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2 Introduction

2.1 The Purpose of GRASP

The analysis and modeling of data from gravitational wave detectors requires specialized numerical
techniques. GRASP was developed in collaboration with the Laser Interferometric Gravitational
Observatory (LIGO) project in the United States, and contains a collection of software tools for
this purpose.

In order that this package be of the most use to the physics community, this package (including
all source code) is being released in the public domain. It may be freely used for any purpose with
only one condition: GRASP and its author must be acknowledged or referenced in any work or
publications to which GRASP made a contribution. This citation must specify the version number
(for example, 1.0.0) of GRASP. In addition, if the code has been modified in any way, this must also
be stated. While the GRASP package is available in the public domain, we do intend to regulate
its distribution. You may request a copy of GRASP for your personal use, or for use at your own
institution, but you must not distribute it outside that group. In addition, one person at each
institution must be designated as the “responsible party” in charge of the GRASP package.

GRASP is intended for a broad audience, including those users whose main interest is in run-
ning simulations and analyzing data, and those users whose main interest is in testing new data
analysis techniques or incorporating searches for new types of gravitational wave sources. The
GRASP package includes a “cookbook” of documented and tested low-level routines which may
be incorporated in user code, and simple example programs illustrating the use of these routines.
GRASP also includes a number of high level user applications built from these routines.

We are always interested in extending the capabilities of GRASP. Suggestions for changes or
additions, including reports of bugs or corrections, improvements, or extensions to the source code,
should be communicated directly to the author.

2.2 Quick Start

If you hate to read manuals, and you just want to try something, here’s a suggestion. This assumes
that the GRASP package has been installed by your local system administrator in a directory
accessible to you, such as /usr/local/GRASP and that some 40-meter data (old-format) has also
been installed, for example in /usr/local/GRASP/data.

If you want to try running a GRASP program, type
setenv GRASP DATAPATH /usr/local/GRASP/data/19nov94.3
to set up a path to the data, then go to the GRASP directory:
cd /usr/local/GRASP/src/examples/examples 40meter
and try running one of the executables:
./locklist
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./animate | xmgr -pipe
which will produce an animated display of the IFO output. Note that in order for this to work, you
will need to have the xmgr graphing program in your path. (Please see the comment about xmgr
in Section 3.8).

If you only have data that has been distributed in the FRAME format, type
setenv GRASP_FRAMEPATH /usr/local/GRASP/data/19nov94.3frame
to set up a path to the data, then go to the GRASP directory:
cd /usr/local/GRASP/src/examples/examples.frame
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and try running one of the executables:
./locklistF
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./animateF | xmgr -pipe
which will produce an animated display of the IFO output. Note that in order for this to work, you
will need to have the xmgr graphing program in your path. (Please see the comment about xmgr
in Section 3.8).
If you want to try writing some GRASP code, a simple way to start is to copy one of the
example programs, and the Makefile, into your personal directory, and edit that:
mkdir ~/GRASP
cp /usr/local/GRASP/src/examples/examples 40meter/gwoutput.c ~/GRASP
cp /usr/local/GRASP/src/examples/examples 40meter/Makefile ~/GRASP
cd ~/GRASP
Now make editing changes to the file gwoutput. c, and when you are done, edit the Makefile that
you have copied into your home directory. Find the line that reads:
all: ... gwoutput ...
and delete everything to the right of the colon except gwouput from that line (but leave a space
after the colon). Then type:
make gwouput
to recompile this program. To run it, simply type:
gwoﬁtput.
In general, if you want to modify GRASP programs, this is the simplest way to start.

2.3 A few words about data formats

The GRASP package was originally written for analysis of data in the “old” format, which was used
in the Caltech 40-meter IFO laboratory prior to 1996. Starting in 1997, the LIGO project, and
a number of other gravity-wave detector groups, have adopted the VIRGO FRAME data format.
Almost every example in the GRASP package has equivalent programs to read and analyze data in
either format. For example animate and animateF are two versions of the same program. The first
reads data in the old format, the second reads data in the FRAME format. We have also included
with GRASP a translation program that translates data from the old format to the new format
(see translate in Section 10.15).

After careful thought, the LIGO management has decided to only distribute the November 1994
data in the FRAME format, except to a small number of groups (belonging to the Data Translation
Group) who are responsible for ensuring that the translated data set contains the same information
as the original! The initial distributions of GRASP will include both old-format and new-format
code. However after a reasonable period of time, the old-format data and code will be removed
from the package. So please be aware that the old-format material will be reaching the end of its
useful lifetime fairly soon; we do not recommend investing much effort in these.

If you want to develop or work on data analysis algorithms, you will want to have access to
this data archive. Because many people contributed to taking this data, and because the LIGO
project wants to maintain control of its use and distribution, this data set is NOT in the public
domain. However, you may request a copy for your use, or for use by your research group. Write to:
Director of the LIGO Laboratory, Mail Stop 51-33, California Institute of Technology, Pasadena,
CA 91125. The data set is available in tar format on two Exabyte 8500c format tapes.

In order to use the data in the FRAME format, you will need to have access to the FRAME



libraries. These are available from the VIRGO project; they may be downloaded from the site
http://lapphp.in2p3.fr/virgo/Framel. Contact Benoit Mours mours@lapp.in2p3.fr for fur-
ther information.

