ILWD format. Typically the
resultAPI will be the eventManagerAPI, however other LDAS APIs
may be specified to receive the data products using this argument. The
hostname parameter specifies the name of the host the receiving API is
running on and the socketport parameter specifies the port the receiving
API is listening at for the purpose of receiving data products from the
wrapperAPI.

f) -nodeDutyCycle=N is the number of templates to be evaluated at each
node (in each slave process) per call to the filter algorithm. N must be an
integer lager than or equal to 1. The wrapperAPI will not allow this num-
ber to exceed the total number of templates divided by the number of pro-
cessors in the comm world. Smaller values of this number allow for more
accurate measurements of progress and shorter time intervals for com-
mand exchanges between the wrapperAPI and the mpiAPI. Larger values
can marginally increase the parallel computation performance by reduc-
ing the number of messages passed between master and slave processes.

g) -filterparams={a,b,c,d,...} is used to specify the list of parameters used
to control (customize) the parallel filter algorithm. When the designated
dynamically loaded library is recognized by the mpiAPI, the values in
this list will be validated as being consistent with the expected type,
range, and total number for that particular filter library. This will always
be the case for LDAS developed dynamically loaded filter libraries.
Other libraries which wish to use this mechanism must provide the
parameter checks internal to the dynamically loaded library. Numeric
parameters a,b,c,d,... without decimal places will represent integers. All

The wrapper API’s baseline requirements

Page 4 of 37

other numeric parameters will be interpreted as doubles. Everything else
will be C strings.

h) -realTimeRatio=n.mmmmm is used to specify the desired ratio of the
time required to process the data to the time contained within the data
segment. As an example, a value of 0.90 would request that 54 second be
used to analyze 60 seconds worth of data.

i) -doLoadBalance={T|TRUE || F|FALSE} is to enable or disable load
balancing of the parallel process. If the value is T or TRUE then load bal-
ancing will be performed as scheduled by the nodeDutyCycle command
line option. If the value is F or FALSE then no load balancing will be per-
formed. However, the wrapperAPI will still report to the mpiAPI as
scheduled by the nodeDutyCycle command line option.

E. The wrapperAPI executable requirements:

1. The wrapperAPI will be a parallel program based on MPICH version 1.2 or
later designed to properly operate strictly within the LDAS system.

2. The target platform for running the wrapperAPI will be any LDAS Beowulf
Cluster. Current design plans for this cluster are based on Intel Pentium PCs
using the Redhat 6.x operating system. However, this choice for cluster tech-
nology may evolve as the commodity PC market changes. No choices for the
wrapperAPI should strictly assume this cluster technology.

3. The wrapperAPI will divide parallel processing into two general categories:

a) A single master process responsible for communicating commands with
mpiAPI and communicating with other LDAS APIs which send and
receive data in the form of ILWD objects through LDAS API data sock-
ets. The master process will also act as the central parallel node used by
all slave processes in the MPI environment. The master process is also
responsible for translating the ILWD data objects into MPI data types
necessary for parallel communications.

b) A collection of slave processes responsible for carrying out the templated
filtering in a trivially parallel manor. Each slave process must dynami-
cally load the template analysis algorithm library as part of its initializa-
tion. The slaves will communicate analysis results back to the master
using MPI data types.

4. The format of ILWD (Internal Light Weight Data) being received by the
wrapperAPI (typically from the dataConditioningAPI) will be of the form of
a collection of adc channel data sequences in either the time domain or the
frequency domain. A short ASCII ILWD example is given below:

<ilwd name=’dataConditioningAPI:container’ size=’2’>
<ilwd name=’XYZ:channel:sequence:primary’ size=’9’>

<lstring name=’real:domain’ dims=’4’>TIME</lstring>
<int_8u name=’gps_sec:start_time’ units=’sec’> 62348734 </int_4u>

The wrapper API’s baseline requirements

Page 5 of 37

<int_8u name=’gps_nan:start_time’ units=’nanosec’> 0 </int_4u>
<int_8u name=’gps_sec:stop_time’ units=’sec’> 62348735 </int_4u>
<int_8u name=’gps_nan:stop_time’ units=’nanosec’> 0 </int_4u>
<real_8 name=’time:step_size’ units=’sec’> 0.0625 </real_8>
<real_4 name=’filterX:decimation’ dims=’1’>1024.000</real_4>
<real_4 name=’methodII:line_removal’ dims=’3’ units=’HZ’> 60.0,
180.0, 360.0 </real_4>
...(other filter history)...
<real_4 name=’real:data’ dims=’16’ units=’volts’> -0.01, -0.05,
-0.02, -0.00, 0.01, 0.04, 0.08, 0.11, 0.03, -0.04, -0.07, -0.03,
0.01, 0.04, 0.06, 0.06 </real_4>

</ilwd>
<ilwd name=’XYZ:calibration:sequence’ size=’12’>

<lstring name=’complex:domain’ dims=’4’>FREQ</lstring>
<int_8u name=’gps_sec:start_time’ units=’sec’> 62348734 </int_4u>
<int_8u name=’gps_nan:start_time’ units=’nanosec’> 0 </int_4u>
<int_8u name=’gps_sec:stop_time’ units=’sec’> 62348738 </int_4u>
<int_8u name=’gps_nan:stop_time’ units=’nanosec’> 0 </int_4u>
<real_8 name=’start_freq’ units=’hz’> -2048.0 </real_8>
<real_8 name=’stop_freq’ units=’hz’> 2048.0 </real_8>
<real_8 name=’freq:step_size’ units=’hz’> 256.0 </real_8>
<lstring name=’hann:window’ size=’11’>overlap=15%</lstring>
...(other filter history)...
<real_4 name=’real:data’ dims=’17’ units=’strain/volt’> -0.31,
-0.55, -0.12, -0.40, 0.61, 0.24, 0.58, 0.11, 0.13, -0.64, -0.87,
-0.53, 0.71, 0.84, 0.26, 0.56, 0.91 </real_4>
<real_4 name=’imag:data’ dims=’17’ units=’strain/volt’> -0.01,
-0.05, -0.02, -0.00, 0.01, 0.04, 0.08, 0.11, 0.03, -0.04, -0.07,
-0.03, 0.01, 0.04, 0.06, 0.06, 0.00 </real_4>

</ilwd>
<ilwd name=’Wavelet:time-frequency:sequence’ size=’12’>

<lstring name=’complex:domain’ dims=’4’>BOTH</lstring>
<int_8u name=’gps_sec:start_time’ units=’sec’> 62348734 </int_4u>
<int_8u name=’gps_nan:start_time’ units=’nanosec’> 0 </int_4u>
<int_8u name=’gps_sec:stop_time’ units=’sec’> 62348735 </int_4u>
<int_8u name=’gps_nan:stop_time’ units=’nanosec’> 0 </int_4u>
<real_8 name=’time:step_size’ units=’sec’> 0.0625 </real_8>
<real_8 name=’start_freq’ units=’hz’> -2048.0 </real_8>
<real_8 name=’stop_freq’ units=’hz’> 2048.0 </real_8>
<real_8 name=’freq:step_size’ units=’hz’> 256.0 </real_8>
<lstring name=’uwm-method:wavelet’ dims=’2’ size=’14’>
a=0.30\, b=1.50</lstring>
...(other filter history)...
<real_4 name=’real:data’ dims=’17’ units=’strain/volt’> -0.31,
-0.55, -0.12, -0.40, 0.61, 0.24, 0.58, 0.11, 0.13, -0.64, -0.87,
-0.53, 0.71, 0.84, 0.26, 0.56, 0.91 </real_4>
<real_4 name=’imag:data’ dims=’17’ units=’strain/volt’> -0.01,
-0.05, -0.02, -0.00, 0.01, 0.04, 0.08, 0.11, 0.03, -0.04, -0.07,
-0.03, 0.01, 0.04, 0.06, 0.06, 0.00 </real_4>

</ilwd>
...(other channels of data)...

