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ABSTRACT

It has recently been observed that cross couplings between mechanical modes in a
suspended optic cannot be completely eliminated by tuning force or sensor constants in
the optic's controller. The residual cross couplings appear to be 90° out of phase from the
modes being driven and are hence unaffected by torques or forces applied through the
actuators. The origin of these residual cross couplings has so far been a mystery.

It turns out that such residual cross couplings are a natural consequence of the
phase shifts introduced between modes by resonances. This behavior is very general and
is independent of the mechanism that couples the modes of an optic. We should always
expect to see some nonzero residual cross coupling, and its phase should be 90° once we
have tuned the force constants to minimize its amplitude.



INTRODUCTION

You might think (as I did a few weeks ago) that you should be able to compensate
for mechanical cross couplings between the modes of a suspended optic by tuning the
force constants. If you excite the pendulum mode of an optic, for example, and that
introduces some pitch motion, then you might expect to be able to tune the pendulum
force constants so that they apply just enough pitch torque to counter the original pitch
motion.

In fact, this is not the case. We can tune the force constants to minimize the cross
couplings between modes, but we cannot eliminate them entirely. Moreover, these cross
couplings appear to have a 90° phase shift between the mode being driven and the
coupled mode [1]. These residual cross couplings apparently cannot be tuned away by
adjusting either the force constants or the sensor constants [2].

What could give rise to cross couplings that apparently cannot be compensated
for? One possibility is the phase shift introduced by mechanical resonances in the
intrinsic cross couplings. You can only compensate for motion that is in phase with your
actuator, and any component that is 90° out of phase with it will not be affected if you
adjust the force constants. This paper describes the consequences of such a phase shift
and how it can give rise to residual cross couplings.

DEFINITIONS

We may describe the position of a mirror by the positions of each of its magnets.

r
x x x x xUL UR LL LR= ( , , , ),

where xUL  represents the position of the upper left magnet, etc., along the x-axis. (The
axis of the mirror itself would be parallel to this x-axis when the mirror is perfectly
aligned.) The mirror's mechanical modes can be represented by a set of vectors that
describe, pitch, yaw and position, respectively as1

ˆ ( , , , )p = + + − −1
2

1 1 1 1 ,

ˆ ( , , , )y = − + − +1
2

1 1 1 1 ,

and

ˆ ( , , , )z = + + + +1
2

1 1 1 1 .

                                                  
1 Thanks to Stan Whitcomb for suggesting this vector-based notation.



We only need three vectors to describe the mirror, despite the fact that we have
four magnets, because all four magnets lie in the same plane: the back surface of the
mirror. The fourth basis vector needed to span a complete four dimensional space would
be

ˆ ( , , , )s = + − − +1
2

1 1 1 1 ,

which does not correspond to anything the mirror can do physically.
The state of the mirror can be expressed in terms of our three basis vectors as

r
x x z x p x yPOS PIT YAW= + +ˆ ˆ ˆ ,

where

x x zPOS = ⋅r
ˆ ,

x x pPIT = ⋅r
ˆ ,

and

x x yYAW = ⋅r
ˆ .

We may also describe the forces and torques on the mirror by the forces applied
along the x-axis to each of the magnets.

r
f f f f fUL UR LL LR= ( , , , )

The force on each magnet is the sum of forces applied by each channel in the controller.
If SPIT  is the signal applied to the pitch channel, etc., then the force mirror would be

r r r r
f S S S ZPIT YAW POS= + +Θ Φ ,

where the force constant vectors for pitch, yaw, and position are

r
Θ Θ Θ Θ Θ= + + − −( )UL UR LR LL, , , ,

r
Φ Φ Φ Φ Φ= − + − +( )UL UR LR LL, , , ,

and

r
Z Z Z Z ZUL UR LR LL= + + + +( ), , , .



We can ignore the potato chip mode ŝ  and write the force in the pitch, yaw, and position
basis.

r
f

R
p y f zPIT YAW TOT= +( ) +1

2 2
1
2

τ τˆ ˆ ˆ ,

where fTOT  is the total force on the mirror, τ PIT  is the torque applied to the mirror's pitch
mode, τYAW  is the torque applied to yaw, and R  is the radius from the center of the mirror
where the magnets are glued.

Now that we have enough vocabulary to describe the kinematics of the mirror, we
need to address its dynamics.

THE INERTIA MATRIX

The position of the mirror will be related to the force applied to it (in frequency
space) by

r r

r
f x

x

=

= −

M

M

˙̇

ω 2
(1)

where M  is some matrix. For a free mirror, this inertia matrix is easy to derive by the
usual application of Newton's third law. In a basis where

p̂ =
















1

0

0

, ŷ =
















0

1

0

, ẑ =
















0

0

1

,

the inertia matrix for a free mirror of mass m , length L , and radius R  is

M =
















m

2

0 0

0 0

0 0 1

α
α .

The parameter α  is related to the moment of inertia of the mirror about its pitch and yaw
axes.

α = + 















1
16

1
1
3

2L

R

For a free mirror, the inertia matrix is diagonal. There are no intrinsic cross couplings
between the modes.



For a suspended optic, we may simply modify the matrix for a free mirror to
include restoring forces for each mode and cross couplings between the modes. Let's
consider the case where there is coupling between pitch and position. In this case the
inertia matrix becomes

M =
















m
K

K

K

PIT

YAW

POS

2

0

0 0

0

1

2

α ε
α

ε
.