2.4 GRASP Hardware & Software Requirements

GRASP was developed under the Unix (tm) operating system, on a Sun workstation network. The
package is written in POSIX/ANSI C, so that GRASP can be compiled and used on any machine
with an ANSI C compiler. All operating system calls are POSIX-compliant, which is intended to
keep GRASP as portable to different platforms as possible. The main routines could also be linked
to user code written in other languages such as Fortran or Pascal; the details of this linking, and the
conventions by which Fortran and C (or Pascal and C) routines communicate are implementation
dependent, and not discussed here.

Several of the high-level applications in GRASP can be run on parallel computer systems. These
can be either dedicated parallel computers (such as the Intel Paragon or IBM SP2 machines) or
a network of scientific workstations. The parallel programming in GRASP is implemented with
version 1.1 of the Message Passing Interface (MPI) library specification [2]. All major computer
system vendors currently support this standard, so GRASP can be easily compiled and used on
virtually any parallel machine. In addition, there is a public-domain implementation of MPI called
“mpich” [3] which will run MPI-based programs on networks of scientific workstations. This makes
it easy to do “super-computing at night” by running GRASP on a network of workstations. Further
information on MPI is available from the web site http://www.mcs.anl.gov/mpi/. The mpich
implementation is available from http://www.mcs.anl.gov/mpi/mpich/. By the way, if you don’t
have access to parallel machines (or have no interest in parallel computing) don’t worry! The only
parallel code in GRASP is found in “top-level” applications; all of the functions in the GRASP
library, and most of the examples, can be used without any modifications on a single processor,
stand-alone computer.

GRASP makes use of a number of standard numerical techniques. In general, we use version 2.6
of the routines from “Numerical Recipes in C: the art of scientific computing” [1]. These routines
are widely used in the scientific community. The full source code, examples, and complete documen-
tation are provided in the book, and are also available (for about $50) in computer readable form.
Ordering information and further details are available from http://cfata2.harvard.edu/numerical-
recipes/. These routines are extremely useful and beautifully-documented; if you don’t already
have them available for your use, you should!

In general, output from GRASP is in the form of ASCII text files. We assume that the user has
graphing packages available to visualize and interpret this output. Our personal favorite is xmgr,
available in the public domain from the site http://plasma-gate.weizmann.ac.il/Xmgr/ which
also lists mirror sites in Europe and USA. (Please see the comment about xmgr in Section 3.8). In
some cases we do output “complete graphs” for xmgr. We do also output some data in the form of
PostScript (tm) files. Previewers for postscript files are widely available in the public domain (we
like GhostView).

2.5 GRASP Installation

As we have just explained, GRASP requires access to Numerical Recipes in C libraries and to MPI
and MPE libraries. These packages must be installed, and then within GRASP a path to these
libraries must be defined. This can be done by editing a single file, and then running a shell script.
This section explains each of these steps in detail.

T
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All of the site-specific information is contained in a single file SiteSpecific in the top-level
directory of GRASP. This file contains a number of variables whose purpose is explained in this
section. These variables must be correctly set before GRASP can be used; the definitions contained
in SiteSpecific (as distributed) are probably not appropriate for your system, and will therefore
require modification.

o

i

2.5.1 GRASP File Structure

The code for GRASP can be installed in a publicly-available directory, for example /usr/local/GRASP.
. (It can also be installed “privately” in a single user’s home directory, if desired.) The name of this
i top-level directory must be set in the file SiteSpecific which is contained in the top-level GRASP
' directory. To do this, edit the file SiteSpecific and set the variable GRASP_HOME to the appropriate
value, for example GRASP_HOME=/usr/local/GRASP. Please note that the installation scripts are
not designed to “build” in one location and “install” in a separate location. You should go through
the installation procedure in the same directory where you eventually want the GRASP package
to reside.

Within this top level directory resides the entire GRASP package. The directories within this
top level are:

prr——

data/ Contains (both real and simulated) interferometer data, or symbolic links to this data. See
the comments in Section 3 to find out how to obtain this data.

parameters/ Contains parameters such as site location information, and estimated power spec-
tra/whitening functions of future detectors.

doc/ Documentation (in TeX, PostScript, DVI, and PDF formats) including this users guide.
L. man/ This may be used in the future for UNIX on-line manual pages.
i testing/ This will eventually contain a suite of programs that test the GRASP installation.

b include/ Header files used to define structures and other common types in the code. This also
include the ANSI C prototypes for all the GRASP functions.

P src/ Source code for analyzing various aspects of the data stream, distributed among the following
directories:

40-meter/ Reading data tapes produced on the Caltech 40 meter prototype prior to 1997.

inspiral/ Binary inspiral analysis (including optimal filtering and vetoing).

ringdown/ Black hole horizon ringdown (including optimal filtering). This can be used to
filter for any exponentially-decaying sinusoid. '

stochastic/ Stochastic background detection (including optimal filtering and simulated
signal production)

transient/ Supernovae and other transient sources.
periodic/ Searches for pulsars and other periodic and quasi-periodic sources.
utility/ General purpose utility routines.

examples/ The source code for all of the examples given in this manual (organized by
section).
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optimization/ Additional library routines for optimizing GRASP operation of specific plat-
forms (i.e., supercomputers).

1ib/ Object libraries.

bin/ Executable applications and programs.

2.5.2 Accessing Numerical Recipes in C libraries

GRASP makes use of many of the functions and subroutines from Numerical Recipes in C[1]. These
functions and subroutines are available in Fortran, Pascal, Basic, Kernighan and Ritchie (K&R) C,
and ANSI-C versions; you will need the ANSI-C routines. The source code for these functions (both
*.c and *.h files) must be installed in a directory (for example, /usr/local/recipes/src) and
the compiled object modules (*.o files) must be archived into a single library file (*.a file). The
instructions for this are included in the distribution of the source code for Numerical Recipes. In
the end, a file called librecipes_c.a must be put into a directory where it is available to the linker
for compilation. A good place to put this library is in /usr/local/recipes/lib/librecipes. c.a.
When you run the command that installs GRASP, the linker needs to be able to find these libraries.
The file SiteSpecific must then contain the line RECIPES LIB = /usr/local/recipes/lib near
the top of the file.