</ilwd>

In this example two “sequences” of data are sent from the dataConditionin-
gAPI to the wrapperAPI. The first represents channel XYZ in the single pre-
cision time domain for a given start time and stop time in GPS seconds and
nanoseconds (along with the time interval between time stamps). The chan-
nel was decimated by a factor of 1024 using the filter named filterX. The next

The wrapper API’s baseline requirements

Page 6 of 37

filter applied according to this sequence container is that of line removal
using filter methodII. This filter requires an array of real_4 frequencies corre-
sponding to the lines which were removed (here it is the 60hz, 180hz, and
360hz lines). Other data conditioning filters may have been applied and they
would come here in the container. Next comes the actual sequence of data. It
is identified by the name=”xxxx:data”, where xxxx could be real or imag
depending on the domain.

The second sequence container is for a calibration of the adc XYZ. It is data
in the frequency domain and is represented by complex data. The frequency
range is specified, as well as any filters (here a hann window function with an
overlap of 15%), followed by the actual data in two distinct ilwd arrays, one
for the real component and the other for the imaginary component.

5. It will be the responsibility of the master process to open a ilwd class object
socket connection to the LDAS API (typically the dataConditioningAPI)
server socket specified by the -dataAPI command line option and receive
the ilwd data object. The master process will interpret (parse) this ilwd data
object and reconstruct it as a structured MPI::Datatype for use in MPI com-
munications with the slave processors.

6. It will be the responsibility of the master process to establish ilwd class
object socket connections to the LDAS API (typically the eventManagerAPI)
server socket specified by the -resultAPI command line option and send
ilwd table data objects (along with any optional ilwd sequence data in con-
tainers of the type outlined in item 4 above) when data is ready to be trans-
ferred. The master will construct these ilwd objects out of the results
received from the slaves as MPI data types.

7. The master process will also be responsible for communicating all state
information, warnings, errors, job progress, and make requests to balance the
load by increasing or decreasing the number of processes associated with the
nodelist. This informations will be communicated using simple text strings
sent to the mpiAPI’s listening socket designated by the -mpiAPIport com-
mand line option using just a simple unix socket connection. In general, mul-
tiple commands may be sent at a time in a set to the mpiAPI, each separated
by a newline ‘\n’ character and each set using the same request ID #. Sup-
ported command syntax which the wrapperAPI sends to the mpiAPI is as fol-
lows:

a) “#:request add N” where # is the request ID (an incremental counter
starting at 1) and N is the number of nodes the wrapperAPI would like to
add to the process space associated with the current comm world. The
mpiAPI will respond to this request with one of the following four forms
of syntax (NOTE - a request to add may be answered with an order to
subtract nodes or even to kill the parallel job):

(1) “#:add N {i-j,k,l,m-n,...}” where # is the original request ID and N

The wrapper API’s baseline requirements

Page 7 of 37

may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the add.

(2) “#:sub N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the sub.

(3) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(4) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

b) “#:request sub N” where # is the request ID (an incremental counter
starting at 1) and N is the number of nodes the wrapperAPI would like to
subtract from the process space associated with the current comm world.
The mpiAPI will respond to this request with one of the following four
forms of syntax (NOTE - a request to subtract may be answered with an
order to add nodes or even to kill the parallel job):

(1) “#:sub N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the sub.

(2) “#:add N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the add.

(3) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(4) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

c) “#:warning {list of warning messages}” where # is the request ID (an
incremental counter starting at 1) and warning reports that a warning
level exception has occurred at some level of the wrapperAPI which is
described by the messages contained in the list. Typically warnings will
be used to indicate that a non-fatal condition exists in the wrapperAPI’s
execution. The mpiAPI log this warning message using the standard
LDAS logs file system and then will respond to this request with one of
the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the

The wrapper API’s baseline requirements

Page 8 of 37

wrapperAPI to cleanly shutdown all mpi parallel code and exit.

d) “#:error {list of error messages}” where # is the request ID (an incre-
mental counter starting at 1) and error reports that a error level excep-
tion has occurred at some level of the wrapperAPI which is described by
the messages contained in the list. Typically error will be used to indicate
that a fatal condition exists in the wrapperAPI’s execution. The mpiAPI
logs this error message using the standard LDAS log file system and then
will respond to this request with one of the following forms of syntax:

(1) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(2) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

e) “#:progress nnn.mm%” where # is the request ID (an incremental
counter starting at 1) and nnn.mm% is the percent complete for the
wrapperAPI’s parallel process job. The mpiAPI logs this error message
using the standard LDAS log file system and then will respond to this
request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

f) “#:using N {i-j,k,l,m-n,...} nodes out of the M available in comm
world” is the default “nominal” command where # is the request ID (an
incremental counter starting at 1) and N is the number of nodes being
actively used (more specifically the N found in the list [i-j,k,l,m-n,...])
from the M available in the comm world. The mpiAPI logs this warning
message using the standard LDAS log file system and then will respond
to this request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

g) “#:projected ratio n.mmmmm” where # is the request ID (an incre-
mental counter starting at 1) and n.mmmmm is the ratio of the projected
time to completion to the amount of data being analyzed. The mpiAPI
logs this error message using the standard LDAS log file system and then
will respond to this request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the

The wrapper API’s baseline requirements

Page 9 of 37

wrapperAPI to cleanly shutdown all mpi parallel code and exit.

The wrapperAPI will typically send a subset of these commands to the mpi-
API upon completion of each cycle of data through the slave processes.

h) The set of commands will consist of either of the following sets:

(1) During regular processing:

one command from a) or b) or f)

plus

command c) if warnings occurred

plus

command d) if errors occurred

plus

command e) and command g).

(2) At the completion all analysis:

command e) with progress at 100.00%

plus

command c) if warnings occurred.

8. The wrapperAPI will provide a method to estimate the number of nodes
needed to run the parallel process in real time and calculate the load balanc-
ing request as integer nodes, such that the projected ratio is less than or equal
to realTimeRatio, while remaining as close to realTimeRatio as possible.
This in itself requires that the wrapperAPI be able to extract the length of the
data sequence in terms of collection time, while also measuring progress on
analyzing the data in wall clock time.

F. WrapperAPI Dynamically Loaded Library Requirements

1. The wrapperAPI will load all template analysis algorithms from dynamically
loaded libraries from the local Beowulf file space. Each type of search will
have its own dynamically loaded library. This will allow each mpirun com-
mand to be associated with a particular type of search by the particular
dynamically loaded library assigned by the command line arguments (see -
dynlib command line option above). The wrapperAPI will load the dynami-
cally loaded library using the Unix dopen and related functions:
SYNOPSYS

#include <dlfcn.h>

void *dlopen (const char *filename, int flag);
const char *dlerror(void);
void *dlsym(void *handle, char *symbol);
int dclose (void *handle);

Special symbols _init, _fini.