Here the K 's are frequency dependent transfer functions that account for the resonances
in each mode. (They should approach K ≈ 1 at high frequency.) The cross coupling terms
ε1 and ε2  describe the position to pitch and pitch to position coupling, respectively. Note
that the K 's and ε 's are complex, to account for phase, and that both are probably
frequency dependent.

CROSS COUPLING

If we try to excite only one mode, for example position, we set the drive signals in
the other modes to zero, i.e.

S SPIT YAW= = 0 ,

but this alone does not guarantee that xPIT  and xYAW  will also vanish. We would like to be
able to minimize the pitch and yaw motions when position is driven by tuning the
position force constants in 

r
Z

It is straightforward to calculate the motion in the modes in this formalism. We
can rewrite Equation 1 with only the position channel being driven as

S Z x z x p x yPOS POS PIT YAW

r
= − + +( )ω 2 M M Mˆ ˆ ˆ .      (2)

We can solve for the motion in any mode we like by constructing a vector orthogonal to
two of the three terms on the right side of Equation 2 and dotting it into each side. To
solve for xPIT , for example, we could isolate it like so,

S Z y z x p y zPOS PIT

r
⋅ ×( ) = − ( ) ⋅ ×( )M M M M Mˆ ˆ ˆ ˆ ˆω 2 .

Solving for the pitch and position motions and taking their ratio gives us a position to
pitch cross coupling of

x

x

Z y z

Z p y
PIT

POS

=
⋅ ×( )
⋅ ×( )

r

r
M M
M M

ˆ ˆ

ˆ ˆ
.



We would like to introduce a pitch component to the force constants 
r
Z  to

compensate for this cross coupling, so we write

r
Z z z z pPOS PIT= +ˆ ˆ .

With this expression for the force constants, we can solve for the position to pitch cross
coupling.

x

x

K z z

K z z

K

K

PIT

POS

POS PIT POS

PIT POS PIT

POS

PIT

= −
−

= −
− +

ε
α ε

ξ ε
ε ξ α

1

2

1

2

      (3)

Here I have defined the variable ξ = z zPIT POS . We have a constraint in our suspension
controllers that we can only change the gains of the force constants, not their phases, so if
zPOS  and zPIT  are complex, they must have the same phase, and ξ  must be real. We are at
liberty to vary ξ  to try and compensate for these cross couplings, but if the K 's and ε 's
are complex, as we expect them to be, then we will not be able to eliminate this cross
coupling entirely.

MINIMUM RESIDUAL CROSS COUPLING

Even if we cannot eliminate the cross couplings between modes, we can still
minimize them. But how well can we do, and what will the phase be of the residual cross
coupling? Equation 3 holds the answers.

First let's calculate the intrinsic cross coupling between position and pitch. If we
introduce no pitch compensation to 

r
Z , then ξ = 0 , and the cross coupling is

x

x K
PIT

POS IN PIT







= − ε
α

1 .

Now, minimizing the magnitude of Equation 3 is a lot of work. However, if the intrinsic
cross coupling between pitch and position is weak enough that

ε ξ α2 << KPIT ,

we can approximate the position to pitch cross coupling as

x

x

K

K
PIT

POS

POS

PIT

= −ξ ε
α

1 .

A little algebra shows that the magnitude of this cross coupling is minimized when



ξ
ε

= { }Re K

K
POS

POS

1
2 ,

and that the minimum residual cross coupling is

x

x
i

K

K K
PIT

POS MIN

POS

POS PIT







= { }Im *

*

ε
α

1 .

Above both the position (pendulum) and pitch resonant frequencies, K KPOS PIT≈ ≈ 1, and
the phase of this residual cross coupling is approximately 90°.

The magnitude of the minimum cross coupling is related to the magnitude of the
intrinsic cross coupling by

x

x

x

x
PIT

POS MIN

PIT

POS IN

= sinψ ,

where ψ  is the phase difference between the off-diagonal coupling term ε1 and the on-
diagonal pendulum term KPOS .

Note that it doesn't take much phase to set a relatively large limit on your residual
cross couplings. Even a phase shift of 5.7° (one tenth of a radian) implies that you can't
reduce the cross coupling from its intrinsic value by more than a factor of ten.

CONCLUSIONS

This analysis shows one mechanism that can set a lower limit on the cross
couplings in a suspended optic. In this formalism it is straightforward to predict both the
magnitude and phase of the residual cross couplings, after they have been minimized by
tuning of the force constants. I have kept this analysis very general in this paper and not
treated any specific model for the intrinsic cross couplings.

In retrospect, these conclusions seem obvious. We should expect some phase shift
between mechanical modes in any real system. If we were to excite an optic's pendulum
mode and that were to lead to some pitch motion, then we could describe that pitch
motion as having two components: one that is in phase with the pendulum motion, and
one that is 90° out of phase (in quadrature). Since we can only compensate for motion
that is in phase with our actuator, we can only tune the force constants on the pendulum
mode to get rid of the pitch component that is in phase with the pendulum motion. That
leaves us with some residual pitch motion that is 90° out of phase from the pendulum
motion. We could compensate for all of the pitch motion if we could tune the phases of
our pendulum force constants, as well as their magnitudes.
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