It is frequently useful, for debugging purposes, to be able to link with both “debug” and “profile”
versions of the libraries. For this reason, we recommend that users actually create three separate

libraries of Numerical Recipes functions:

/usr/local/recipes/lib/librecipesc.a: a library compiled for fast execution, with opti-
mization options (for example, -O3 or -xO4) turned on during compilation.

/usr/local/recipes/lib/librecipes_cg.a: a library compiled for debugging, with the debug
option (typically, -g) turned on during compilation. Note that in order to use a debugger with
this library, and to be able to step “within” the Numerical Recipes functions, the debugger
must be able to locate the source code for Numerical Recipes. Thus, after Numerical Recipes
is compiled and installed, its *.c and *.h source files must be left in their original locations

and not deleted or moved.

/usr/local/recipes/lib/librecipes.cp.a: a library compiled for profiling, with the profiling
option (typically, -pg or -xpg for “gprof” or -p for “prof”) turned on during compilation.

One can then easily compile GRASP code with the appropriate library by setting LRECIPES in
SiteSpecific. For example to run code as rapidly as possible one would set LRECIPES = recipes_c.
However to compile code for debugging it would be preferable to set LRECIPES = recipes_cg.
(Note that rather than recompiling the entire GRASP package in this way, one can simplify modify
the value of LRECIPES within the desired Makefiles and then recompile only the code of interest.)

We have encountered one minor problem with the Numerical Recipes in C routines. Unfor-
tunately the authors of these routines choose to name one of their routines select(). This
name conflicts with a POSIX name for one of the standard operating system calls. In linking
with certain libraries (for example the MPI/MPE libraries) this can generate conflicts where the
linker attaches the select() call to the entry point from the wrong library. We suggest that
you fix this as follows. Before building the Numerical Recipes libraries, edit the source files
recipes/rofunc.c, recipes/select.c, and recipes/select.c.orig changing each occurence
of select( to NRselect(. You will have to do this in (respectively) three places, one place and
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one place in these files. Then edit the file include/nr.h making the same change of select(
to NRselect( in one place. This will elminate the select() routine from the Numerical Recipes
library, replacing it with a routine called NRselect (), and eliminating any possible naming conflict
from the library.

2.5.3 Accessing MPI and MPE libraries

To enable use of the parallel processing code included with GRASP, one needs to link the code
with an MPI function call library. (If you do not intend to use any of the multiprocessing code,
we'll tell you what to do.) For performance monitoring purposes, we also make calls to the Message
Passing Environment (MPE) library, which is included with mpich [3]. If these function libraries are
not currently available on your system, you should obtain the public domain implementation mpich
from the URL given above, and follow the instructions required to build the MPI/MPE libraries for
your system. After the installation process is complete, the necessary libraries will be contained in a
library archive, for example /usr/local/mpi/lib/1libmpi.aand /usr/local/mpe/1ib/libmpe.a.
The path to these libraries is set in the file SiteSpecific by means of the variable MPI_LIBS. A
typical line in SiteSpecific might then read:

MPI_LIBS=-L/usr/local/mpi/lib -lmpi -lmpe.

You must also set BUILD MPI= true in SiteSpecific. Finally, in order to include appropriate
header files in any MPI programs, you will need to include a path to these header files in the file
SiteSpecific. You can do this by setting MPI_INCLUDES in the file SiteSpecific. A typical
installation might have

MPI_INCLUDES = -I/usr/local/mpi/include.

NOTE: If you don’t want to use any of the MPI code, just set:

BUILD:MPI= false

in SiteSpecific. All the other MPI-specific defines are then ignored.

2.5.4 Accessing FRAME libraries

The LIGO and VIRGO detector projects have recently decided to standardize the format which
their data will be recorded in (see Section 2.3). The standard is called the FRAME format, and
is still under development. It appears quite possible that a number of other gravitational-wave
detector groups will also adopt this same format. The GRASP package contains, for every example
program, both FRAME format and old format versions. It also contains an translation program
which converts data from the “old 1994” format into the new FRAME format.

Unless you are in one of the small number of groups with access to the old-format data, you
will need to obtain the FRAME libraries. These are available from the VIRGO project; they
may be downloaded from the site http://lapphp.in2p3.fr/virgo/Framel. Contact Benoit Mours
mours@lapp. in2p3. fr for further information. In the SiteSpecific file, if you need the FRAME
libraries, set a pointer to the directory containing them. NOTE: If you don’t need the FRAME
libraries, just set:

BUILD._FRAME = false
in SiteSpecific. All the other FRAME-specific defines are then ignored.

2.5.5 Real-time 40-meter analysis

The analysis tools in the GRASP package can be used to analyze data in real-time, as it is recorded
by the DAQ system. This facility is primarily for the use of experimenters working in the Caltech
40-meter lab. and will probably not be of use to anyone outside of that group.
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In order to use the GRASP tools in real time, one needs to link to a set of EPICS (Experimental
Physics and Industrial Control System) libraries, that are not otherwise needed. These permit the
GRASP code to interrogate the EPICS system to find out the names and locations of the most-
recently written FRAMES of data.