The wrapper API’s baseline requirements

Page 10 of 37

The flag variable used in the dlopen call must not include the
RTLD_GLOBAL flag value. See the Unix (Linux) manpages for more
details on the use of dlopen.

2. Each slave process will dlopen the dynamically loaded library specified by
the command line option. Each dynamically loaded library must contain six
C functions used to interface the wrapperAPI with the dynamically loaded
library. All six of these required functions will be called in order by each
slave. These functions will be defined within an extern “C” {} from the
wrapperAPI’s C++ code. Each function will use an error or warning message
string variable. This message string will be nulled out before each call to one
of the five interface functions. Any non-null value returned by one of the
interface messages will be cached by the wrapperAPI for command message
communications with the mpiAPI at a convenient time. These messages will
be logged into the LDAS logging system by the mpiAPI:

a) The first required C function is used to initialize the dynamically loaded
library and to configure the parameterization as defined by the command
line option -filterparams. It is called once by the master and each slave
in the MPI_COMM_WORLD:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

CHAR *initMessage = 0;

free(initMessage);

INT4 initFilter(INT4 argc, CHAR* argv[], CHAR** initMessage);
}

where argc is a count of the number of parameter arguments being
passed into the dynamically loaded library from the -filterparams com-
mand line option and argv is an array of pointers to the -filterparams
command line options. Note that the argv[0] pointer will store the string
“-filterparams”. This will allow initFilter() to verify that the options are
associated with the appropriate command line option. As an example, if
the command line contained -filterparams=[1.0, 3.0, 10.0], the value of
argc would be 4 and argv[0] would point to “-filterparams”, argv[1]
would point to “1.0”, argv[2] would point to “3.0”, and argv[3] would
point to “10.0”. The initFilter() function will be responsible for parsing
the character values pointed to by argv into numerical values. As noted
earlier all floating point values MUST have a decimal point. Non numer-
ical values are allowed by this mechanism, however they should be dis-
couraged.

The initFilter() function returns a 0 (zero) value if it is successful in
parsing and interpreting the values from argv (including any and all range

The wrapper API’s baseline requirements

Page 11 of 37

checking on these values). In the event of an error, the initFilter() func-
tion must return a 1 (one) and assign a unique error message to the
initMessage variable. In the event that a warning condition is estab-
lished, the value returned by initFilter shall be -1 and the corresponding
warning message will be stored in the initMessage variable. Any
warning or error level message stored in initMessage will be logged
under in the LDAS wrapperAPI log file, along with the GPS time, jobID,
hostname, node number and the initFilter() function name. Any memory
associated with initMessage will be freed before the call to initFilter().

The values parsed from the argv pointers must be stored internally in the
global variable space of the dynamically loaded library if they are to be
used by other functions within the dynamically loaded library.

b) The second required function is used to calculate the total number of tem-
plate filters that will be used in the search algorithms contained within
the dynamically loaded library. It is called once by the master and each
slave in the MPI_COMM_WORLD. Filters will be called using an index
counting scheme that ranges from 1 to the maximum specified by the
value returned within numberFilters. It may also be used to internally
construct a one-to-one identification map between the sequential index
values and a specific set of parameter values used by the templated filter
algorithms:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

UINT4 numberFilters = 0;
CHAR* indexMessage = 0;

free(indexMessage);

INT4 indexFilters(UINT4 *numberFilters, CHAR** indexMessage);
}

The nominal return value for indexFtilters() will be 0 (zero). If the index-
Filters() function has an error then it must return with a value of 1 (one)
and assign a unique error message to indexMessage. A warning may be
reported by a return value of -1 from indexFilters() and providing a warn-
ing message within indexMessage. This function will be guaranteed to
be called by each node or processes of the wrapperAPI before the first
templated search filter is called. Any warning or error level message
stored in indexMessage will be logged under in the LDAS wrapperAPI
log file, along with the GPS time, jobID, hostname, node number and the
indexFilters() function name. Any memory associated with indexMes-
sage will be freed before the call to indexFilters().

The wrapper API’s baseline requirements

Page 12 of 37

c) The third required function is used to carry out any further pre-condition-
ing of data which may not be possible for the LDAS dataConditionAPI.
It is called by each slave process. It will have write privileges on the
input data structure:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

CHAR* conditionMessage = 0;

inPut data[];

MPI_Comm* comm;

free(conditionMessage);
INT4 conditionData(inPut* data, CHAR** conditionMessage,

MPI_Comm* comm);

}

The conditionData() function is called with the inPut data structure
which contains the data to be further conditioned. NOTE: It is highly
recommended that use of this function be held to a minimum. Ideally any
functionality present in this function should be migrated upstream into
the dataConditionAPI. Hence, under most circumstances it simply
returns successfully as described below without modifying the inPut
data structure. The justification for this being that it is less expensive to
condition the data upstream once than to condition it a total of N times on
each of the slave processes. The conditionData() function should nomi-
nally never overwrite data found in the inPut data structure, only extend
it with new data local to the node it occupies. It may be that certain types
of analysis require that the data be customized local to each node. Under
these circumstances the conditionData() function may alter the inPut data
structure so long as the analysis performed in templateFilters() on each
node can support this customization for the duration of the wrapperAPI’s
execution.

The conditionData() function will return an integer value of 0 if success-
ful and an integer value of 1 along with a unique error message in the
conditionMessage variable. If a warning occurs the conditionData()
function will return (with results) a value -1 along with the warning mes-
sages stored in the conditionMessage variable. Any warning or error
level message stored in conditionMessage will be logged under in the
LDAS wrapperAPI log file, along with the GPS time, jobID, hostname,
node number and the conditionData() function name. Any memory asso-
ciated with conditionMessage will be freed before each call to condi-
tionData().

The local and global node information are also passed into the condition-

The wrapper API’s baseline requirements

Page 13 of 37

Data() function using the MPI communicator structure comm. Using this
structure it is possible for conditionData() to identify the local node, the
total nodes in the communicator and to make node-to-node communica-
tions if this is the desired way to split up input data. NOTE: It is impor-
tant to consider in the design of conditionData() that it will be be called
multiple times as part of a loop within the wrapperAPI. Also, each time
that it is called the MPI communicator may have been modified to
include a different set of nodes. Thus, the conditionData() may require
static internal data to recognize when to repeat steps or when to redo
steps associated with conditioning data, including node-to-node commu-
nications which may be used to pass data to templateFilter() instead of
using the conventional path through the inPut data structure passed by
the call to templateFilter(). This may be useful, for example, to distrib-
ute local data in a distributed FFT algorithm.

d) The fourth required function is the parallel search engine. It is used to
apply a particular set of template filter parameters to the data and to
return the results of the filtration algorithms. It will typically be called
repeatedly in a loop on each slave process until all template filters have
been analyzed. As such it has a highly specialized set of input and output
structures which must be general enough to carry out template filter grav-
itational wave searches from interferometer data:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

INT4 beginTemplate;

INT4 endTemplate;

CHAR* filterMessage = 0;

inPut data[];

outPut* result[1+endTemplate-beginTemplate];

MPI_Comm* comm;

free(filterMessage);
INT4 templateFilters(int beginTemplate, int endTemplate,

const inPut* data, outPut** result, CHAR** filterMessage,

MPI_Comm* comm);

}

The templateFilter() function is called only by the active slaves over and
over again in a loop with two integers beginTemplate and ending at
endTemplate until all templates have been analyzed. These two vari-
able can be identical, signifying that only one template will be applied to
the data found in the inPut data structure prior to returning the results,
otherwise each template will be analyzed using the data in inPut before
returning. The templateFilters() function must, internal to the dynami-

The wrapper API’s baseline requirements

Page 14 of 37

cally loaded library, associate this template index to a set of physical
parameters associated with the template model. The templateFilters()
function must cast the inPut into LAL standard data structures appropri-
ate for the internal LAL algorithms being used. The templateFilters()
function must cast results into the outPut structure specified above.

The typedef inPut structure will be an array of data sequences associ-
ated with pre-conditioned interferometer channel date. In most cases only
one sequence containing the pre-conditioned strain signal from the inter-
ferometer will be contained in this structure. However, using the array
construct, more complex templates using multi-channel data sequences
are supported. NOTE: The templateFilters() function must not modify
the contents of this typedef inPut structure as it may be needed for fur-
ther analysis by the slave process using a different set of template indices.

The typedef outPut structure will be an array large enough to hold all
results from all templates (1+endTemplate-beginTemplate) analyzed
during the call to the templateFilters() function.

The results of the templateFilters() function are stored in the results
array of outPut typedef structures. The wrapperAPI is responsible for
evaluating the significant attribute of each element of the results
array and in the event it is TRUE making a deep copy of the contents of
the dataBase doubly linked list typedef structure in the memory space
of the wrapperAPI, allowing the templateFilters() function to reuse this
variable space. NOTE: This includes making a copy of the optional
array of sequence typedef structure attributes if they are not NULL.

The templateFilters() function will return an integer value of 0 if suc-
cessful and an integer value of 1 along with a unique error message in the
filterMessage variable. If a warning occurs the templateFilters()
function will return (with results) a value -1 along with the warning mes-
sages stored in the filterMessage variable. Any warning or error level
message stored in filterMessage will be logged under in the LDAS
wrapperAPI log file, along with the GPS time, jobID, hostname, node
number and the templateFilters() function name. Any memory associated
with filterMessage will be freed before each call to templateFilters().

The local and global node information are also passed into the template-
Filters() function using the MPI communicator structure comm. Using
this structure it is possible for templateFilter() to identify the local node,
the total nodes in the communicator and to make node-to-node communi-
cations if this is the desired way to split up the filter analysis. NOTE: It is
important to consider in the design of templateFilters() that it will be be
called multiple times as part of a loop within the wrapperAPI. Also, each
time that it is called the MPI communicator may have been modified to
include a different set of nodes. Thus, the templateFilters() may require

The wrapper API’s baseline requirements

Page 15 of 37

static internal data to recognize when to repeat steps or when to redo
steps associated with analyzing data, including node-to-node communi-
cations. This may be useful, for example, to distribute local data in a dis-
tributed FFT algorithm.

e) The fifth required function is used to free the memory associated with the
array of output structures returned by the templateFilters() function
above. It must be called to guarantee that the associated LAL memory
deallocation routines are used to free memory previously allocated with
LAL memory allocation routines.
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

outPut* result[1+endTemplate-beginTemplate];

CHAR* freeMessage = 0;

free(freeMessage);

INT4 freeOutput(outPut** result, CHAR** freeMessage);
}

The freeOutput() function will go through and free each non-NULL
array element in the array of output structures. This function will return
an integer value of 0 (zero) upon successfully deallocating memory and a
1 if the memory deallocation fails along with an error message in the
freeMessage variable. The value of -1 will be returned if a warning
occurs along with a message in freeMessage. Any warning or error
level message stored in freeMessage will be logged under in the LDAS
wrapperAPI log file, along with the GPS time, jobID, hostname, node
number and the freeOutput() function name.

f) The last required function is used to free up any dynamically allocated
memory that may be associated with the template filter search algorithms
found in the dynamically loaded library. It is called once at the comple-
tion of all calls to templateFilter() by the master and all slaves of the
MPI_COMM_WORLD.
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

CHAR* freeMessage = 0;

free(freeMessage);

INT4 freeFilters(CHAR** freeMessage);
}

The wrapper API’s baseline requirements

Page 16 of 37

The specifics of this function will depend on the internal workings of the
algorithms found in each particular dynamically loaded search library.
For example, if a one-to-one identification map was dynamically con-
structed as an index, then it must be freed upon completion of the search.
This function will return an integer value of 0 (zero) upon successfully
deallocating memory and a 1 if the memory deallocation fails along with
an error message in the freeMessage variable. The value of -1 will be
returned if a warning occurs along with a message in freeMessage.
Any warning or error level message stored in freeMessage will be
logged under in the LDAS wrapperAPI log file, along with the GPS time,
jobID, hostname, node number and the freeFilters() function name.

g) The definitions for these interface functions and data types outlined
above will be included into code via the wrapperInterface.h file.
This header file will contain valid ANSI C syntax. Also, this header file
must be guarded and must be included within an extern “C” {} block
for C++ code as previously illustrated. The structures defined within
wrapperInterface.h are given below:

/* prevent multiple inclusions of header file */

#ifndef WRAPPER_INTERFACE_H

#define WRAPPER_INTERFACE_H

/* include this file to get interface datatypes */

#include "wrapperInterfaceDatatypes.h" /* datatype header file */

/* ANSI C prototypes for four interfacing functions */

#ifdef __cplusplus

extern “C” {

#endif

/* LDAS_BUILD must define these as external resolved functions */

#ifdef LDAS_BUILD

#define LDAS_EXTERN extern

#else

#define LDAS_EXTERN

#endif

LDAS_EXTERN INT4 initFilter(INT4 argc, CHAR* argv[],

CHAR** initMessage);

LDAS_EXTERN INT4 indexFilters(UINT4* numberFilters,

CHAR** indexMessage);

LDAS_BUILD INT4 conditionData(inPut* data,

CHAR** conditionMessage, MPI_Comm* comm);

The wrapper API’s baseline requirements

Page 17 of 37

LDAS_BUILD INT4 templateFilters(INT4 beginTemplate,

INT4 endTemplate, const inPut* data, outPut* result,

CHAR** filterMessage, MPI_Comm* comm);

LDAS_BUILD INT4 freeFilters(CHAR** freeMessage);

#undefine LDAS_BUILD

#ifdef __cplusplus

}

#endif

#endif

This file includes the header file wrapperInterfaceDatatypes.h
which contains all the data types used by the interface functions. It con-
tents is given below:

/* prevent multiple inclusions of header file */

#ifndef WRAPPER_INTERFACE_DATATYPES_H

#define WRAPPER_INTERFACE_DATATYPES_H

#ifdef __cplusplus

extern “C” {

#endif

typedef enum {timeD, freqD, bothD} domain;

typedef enum { boolean_1u, char_s, char_u,

int_2s, int_2u, int_4s, int_4u, int_8s, int_8u,

real_4, real_8, complex_8, complex_16

} datatype;