2.5.6 Making the GRASP binaries and libraries

To make the GRASP libraries and executables described in this manual, please follow these direc-
tions. It should only take a few minutes to do this.

1.

Within the main GRASP directory is a file called SiteSpecific. Make a copy of SiteSpecific
called SiteSpecific.save. This way, if you mess up the installation, you can start over eas-

ily.

Now edit SiteSpecific so that GRASP_HOME has the correct path, for example
GRASP_HOME=/usr/local/GRASP.

This must be the name of the directory on your system in which GRASP resides. If you are

not the superuser and are installing GRASP only for your own use, you can set this path to
point somewhere in your own home directory, and install GRASP there.

Find out where Numerical Recipes in C is installed on your system. Within SiteSpecific
set RECIPES_LIB to point to the directory containing these libraries. For example

RECIPES LIB=/usr/local/numerical recipes/1lib.

If Numerical Recipes in C is not installed on your system, you will have to obtain a copy,
and install it, following the directions to create the library file librecipes_c.a. Note that
as described above, you might also want to create debugging libraries librecipes_cg.a and
profiling libraries librecipes_cp.a.

. Within SiteSpecific set LRECIPES to the name of the Numerical Recipes in C library you

wish to use, for example
LRECIPES=recipes_c.

. If you intend to use the MPI code, set BUILD MPI= true, otherwise set it to false. In this

latter case, any MPI-specific defines are ignored, and no code that makes use of MPI/MPE
function calls is compiled. (This is a shame — these are some of the nicest programs in the
GRASP package. We urge you to reconsider building the mpich package on your system!)

Within SiteSpecific set MPI_LIBS to point to the directory containing the MPI/MPE li-
braries, and to specify the names of the link archives, for example
MPI_LIB=-L/usr/local/mpi/lib -1lmpi -lmpe.

Note that if you use the version of mpicc which is distributed with mpich you may not need
to have any of the MPI libraries referenced here; the compiler may find them automatically.

Within SiteSpecific set MPI_INCLUDES to point to the directory which contains the MPI
and MPE header (*.h) files, for example
MPI_INCLUDES = -I/usr/local/mpi/include.

Within SiteSpecific set MPICC to the name of your local MPI C compiler, for example:
MPICC = /usr/local/bin/mpicc.
You can include any compilation flags (say, —g) on this line also.
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If you intend to use the FRAME code, set BUILD_.FRAME = true, otherwise set it to false.
In this latter case, any FRAME-specific defines are ignored, and no code that makes use of
FRAME function calls is compiled.

Within SiteSpecific set FRAME DIR to point to the directory which contains the LIGO/VIRGO
format FRAME software, for example

FRAME DIR=/usr/local/frame:
This directory should contain 1ib/libFrame.a and include/FrameL.h. If you don’t need

the FRAME libraries, just leave this entry blank.

Within SiteSpecific, if you want to use GRASP for real-time analysis in the Caltech 40-
meter lab, set EPICS_INCLUDES to point to the directory containing the EPICS *.h include
files, and set EPICS_LIBS to point to the directory containig the EPICS libraries. Finally,
you need to uncomment the BUILD REALTIME define statement. If you do not intend to use
your GRASP installation for real-time analysis in the 40-meter lab, simply leave these three
definitions commented out with a hash sign (#).

At the bottom of SiteSpecific are several define statements, which are currently commented
out. These are primarily intended for production code; by undefining these lines you replace
a cube root function and some trig functions in the code with faster (but less accurate) in-
line approximations. We suggest that you leave these commented out. (You might want to
consider uncommenting them if you are burning thousands of node hours on a large parallel
machine - but you do so at your own risk!)

There are also lines that are currently commented out, which allow you to overload functions
defined in the libraries and reference libraries of optimized functions. Once again, leave
these commented out unless you want to replace standard Numerical Recipes functions with
optimized versions. Currently, we support three sets of optimized libraries:

e The CLASSPACK optimized FFT’s for the Intel Paragon.
e The Sun Performance Library’s optimized FFT for the Sun SPARC architecture.

e The FFTW (Fastest Fourier Transform in the West), which will run on any computer.
This is a public domain optimized FFT package, available from the web site:
http://theory.lcs.mit.edu/~fftw
If you don’t have an optimized FFT routine for your computer, we highly recommend
this — it is a factor of three (or more) faster than Numerical Recipes.

Further details may be found in the src/optimization subdirectory of GRASP. If you
want to use these optimized library routines, first go into the appropriate subdirectory of
src/optimization and build the optimized library routine using the makefiles’s that you
find there, then uncomment the appropriate lines in SiteSpecific and follow the instructions
given here.

Now, in the top level GRASP directory, execute the shell script Instal1GRASP, by typing the
commands:
chmod +x InstallGRASP

./InstallGRASP
From here on, the remainder of the installation should proceed automatically. The InstallGRASP

script takes information contained in the SiteSpecific file, uses it to create Makefile’s in
each src subdirectory, and runs make in each of those directories.
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The Makefile in each directory is constructed by concatenating the file SiteSpecific with a file
called Makefile.tail in each individual directory. If you want to try changing the compilation
procedure, you can modify the Makefile in a given directory. However this will be created each
time that you run InstallGRASP; for changes to become permanent they should either be made in
SiteSpecific or in the Makefile.tail’s.

Note that this installation procedure and code has been tested on the following types of ma-
chines: Sun 4 (Solaris), DEC AXP (OSF), IBM SP2 (AIX), HP 700 (HPUX), Intel (Linux), Intel
Paragon. If you run into problems with our installation scripts, please let us know so that we can
fix them.