/* include this file to get LAL datatypes */

#include <mpi.h>

#include "LALAtomicDatatypes.h" /* LAL header file */

typedef union { /* these pointer types MUST exist in LAL! */

BOOLEAN *boolean; /* pointer to BOOLEAN type */

CHAR *chars; /* pointer to CHAR */

UCHAR *charu; /* pointer to UCHAR */

INT2 *int2s; /* pointer to INT2 */

UINT2 *int2u; /* pointer to UINT2 */

INT4 *int4s; /* pointer to INT4 */

UINT4 *uint4u; /* pointer to UINT4 */

INT8 *int8s; /* pointer to INT8 */

UINT8 *int8u; /* pointer to UINT8 */

REAL4 *real4; /* pointer to REAL4 */

REAL8 *real8; /* pointer to REAL8 */

The wrapper API’s baseline requirements

Page 18 of 37

COMPLEX8 *complex8; /* pointer to COMPLEX8 */

COMPLEX16 *complex16; /* pointer to COMPLEX16 */

} dataPointer; /* union supporting pointer type checking */

typedef struct {

UINT8 numberSamples; /* no. of data samples in interval */

UINT8 startSec; /* GPS start time in seconds */

UINT8 startNan; /* GPS start time in nanoseconds */

UINT8 stopSec; /* GPS stop time in seconds */

UINT8 stopNan; /* GPS stop time in nanoseconds */

REAL8 timeStepSize; /* uniform step size in seconds */

} gpsTimeInterval; /* time domain interval */

typedef struct {

UINT8 numberSamples; /* no. of data samples in interval */

UINT8 gpsStartTimeSec; /* GPS start time in seconds */

UINT8 gpsStartTimeNan; /* GPS start time in nanoseconds */

UINT8 gpsStopTimeSec; /* GPS start time in seconds */

UINT8 gpsStopTimeNan; /* GPS start time in nanoseconds */

REAL8 startFreq; /* starting frequency in hertz */

REAL8 stopFreq; /* ending frequency in hertz */

REAL8 freqStepSize; /* uniform step size in hertz */

} frequencyInterval; /* frequency domain interval */

typedef struct {

UINT8 numberSamples; /* no. of data samples in interval */

UINT8 gpsStartTimeSec; /* GPS start time in seconds */

UINT8 gpsStartTimeNan; /* GPS start time in nanoseconds */

UINT8 gpsStopTimeSec; /* GPS stop time in seconds */

UINT8 gpsStopTimeNan; /* GPS stop time in nanoseconds */

REAL8 startFreq; /* starting frequency in hertz */

REAL8 stopFreq; /* ending frequency in hertz */

REAL8 timeStepSize; /* uniform step size in seconds */

REAL8 freqStepSize; /* uniform step size in hertz */

} timeFreqInterval; /* frequency domain interval */

typedef union {

gpsTimeInterval dTime; /* time domain interval info */

frequencyInterval dFreq; /* frequency domain interval info */

timeFreqInterval dBoth; /* time+frequency domain interval info */

} interval;

#define maxHistoryName 64

#define maxHistoryUnits 64

typedef struct dcHistoryTag {

struct dcHistoryTag *previous; /* previous data cond. filter */

CHAR name[maxHistoryName]; /* data conditioning filter name */

CHAR units[maxHistoryUnits]; /* data conditioning filter units */

datatype type; /* data type for column */

UINT4 numberValues; /* no. rows to add to column */

The wrapper API’s baseline requirements

Page 19 of 37

dataPointer value; /* pointer to table’s column data */

struct dcHistoryTag *next; /* next data cond. filter */

} dcHistory; /* this is a bi-directional linked list */

#define maxStateName 64

typedef struct stateVectorTag {

struct stateVectorTag *previous; /* previous state vector */

CHAR stateName[maxStateName]; /* name of state*/

multiDimData *store; /* reuseable state vector data store */

struct stateVectorTag *next; /* next state vector */

} stateVector;

typedef struct {

CHAR name[256] /* name of the data in dataPointer */

CHAR units[256] /* comma separated units of the data */

domain space; /* either time, frequency or both domain */

datatype type; /* type of data in pointer */

interval range; /* epoch of time/frequency for data */

UINT4 numberDimensions; /* no. of dimensions in data */

UINT4 dimensions[]; /* no. of elements along each dimension */

dcHistory history; /* data conditioning history */

dataPointer data; /* pointer to multi-dimensional data */

} multiDimData;

typedef struct {

UINT4 numberSequences; /* number of data channels in inPut */

stateVector states; /* input state vector information */

multiDimData sequences[]; /* array of conditioned data */

} inPut;

typedef enum { binaryInspiral, ringDown, periodic, burst,

stocastic, timeFreq, instrumental, protoType, experimental

} catagory; /* astrophysical/instrumental search catagories */

#define dbNameLimit 19 /* Note DB2 limits names to 18 letters */

typedef struct dataBaseTag {

struct dataBaseTag *previous; /* previous table data set */

CHAR tableName[dbNameLimit]; /* name of LDAS table */

CHAR columnName[dbNameLimit]; /* column name in LDAS table */

datatype type; /* data type for column */

UINT4 numberRows; /* no. rows to add to column */

dataPointer rows; /* pointer to table’s column data */

struct dataBaseTag *next; /* next table data set */

} dataBase; /* this is a bi-directional linked list */

typedef struct {

INT8 templateNumber; /* number of template results in outPut */

catagory search; /* type of astrophysical/instrumental search */

BOOLEAN significant; /* signals that require post-processing */

The wrapper API’s baseline requirements

Page 20 of 37

stateVector states; /* output state vector information */

dataBase results; /* template results to be ingested into DB */

multiDimData *optional; /* optional sequences (1/template) */

} outPut;

#ifdef __cplusplus

}

#endif

#endif

This wrapperInterface.h header file learns about the LAL standard
datatypes by including the LALAtomicDatatypes.h header file. This
header file must at a minimum contain the following definitions:

#ifndef _LALATOMICDATATYPES_H

#define _LALATOMICDATATYPES_H

#ifdef LDAS_BUILD

#include "LDASConfig.h"

#else

#include "LALConfig.h"

#include "LALRCSID.h"

RRCSID(LALATOMICDATATYPESH, “$Id: LALAtomicDataTypes.h,

v 1.1 2000/04/20 20:02:33 jolien Exp $”)

#endif

typedef char CHAR;

typedef unsigned char UCHAR;

typedef unsigned char BOOLEAN;

#if SIZEOF_SHORT == 2

typedef short INT2;

typedef unsigned short UINT2;

#elif SIZEOF_INT == 2

typedef int INT2;

typedef unsigned int UINT2;

#else

#error "ERROR: NO 2 BYTE INTEGER FOUND"

#endif

#if SIZEOF_INT == 4

typedef int INT4;

typedef unsigned int UINT4;

#elif SIZEOF_LONG == 4

typedef long INT4;

typedef unsigned long UINT4;

#else

The wrapper API’s baseline requirements

Page 21 of 37

#error "ERROR: NO 4 BYTE INTEGER FOUND"