If you want to experiment with GRASP or to write code of your own, a good way to start is
to copy the Makefile and the example (*.c) programs from the src/examples directory into a
directory of your own. You can then edit one of the example programs, and type “make” within
your directory to compile a modified version of the program.

If you wish to modify the code and libraries distributed with GRASP (in other words, modify
the functions described in this manual!) the best idea is to use cp -r to recursively copy the
entire GRASP directory structure (and all associated files) into a private directory which you own.
You can then install your personal copy of GRASP, by following the directions above. This will
permit you to modify source code within any of the src subdirectories; typing make within that
directory will automatically re-build the GRASP libraries that you are using. By the way, if you
are modifying these functions to fix bugs or repair problems, or if you have a “better way” of doing
something, please let us know so that we can consider incorporating those changes in the general
GRASP distribution.

2.6 Conventions used in this manual

The conventions used in this manual are not strict ones. However we do observe a few general
rules:

1. Words or lines that you might type on a computer (commands, filenames, names of C-language
functions, and so are) are generally indicated in teletype font.

2. When a function is described, the arguments which are inputs and those which are outputs (or
those which are both) are indicated. Thus, for example the function
add(int a, int b,int* c) which sets *c = a+b is described by:

a: Input. One of the two integers that are added together.
b: Input. The second of these integers.

¢: Qutput. Set to the sum of a and b.

Note that technically this is incorrect, because of course in C even the “output arguments”
are really just inputs; they are pointers to an address in memory that the routine is supposed
to modify. And technically, the statement that “c is set to...” is not correct, since in fact it
is the integer pointed to by ¢ (denoted *c) that is set. However we find that this convention
makes it much easier to read the function descriptions!

3. Most of the time, the example programs using GRASP functions are given explicitly in the
manual, so you can see the GRASP functions “in use”. Because these examples are illustrative,
they are generally “pared down” as much as possible (for example, default values of adjustable
parameters are hard-wired in, rather than prompted for).
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= 4. Routines and example programs in GRASP generally begin with the line:

; ) #include "grasp.h"
which includes the prototypes for all GRASP functions as well as the library header files
i stdio.h, stdlib.h, math.h, values.h, and time.h. The GRASP include file "grasp.h"

can be found in the include subdirectory of GRASP.
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3 GRASP Routines: Reading/using Caltech 40-meter prototype
data

There is a good archive of data from the Caltech 40-meter prototype interferometer. Although
the interferometer is only sensitive enough to detect events like binary inspiral within ~ 10kpc
(the distance to the galactic center) its output is nevertheless very useful in studying data analysis
algorithms on real-world interferometer noise. This data was taken during the period from 1993 to
1996; for our purposes here we will concentrate on data taken during a one-week long observation
run from November 14-21, 1994. The original data is contained on 11 exabyte tapes with about 46
total hours of data; the instrument was in lock about 88% of the time. The details of this run, the
status of the instrument, and the properties of this data are well-described in theses by Gillespe
[18] and Lyons [19].

The GRASP package includes routines for reading this data. The data is not read directly from
the tapes themselves; the data instead must be read off the tapes and put onto disk (or into pipes)
using a program called extract. The GRASP routines can then be used to read the resulting files.
While the GRASP routines can be used without any further understanding of the data format, it
is very helpful to understand this in more detail. Note that these data formats and the associated
structures were defined years before GRASP was written; we did not choose this data format and
should not be held accountable for its shortcomings. We have included a preliminary translator
that translates the data from this old 1994 format into the new LIGO/VIRGO frame format. The
program translate may be found in the GRASP src/examples/examples.utility directory, and
is documented in the Section on GRASP general purpose utilities.

If you want to develop or work on data analysis algorithms, you will want to have access to this
data archive. Because many people contributed to taking this data, and because the LIGO project
wants to maintain control of its use and distribution, this data set is NOT in the public domain.
However, you may request a copy for your use, or for use by your research group. Write to: Director
of the LIGO Laboratory, Mail Stop 51-33, California Institute of Technology, Pasadena, CA 91125.
The data set is available in tar format on two Exabyte 8500c format tapes. Each directory (for a
different run on a different day) occupies the following amount of space (in mbytes):

14nov94.1 647
14nov94.2 913
18nov94.1 1041
18nov94.2 1121
19nov94.1 1554
19nov94.2 1074
19n0ov94.3 1250
19nov94 .4 1206
20nov94.1 1146
20nov94.2 1173
20nov94.3 1543

Each of these directories contains the channel.* files and the swept-sine.ascii swept-sine cali-

bration files. In this manual, we assume that these directories (or links to them) have been placed

where you can access them. The GRASP programs that use this data determine its location by

means of the environment variable GRASP_DATAPATH. You can set this by typing (for example)
setenv GRASP DATAPATH /usr/local/data/19nov94.3

to access the data from run 3 on November 19th. System administrators: after installing these

directories in a convenient place on your machine, we recommend that you install a set of links to
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them in the directory data within the GRASP home directory. This way your users can find them
without asking you for the location!

WARNING: this data was written on a “big-endian” machine (the sun-4 workstation is an
example of such a machine). The floats are in IEEE 754 floating-point format. Attempts to read
the data in its distributed form on a “little-endian” machine (such as Intel 80*86 computers) will
yield garbage unless the bytes are properly swapped. The routines used to read data (in particular,
the function read.block()) test the byte order of the machine being used, and swaps the byte order
if the machine is “little-endian”. This introduces some inefficiency if you are running on a “little-
endian” machine, but is preferrable to having two copies of the data, one for each architecture. If
you are doing all of your work on a “little-endian” machine and you want to avoid this inefliciency,
write a program which properly swaps the byte orders of the header blocks (which are in 4-byte
units) and then also properly swaps the byte order of the data blocks (which are 2-byte units) and
reformat the raw data files. Then modify the read block() data so that it no longer swaps the
bytes on your machine.