#endif

#if SIZEOF_LONG == 8

typedef long INT8;

typedef unsigned long UINT8;

#elif SIZEOF_LONG_LONG == 8

typedef long long INT8;

typedef unsigned long long UINT8;

#else

#error "ERROR: NO 8 BYTE INTEGER FOUND"

#endif

#if SIZEOF_FLOAT == 4

typedef float REAL4;

#else

#error "ERROR: NO 4 BYTE REAL FOUND"

#endif

#if SIZEOF_DOUBLE == 8

typedef float REAL8;

#else

#error "ERROR: NO 8 BYTE REAL FOUND"

#endif

typedef struct {

 REAL4 re;

 REAL4 im;

} COMPLEX8;

typedef struct {

 REAL8 re;

 REAL8 im;

} COMPLEX16;

#endif

Notice that this LALAtomicDatatypes.h header file will include the
LDAS LDASConfig.h header file which is generated by the LDAS
autoconfig scripts at configuration time when LDAS_BUILD is defined
(by LDAS) and will include the LALConfig.h header file which is gen-
erated by the LAL autoconfig scripts at configuration time otherwise. In
the event that this file is not available, the necessary definitions found in
this file for both SPARC Solaris and Intel Pentium Linux computers
using the GCC 2.95.2 compiler can be placed in a mock-up config.h
file which looks like the following:

/* for Intel Pentium Linux and SPARC Solaris using */
/* GCC version 2.95.2 */

The wrapper API’s baseline requirements

Page 22 of 37

#ifndef TypeConfigH
#define TypeConfigH

/* The number of bytes in a double. */
#define SIZEOF_DOUBLE 8

/* The number of bytes in a float. */
#define SIZEOF_FLOAT 4

/* The number of bytes in a int. */
#define SIZEOF_INT 4

/* The number of bytes in a long. */
#define SIZEOF_LONG 4

/* The number of bytes in a long long. */
#define SIZEOF_LONG_LONG 8

/* The number of bytes in a short. */
#define SIZEOF_SHORT 2

#endif

This mock-up file may not contain any other definitions that conflict with
LDAS. In the integrated build of the wrapperAPI, the config.h file gener-
ated by the LDAS autoconfig scripts shall be used to define these sizes.
NOTE: The SIZEOF_UNSIGNED_* are not needed as they are guaran-
teed to be consistent with signed sizes on the LDAS target platforms at
this time (early 2000).

h) The dynamically loaded library (dll) shared object file will define the
interface functions. The top level C source file LALWrapperInter-
face.c for any dll shared object which provides the interface definition
will contain the following:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <setjmp.h>

#include “wrapperInterface.h”

#include “LALWrapperInterface.h”

#include “LALmalloc.h”

NRCSID(LALWRAPPERINTERFACEC,”$Id: LALWrapperInterface.c$);

#define STRINGIFY_HELPER(a) #a

#defind STRINGIFY(a) STRINGIFY_HELPER(a)

#define FILELINEID “, file: “ __FILE__ \

“, line: “stringify(__LINE__) \

“, $Id: LALWrapperInterface.c$”

The wrapper API’s baseline requirements

Page 23 of 37

int debuglevel = 0;

enum {warning = -1, Nominal = 0, Error = 1 };

static INT4 stringifyStatus(CHAR **msgString, Status * status);

static void signalHandler(int sig);

static void *wrapperParams;

static CHAR *exceptionMessage;

static jmp_buf jump;

INT4 initFilter(INT4 argc, CHAR* argv[], CHAR** initMessage)

{

INT4 code;

/* initMessage must come in as a pointer to NULL */

if (!initMessage || *initMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

CHAR *warning = NULL;

STRVector args;

args.length = argc;

args.data = argv;

FilterInit(&status, &wrapperParams, &args, &warning);

code = stringifyStatus(initMessage, &status);

if (warning && !code) {

*initMessage = realloc(*initMessage, strlen(warning) + 1);

if (*initMessage) {

strcpy (*initMessage, warning);

code = warning;

}

else {

return Error;

}

}

}

else {

*initMessage = realloc(*initMessage,

strlen(exceptionMessage) + 1);

if (*initMessage) {

strcpy (*initMessage, exceptionMessage);

}

return Error;

}

return code;

}

The wrapper API’s baseline requirements

Page 24 of 37

INT4 indexFilters(UINT4* numberFilters, CHAR** indexMessage)

{

INT4 code;

/* indexMessage must come in as a pointer to NULL */

if (!indexMessage || *indexMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

IndexFiltersParams params;

params.warning = NULL;

params.wrapperParams = wrapperParams;

IndexFilters(&status, numberFilters, ¶ms);

code = stringifyStatus(indexMessage, &status);

if (params.warning && ! code) {

*indexMessage = realloc(*indexMessage,

strlen(params.warning) + 1);

if (*indexMessage) {

strcpy(*indexMessage, params.warning);

code = Warning;

}

else {

return Error;

}

}

}

else {

*indexMessage = realloc(*indexMessage,

strlen(exceptionMessage) + 1);

if (*indexMessage) {

strcpy(*indexMessage, exceptionMessage);

}

return Error;

}

return code;

}

INT4 conditionData(inPut* data, CHAR** conditionMessage,

MPI_Comm* comm)

{

INT4 code;

/* conditionMessage must come in as a pointer to NULL */

if (!conditionMessage || *conditionMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

ConditionDataParams params;

params.warning = NULL;

The wrapper API’s baseline requirements

Page 25 of 37

params.wrapperParams = wrapperParams;

params.comm = comm;

ConditionData(&status, data, ¶ms);

code = stringifyStatus(conditionMessage, &status);

if (params.warning && ! code) {

*conditionMessage = realloc(*conditionMessage,

strlen(params.warning) + 1);

if (*indexMessage) {

strcpy(*conditionMessage, params.warning);

code = Warning;

}

else {

return Error;

}

}

}

else {

*conditionMessage = realloc(*conditionMessage,

strlen(exceptionMessage) + 1);

if (*conditionMessage) {

strcpy(*conditionMessage, exceptionMessage);

}

return Error;

}

return code;

}

INT4 templateFilters(INT4 beginTemplate, INT4 endTemplate,

const inPut* data, outPut* result, CHAR** filterMessage,

MPI_Comm* comm)

{

INT4 code;

/* filterMessage must come in as a pointer to NULL */

if (!filterMessage || *filterMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

TemplateFiltersParams params;

params.warning = NULL;

params.wrapperParams = wrapperParams;

params.beginTemplate = beginTemplate;

params.endTemplate = endTemplates;

params.comm = comm;

TemplateFilters(&status, results, data, ¶ms);

code = stringifyStatus(filterMessage, &status);

if (params.warning && ! code) {

*filterMessage = realloc(*filterMessage,

strlen(params.warning) + 1);

The wrapper API’s baseline requirements

Page 26 of 37

if (*filterMessage) {

strcpy(*filterMessage, params.warning);

code = Warning;

}

else {

return Error;

}

}

}

else {

*filterMessage = realloc(*filterMessage,

strlen(exceptionMessage) + 1);

if (*filterMessage) {

strcpy(*filterMessage, exceptionMessage);

}

return Error;

}

return code;

}

}

INT4 freeFilters(CHAR** freeMessage)

{

INT4 code;

/* freeMessage must come in as a pointer to NULL */

if (!freeMessage || *freeMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

CHAR *warning = NULL;

FreeFilters(&status, &wrapperParams, &warning);

code = stringifyStatus(freeMessage, &status);

if (warning && ! code) {

*freeMessage = realloc(*freeMessage,

strlen(warning) + 1);

if (*freeMessage) {

strcpy(*freeMessage, warning);

code = Warning;

}

else {

return Error;

}

}

LALCheckMemoryLeaks();

}

else {

*freeMessage = realloc(*freeMessage,

The wrapper API’s baseline requirements

Page 27 of 37

strlen(exceptionMessage) + 1);

if (*freeMessage) {

strcpy(*freeMessage, exceptionMessage);

}

return Error;

}

return code;

}

static void signalHandler(int sig)

{

switch(sig)

{

case SIGABRT:

exceptionMessage = “signalHandler: Caught SIGABRT” FILELINEID;

break;

case SIGSEGV:

exceptionMessage = “signalHandler: Caught SIGSEGV” FILELINEID;

break;

case default:

exceptionMessage = “signalHandler: Caught unknown signal” \

FILELINEID;

break;

}

longjmp(jump, sig);

}

static INT4 stringifyStatus(CHAR **msgString, Status *status)

{

enum { MaxNumLevels = 1024 };

enum { MinMsgStringSize = 1 };

enum { TmpStringSize = 1024 };

CHAR tmpString[TmpStringSize];

size_t msgStringSize = 0;

Status *ptr = status;

INT4 code = status->statusCode ? Error : Nominal;

unsigned level = 0;

if (!msgString || *msgString) return Error;

if (!status) {

const CHAR err[] = “stringifyStatus: null status structure” \

FILELINEID;

*msgString = realloc(*msgString, sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

msgStringSize = MinMsgStringSize;

*msgString = malloc(msgStringSize);

if (!*msgString) return Error;

memset(*msgString, 0, msgStringSize);

while (ptr) {

The wrapper API’s baseline requirements

Page 28 of 37

Status *next = ptr->statusPtr;

size_t totChar = 0;

INT4 numChar;

if (++level > MaxNumLevels) {

const CHAR err[] = “stringifyStatus: too many levels in status
structure” FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

numChar = sprintf(tmpString, “\nLevel %i: %s\n”, ptr->level,

ptr->Id);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

if (ptr->statusCode) {

numChar = sprintf (tmpString + totChar, “\tStatus code %i: %s\n”,

ptr->statusCode, ptr->statusDescription);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

}

else

{

numChar = sprintf(tmpString + totChar, “\tStatus Code 0: \

Nomimal\n”);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

}

numChar = sprintf(tmpString + totChar, “\tfunction %s, file %s,
line %i\n”, ptr->function, ptr->file, ptr-line);

if (numChar < 0) {

The wrapper API’s baseline requirements

Page 29 of 37

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

++totChar;

if (totChar > sizeof(tmpString)) {

const CHAR err[] = “stringifyStatu: have written beyond bounds \

of string” FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

CHAR *tmp = realloc(*msgString, msgStringSize += totChar);

if (tmp) {

*msgString = tmp;

}

else

{

const CHAR err[] - “stringifyStatus: couldn’t allocate memory \

for message string” FILELINEID;

*msgString = realloc(*msgString, sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

}

if (ptr != status) LALFree(ptr);

ptr = next;

}

return code;

}

#undef STRINGIFY_HELPER

#undef STRINGIFY

#undef FILELINEID

The associated header file, LALwrapperInterface.h will have the follow-
ing content:

#ifndef _LALWRAPPERINTERFACE_H

#define _LALWRAPPERINTERFACE_H

#include “wrapperInterfaceDatatypes.h”

#include “LALDatatypes.h”

#ifdef __cplusplus

The wrapper API’s baseline requirements

Page 30 of 37

extern “C” {

#endif

NRCSID(LALWRAPPERINTERFACEH, “Id: LALWrapperInterface.h$”);

typedef inPut InPut;

typedef outPut OutPut;

typedef struct tagSTRVector {

UINT4 length;

CHAR ** data;

} STRVector;

typedef struct tagIndexFiltersParams

{

CHAR *warning;

void *wrapperParams;

} IndexFiltersParams;

typedef struct tagConditionDataParams

{

CHAR *warning;

void *wrapperParams;

MPI_Comm *comm;

} ConditionDataParams;

typedef struct tagTemplateFiltersParams {

CHAR *warning;

void *wrapperParams;

UINT4 beginTemplate;

UINT4 endTemplate;

MPI_Comm *comm;

} TemplateFiltersParams;

void FilterInit(Status *status, void **params, STRVector *args);

void IndexFilters(Status *status, UINT4 *numFilters,

IndexFiltersParams *params);

void ConditionData(Status *status, InPut *inout,

ConditionDataParams *params, MPI_Comm *comm);

void TemplateFilters(Status *status, OutPut *output,

const Input *input, TemplateFiltersParams *params);

void FreeFilters(Status *status, void **params, CHAR **warning);

#ifdef __cplusplus

}

#endif

#endif

The wrapper API’s baseline requirements

Page 31 of 37

The C source file and associate header above need only be written once
for all dynamically loaded shared object libraries used by the wrapper-
API. However, it will be necessary to link this source codes object mod-
ule into each dynamically loaded shared object.
The LAL algorithms associated with a particular search strategy used in a
particular dynamically loaded shared object library are written into the
five functions {FilterInit(), IndexFilters(), Condition-
Data(), TemplateFilters(), FreeFilters()} found in the
LALwrapperInterface.c file. The contents of these functions will
vary with each search strategy initiated on the LDAS parallel compute
cluster using the wrapperAPI as an interface.

The wrapper API’s baseline requirements

Page 32 of 37

II. Component Layers of the LDAS wrapperAPI

A. LDAS wrapperAPI:

1. The LDAS wrapperAPI is made up of a single C/C++ layer.

a) C/C++ Package Layer - this layer is the data engine layer and deals pri-
marily with the binary data and the algorithms and methods needed to
manipulate LIGO’s data

2. The C/C++ package layer consists of three internal components, developed
in C++ and C to take advantage of the higher performance associated with
compiled languages which is needed for the types of activities that are being
carried out in this layer.

a) The genericAPI.so - this shared object contains the C++ classes and C
interface functions needed to communicate LDAS ilwd data as C++
objects through sockets. It will be linked to the wrapperAPI executable.

b) The MPI library - this is the Message Passing Interface library used to

C/C++ Package Layer

wrapperAPI “main()”

LDAS wrapperAPI

dynamically loaded
template algorithm

genericAPI.so

libraries

MPI library

The wrapper API’s baseline requirements

Page 33 of 37

communicate MPI based messages and data types between nodes of the
parallel process.

c) The dynamically loaded template algorithm library - this is the library
that contains the algorithms and functions necessary to carry out template
based parallel filtering (searches) of LIGO’s data. It will be loaded as a
shared object using the Unix dlopen interface calls.