3.1 The data format

Data is written onto the exabyte tapes in blocks about 1/2 megabyte in size. The format of the
data on the tapes is as shown in Table 1. The tape begins with a main header (denoted “mh” in

mh ] 0s | O0s | mh I 0sj 0's | mh | gh l 0’s data mh I gh ’ 0’s data
1024 1024 1024 1024 1024 1024 x n 1024 1024 x n

Table 1: Format of Exabyte data tapes (first row: content, second row: length in bytes).

the table). This is followed by a set of zeros, padding the length of the header block to 1024 bytes.
There is then an empty block of 1024 bytes containing zeros. This pattern is repeated until the
first block containing actual data. This is signaled by the appearance of a main header, followed
by a gravity header (denoted “gh” in the figure above). These two headers are padded with zeros
to a length of 1024 bytes. This is then followed by a set of data (the length of this set is a multiple
of 1024 bytes). Information about the length of the data sets is contained in the headers. The data
sets themselves consist of data from a total of 16 channels, each of which comes from a 12-bit A
to D converter. Four of the 16 channels are fast (sample rates a bit slower than 10kHz) and the
remaining 12 channels are slow (sample rates a bit slower than 1kHz). The ratio of sample rates is
exactly 10 : 1. Within the blocks labeled “data”, these samples are interleaved. The information
content of the different channels is detailed on page 136 of Lyon’s thesis [19], and is summarized in
Table 3.

The program extract reads data off the tapes and writes them into files. One file is produced
for each channel; typically these files are named channel.0 — channel.15. The complete set of
these files for the November 1994 run fits onto two Exabyte tapes (in the 8500c compressed format).
The information in these files begins only at the moment when the useful data (starting with the
gravity header blocks) begins to arrive. The format of the data in these channel.* files is shown
in Table 2. Here the main headers are the same as before, however the headers that follow them
are called binary headers (denoted by “bh” in the table). The length of the data stream (in bytes)
is called the “chunksize” and is denoted by “cs” in Table 2. We frequently reference the data in
these files by “block number” and “offset”. The block number is an integer > 0 and is shown in
Table 2. The offset is an integer which, within a given block, defines the offset of a data element
from the first data element in the block. In a block containing 5000 samples, these offsets would

be numbered from 0 to 4999.
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block 0 block 1 block 2 block 3
mh [ bh [ 0’s [ data | mh [ bh [ 0s [ data | mh [ bh | 0's [ data | mh | bh | 0’s | data
1024 cs 1024 cs 1024 cs 1024 cs

Table 2: Format of a channel.0—15 file (first row: block number, second row: content, third row:
length in bytes).

The structure of the binary headers is
struct ld_binheader {

float elapsed_time: This is the total elapsed time in seconds, typically starting from the first
valid block of data, from the beginning of the run.

float datarate: This is the sample rate of the channel, in Hz.

b
The structure of the main headers is
struct ld mainheader {

int chunksize: The size of the data segment that follows, in bytes.
int filetype: Undocumented; often 1 or 2.

int epoch_time_sec: The number of seconds after January 1, 1970, Coordinated Universal Time
(UTC) for the first sample. This is the quantity returned by the function time() in the
standard C library.

int epoch._time msec: The number of millseconds which should be added to the previous quan-
tity.

int tod_second: Seconds after minute, 0-61 for leap second.

int tod.minute: Minutes after hour 0-59.

int tod-hour: Hour since midnight 0-23.

int date_day: Day of the month, 1-31.

int date_month: Month of the year, 0-11 is January-December.

int date_year: Years since 1900.

int date_dow: Days since Sunday, 0-6.

int sub.hdr._flag: Undocumented.

}; Note: in the original headers, these int were declared as long. They are in fact 4-byte objects,
and on some modern machines, if they are declared as long they will be incorrectly interpreted as
8-byte objects. For this reason, we have changed the header definitions to what is show above.
For several years, the extract program contained several bugs. One of these caused the
channel.* to have no valid header information apart from the elapsed time and datarate entries
in the binary header, and the chunksize entry in the main header. All the remaining entries in the
main header were either incorrect or nonsensical. This bug was corrected by Allen on 14 November
1996; data files produced from the tapes after that time should have valid header information.
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There was also a more serious bug in the original versions of extract. The typical chunksize
of most slow channels is 10,000 bytes (5,000 samples) and the chunksize of most fast channels
is 100,000 bytes (50,000 samples) but until it was corrected by ‘Allen on 14 November 1996, the
extract program would in apparently unpredictable (though actually quite deterministic) fashion
“skip” the last data point from the slow channels or the last ten data points from the fast channels,
giving rise to sequences of 4,999 samples from the slow channels, and correspondingly 49,990 samples
from the fast channels. Not surprisingly, these missing data points gave rise to strange “gremlins”
in the early data analysis work; these are described in Lyon’s thesis [19] on pages 150-151. These
missing points were simply cut out of the data stream as shown in Figure 1; rather like cutting out
1 millisecond of a symphony orchestra every 5.1 seconds; this gives rise to “clicks” which excited
the optimal filters. This problem is shown below; data taken off the tapes after 14 November 1996
should be free of these problems.