III. LDAS interfaces to wrapperAPI

A. Initiation

1. The LDAS mpiAPI will initiate the wrapperAPI as a stand-alone executable
using the mpirun command script. The mpiAPI will be responsible for con-
structing all command line arguments to the wrapperAPI, this includes
options for mpirun as well as options for wrapperAPI.

B. Commands

1. The wrapperAPI will open a Unix socket connection with the mpiAPI’s job-
state port for the purpose of sending and receiving text commands used to
load balance and report status.

C. LDAS Data

1. The wrapperAPI will use the LDAS data sockets for communicating ILWD
data with the LDAS system. The functionality to create and manage these
data sockets will be derived from the genericAPI’s shared object library.

D. MPI

1. The wrapperAPI is a parallel process running on many different nodes of a
clustered topology of computers. The software for communicating data and
messages between these distinct processes will be the Message Passing Inter-
face (MPI) library. The wrapperAPI will support simplistic parallel process-
ing based on a large set of filter algorithms (templates) being applied in
parallel to a single segment of data. The master process will be responsible
for sending the data and receiving results of the analysis. The slave processes
will carry out the algorithms on the data.

E. Dynamically Loaded Template Algorithm Shared Objects

1. The wrapperAPI will dynamically load any shared object that conforms to
the design standard for templated filter algorithms outlined in this document.
The algorithms found in this shared object will be performed within the slave

The wrapper API’s baseline requirements

Page 34 of 37

process of the parallel process.

wrapperAPI
(C++ code using MPI 1.2 library)

Templated Algorithms
(Dynamically Loaded Library)

mpiAPI
(tcl code only)

{spawns
mpirun...}

dataCondition
API

eventManager
API

lightWeight
API

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Master Process)

The wrapper API’s baseline requirements

Page 35 of 37

IV. Communications in wrapperAPI

A. Socket Based Communications in wrapperAPI:

1. The wrapperAPI will establish a Unix socket for communicating jobstate
commands and messages between the mpAPI and itself. This socket will be
managed by the master process.

2. The genericAPI will provide the wrapperAPI with dynamically allocated
TCP/IP sockets within the C/C++ layer that is used to communicate LDAS
data (typically binary data) in the form of streamed binary data or distributed
ILWD C++ class objects using the ObjectSpace C++ Component Series
Socket Library. This port is commonly referred to as the Data Socket to
reflect its primary duty in communicating LDAS data sets. Requirements on
these sockets are defined by the genericAPI.

3. The MPI library will provide the communications interface (typically the
ch_p4 device for clusters) used to share MPI data types and messages
between nodes of the parallel process.

V. Software Development Tools

A. TCL/TK:

1. TCL is a string based command language. The language has only a few fun-
damental constructs and relatively little syntax making it easy to learn. TCL
is designed to be the glue that assembles software building blocks into appli-
cations. It is an interpreted language, but provides run-time tokenization of
commands to achieve near to compiled performance in some cases. TK is an
TCL integrated (as of release 8.x) tool-kit for building graphical user inter-
faces. Using the TCL command interface to TK, it is quick and easy to build
powerful user interfaces which are portable between Unix, Windows and

C/C++
 Layer

wrapperAPI

wrapperAPI - mpiAPI

C++ Socket Class object

JobState Socket

Data Socket(s)
Binary Data:
ILWD Objects

Normal Priority:
Commands & Messages

MPI Communications

ch_p4 device
Message Passing Interface:
Data & Messages

The wrapper API’s baseline requirements

Page 36 of 37

Macintosh computers. As of release 8.x of TCL/TK, the language has native
support for binary data.

B. C and C++:

1. The C and C++ languages are ANSI standard compiled languages. C has
been in use since 1972 and has become one of the most popular and powerful
compiled languages in use today. C++ is an object oriented super-set of C
which only just became an ANSI/ISO standard in November of 1997. It pro-
vided facilities for greater code reuse, software reliability and maintainability
than is possible in traditional procedural languages like C and FORTRAN.
LDAS software development will be dominated by C++ source code.

C. MPI:

1. The parallel software components of the LDAS will use the public domain
version of MPI from MPICH, release 1.2 or greater.

2. The use of MPI code within LDAS will be restricted to the C++ interface
bindings and the use of object oriented design technologies whenever possi-
ble. The templated analysis filters and associated functions are not required
to be developed using C++ and object oriented design techniques. However,
they must support bindings to the core C++ slave processes.

D. SWIG:

1. SWIG is a utility to automate the process of building wrappers to C and C++
declarations found in C and C++ source files or a special interface file for
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS will
use the TCL interface wrappers to the TCL extension API’s.

E. Make:

1. Make is a standard Unix utility for customizing the build process for execut-
ables, objects, shared objects, libraries, etc. in an efficient manor which
detects the files that have changed and only rebuilds components that depend
on the changed files. The Make facility has been extended using AutoConfig,
AutoMake and LibTools, all from the public domain.

F. CVS:

1. CVS is the Concurrent Version System. It is based on the public domain (and
is public domain itself) software version management utility RSC. CVS is
based on the concept of a software source code repository from which multi-
ple software developers can check in and out components of a software from
any point in the development history.

G. Documentation:

1. PERCEPS is a documentation system for C/C++. It generates HTML docu-
ments, providing for sophisticated online browsing. The documents are

The wrapper API’s baseline requirements

Page 37 of 37

extracted directly from the source code files. Documents are hierarchical and
structured with formatting and references.

2. TclDOC is a documentation system for TCL/TK. It generates structured
HTML documents directly from the source code, providing for a similar
online browsing system to the LDAS help files. Documents include a hyper-
text linked table of contents and a hierarchical structured format.

VI. WrapperAPI Pseudo-Code

A. Illustration of flow control:

1. The following pseudo-code illustrates the steps taken by the wrapperAPI.
The details are left for the implementation.

// wrapperAPI pseudo-code

extern “C” { #include “wrapperInterface.h” }

{ // On every node in Initial Comm perform:

parseCommandLineOptions();

loadDynamicSharedObjects();

errorTestInit(initFilter(argc, argv, initMessage));
errorTestIndex(indexFilters(numberTemplates, indexMessage));

errorTestDC(conditionData(data, conditionMessage, LBComm));

MplusLBComm = createWrapperApiLoadBalanceComumunicator();

LBComm = createLoadBalanceCommunicator();

}

while (notFinished()) {
if (inLBNode) {

if (notPreviouslyInLBComm) {

errorTestInit(initFilter(argc, argv, initMessage));

errorTestIndex(indexFilters(numberTemplates, indexMessage));

errorTestDC(conditionData (data, conditionMessage, LBComm)); }

errorTestTF(templateFilters(beginTemplate, endTemplate,

data, result, filterMessage, LBComm));

errorTestInit(freeOutput(output, freeMessage));

slaveNodeSendResults();

}

{ // run on master node only:

masterNodeGathersResults();

if (doLoadBalance) masterNodeCalculatesLoad();

masterNodeInformsLDASmpiAPI();

masterSendResultsToResultAPI();

}

// On every node in MPI_COMM_WORLD perform:

MplusLBComm = createWrapperApiLoadBalanceComumunicator();

LBComm = createLoadBalanceCommunicator();

} /* end of while loop */

{ // On every node in MPI_COMM_WORLD perform:

errorTestFree(freeFilters(freeMessage));

MPI_Finish();

}