There are a couple of caveats regarding use of these “raw data” files. First, in the channel.*
files, there can be, with no warning, large segments of missing data. In other words, a block of
data with time stamp 13,000 sec, lasting 5 sec, can be followed by another data block with a time
stamp of 14,000 sec (i.e., 995 sec of missing data). Also, the time stamps are stored in single
precision floats, so that after about 10,000 sec they no longer have a resolution better than a
single sample interval. When we read the data, we typically use the time-stamp on the first data
segment to establish the time at which the first sample was taken. Starting from that time, we then
determine the time of a data segment by using elapsed_time, since the millisecond time resolution
of epoch_time msec is not good enough. (See the comments in Section ss:timestamp).

For our purposes, the most useful channels are channel.0 and channel. 10. Channel 0 contains
the actual voltage output of the IFO. This is typically in the range of £100. Later, we will discuss
how to calibrate this signal. Channel 10 contains a TTL locked level signal, indicating if the
interferometer was in lock. This is typically in the range from 1 to 10 when locked, and exceeds
several hundred when the interferometer is out of lock. Note: after coming into lock you will notice
that the IFO output is often zero (with a bit of DC offset) for periods ranging from a few seconds
to a minute. This is because the instrument output amplifiers are typically overloaded (saturated)
when the instrument is out-of-lock. Because they are AC coupled, this leads to zero output. After
the instrument comes into lock, the charge on these amplifiers gradually bleeds off (or one of the
operators remembers to hit the reset button) and then the output “comes alive”. So don’t be
puzzled if the instrument drops into lock and the output is zero for 40 seconds afterwards!

The contents of the channel . * files was not the same for all of the runs. Lyon’s thesis [19] gives
a chart on page 136 with some “typical” channel assignments. The channel assignments during
these November 1994 data runs are listed in a log book; they were initially chosen on November
14, then changed on November 15th and again on November 18th; these assignments are shown in
Table 3. (Note that the chart on page 136 of Lyon’s thesis describes the channel assignments on
15 November 94, a day when no data was taken.)
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Channel Number

Description < 14 November 94

Description > 18 November 94

0 IFO output IFO output

1 unused magnetometer
2 unused microphone

3 microphone unused

4 dc strain dc strain

5 mode cleaner pzt mode cleaner pzt
6 seismometer seismometer

7 unused slow pzt

8 unused power stabilizer
9 unused unused

10 TTL locked TTL locked
11 arm 1 visibility arm 1 visibility
12 arm 2 visibility arm 2 visibility
13 mode cleaner visibility mode cleaner visibility
14 slow pzt unused

15 arm 1 coil driver arm 1 coil driver

Table 3: Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast”
channels, sampled at about 10 kHz; the remaining twelve are the “slow” channels, sampled at

about 1KHz.
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Figure 1: This shows the appearance of channel.O before and after the extract program was

repaired (on 14 November 1996) to correctly extract data from the Exabyte data tapes. The old

version of extract dropped the ten data points directly above the words “missing data”; in effect
{ these were interpolated by the diagonal line (but with ten times the slope shown since everything
i in between was missing).




3.2 Function: read block()

int read block(FILE *fp,short **here,int *n,float *tstart,float *srate,int allocate,int
*nalloc,int seek, struct ld_binheader* bh,struct ld_mainheader* mh)
This function efficiently reads one block of data from one of the channel. * data files, operating in
sequential (not random) access. On first entry, it detects the byte-ordering of the machine that it
is running on, and swaps the byte order if the machine is “little-endian” (the data was originally
written in “big-endian” format, and is distributed that way). It will also print a comment (on first
entry) if the machine is not big-endian.

The arguments are:

13

fp: Input. A pointer to the channel. * file being read.

here: Input/Output. A pointer to an array of shorts, which is where the data will be found when
read block() returns. If allocate=0, then this pointer is input. If allocate is non-zero,
then this pointer is output.

n: Output. A pointer to an integer, which is the number of data items read from the block,
and written to *here. These data items are typically short integers, so the number of bytes
output is twice *n.

tstart: Output. The time stamp (elapsed time since beginning of the run) at the start of the
data block. Taken from the binary header.

srate: Output. The sample rate, in Hz, taken from the binary header.

allocate: Input. The read block() function will place the data that it has read in a user
defined array if allocate is zero. If allocate is set, it will use malloc() to allocate a block
of memory, and set *here to point to that block of memory. Further calls to read_block()
will then use calls to realloc () if necessary to re-allocate the size of the block of memory, to
accommodate additional data points. Note that in either case, read-block() puts into the
array only the data from the next block; it over-writes any existing data in memory.

nalloc: Input/Output. If allocate is zero, then this is used to tell read block() the size (in
shorts) of the array *here. An error message will be generated by read_block () if this array
is too small to accommodate the data. If allocate is nonzero, then this integer is set (and
reset, if needed) to the number of array entries allocated by malloc()/realloc(). In this
case, be sure that *nalloc is zero before the first call to read_block(), or the function will

think that it has already allocated memory!

seek: Input. If seek is set to zero, then the function reads data. If seek is set nonzero, then
read_block() does not copy any data into *here. Instead it simply skips over the actual
data.

bh: Output. A pointer to the binary header structure defined above.
mh: Qutput. A pointer to the main header structure defined above.

This is a low-level function, which reads a block of data. It is designed to either write the data
into a user-defined array or block of memory, if allocate is off, or to allocate the memory itself. In
the latter mode, the function uses nalloc to track the amount of memory allocated, and reallocates
if necessary. It is often useful to be able to quickly skip over sections of data (for example, just
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after the interferometer locks, a few minutes is needed for the violin modes to damp down). Or if
the IFO is out of lock, one needs to quickly read ahead to the next locked section. If seek is set,
then this routine behaves exactly as it would in normal (read) mode but does not copy any data.
The function read_block() returns the number of data items that will be returned on the nezt
call to read_block(). It returns -1 if it has just read the final block of data (implying that the
next call will return 0). It returns 0 if it can not read any further data, because none remains.
Note that if the user has set allocate, then the read block() will allocate memory using
malloc()/realloc(). It is the users responsibility to free this block of memory when it is no

longer needed, using free().

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify
it for fixed-length block sizes.
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3.3 Example: reader program

This example uses the function read. block() described in the previous section to read the first 20
blocks out of the file channel.0. It prints the header information for each block of data, and the
100th data item from each block, along with the time associated with that data item.
The data is located with the utility function grasp-open(), which is documented in Section 10.1.
In order for this example program to work, you must set the environment variable GRASP_DATAPATH
to point to a directory containing 40-meter data. You can do this with a command such as
setenv GRASP DATAPATH /usr/local/data/19nov94.3
to access the data from run 3 on November 19th.

/* GRASP: Copyright 1997, Bruce Allen %/
#include "grasp.h"

int main(){
FILE *fp;
short xdata;
float tblock,time,srate;
int code,num,size=0,count=0,which=100;
struct ld_binheader bheader;
struct ld_mainheader mheader;

/* open the IFO channel for reading =/
fp=grasp_open("GRASP_DATAPATH","channel.0");

/* read the first 20 blocks of lock data */
vhile (count <20) {
/= read a block of data */
code= read_block(fp,&data,&num,&tblock,&srate,1,&size,0,&bheader,&mheader) ;

/* if there is no data left, then break */
if (code==0) break;

/* print some information about the data.x/
printf ("Data block %d from file channel.0 starts at t = %f sec.\n",count,tblock);
printf("This block sampled at %f Hz and contains %d shorts.\n",srate,num);

/* print out some information about a single data point from block */
time=tblock+(which—1.0) /srate;

printf("Data item %d at time %f is %d.\n",which,time,data[which—1]);
printf("The next block of data contains %d shorts.\n\n",code);

/* increment count of # of blocks read.*/
count++;

}

/* print information about the largest memory block allocated */
printf("The largest memory block allocated by read block() was %d shorts long\n",size);

/* free the array allocated by read_block() =/

free(data);
return 0;
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3.4 TFunction: find_ locked()

int find locked(FILE *fp,int *s_offset,int *s_block,int *e_offset, int *e.block,float
*tstart,float *tend,float *srate)
This mid-level function looks in a TTL-locked signal channel (typically, channel. 10) and finds the
regions of time when the interferometer is locked. The first time it is called, it returns information
identifying the start and end times of the first locked region. The second time it is called it returns
the start and end times of the second locked region, and so on.

The arguments are:

fp: Input. A pointer to the file containing the TTL lock signal. A typical file name might be
“channel.10”.

s_block: Output. The number of the data block where the IFO locks. This ranges from 0 to n-1
where the total number of data blocks in the file is n.

s-offset: Output. The offset (number of shorts) into the block where the IFO locks. This ranges
from 0 to n-1 where the number of data items in block s_block is n. This offset points to the
first locked point.

e_block: Qutput. The number of the data block where the IFO loses lock. This ranges from
s_block to n-1 where the total number of data blocks in the file is n.

e_offset: Output. The offset (number of shorts) into the block where the IFO loses locks. This
ranges from 0 to n-1 where the number of data items in the block e_block. This offset points
to the last locked point (not to the first unlocked point).

tstart: Output. The elapsed time in seconds, since the beginning of the run, of the data block
in which the first locked point was found. Note: This is not the time of lock acquisition!

tend: Output. The elapsed time in seconds, since the beginning of the run, of the data block in
which the last locked point was found. Note: this is not the time at which lock was lost!

srate: Output. The sample rate of the TTL-locked channel, in Hz.

This routine uses read_block() to examine successive sections of the channel.10 data file.
It looks for continuous sequences of data points where the value lies between limits (inclusive)
LOCKL=1 and LOCKH=10. It returns the start and end points of each successive such sequence. The
upper and lower limits can be changed in the code, if desired, however these values appear to be

reliable ones.
The integer returned by find_locked () is the actual number of data points in the fast channels,

during the locked period. It returns 0 if there are no remaining locked segments.

If there is a gap in the data stream, arising not because the instrument went out of lock, but
rather because the tape-writing program was interrupted and then later restarted, £ind locked ()
will print out a warning message, but will otherwise treat this simply as a loss of lock during the

period of the missing data.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify
it for fixed-length block sizes.
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3.5 Example: locklist program

This example uses the function find_locked described in the previous section to print out location
information and times for all the locked sections in the file channel.10. Note that this example

only prints out information for locked sections longer than 30 sec.

/* GRASP: Copyright 1997, Bruce Allen =/
#include "grasp.h"

int main() {
float tstart,tend,srate,totaltime,begin,end;
int start_offset,start._block,end.offset,end_block,points;

FILE xfplock;

/* Open the file for reading */
fplock=grasp.open("GRASP_DATAPATH","channel.10");

while (1) {

/* find the next locked section of the data */

points=find_locked(fplock,&start_offset,
&start_block,&end offset,&end block,&tstart,&tend,&srate) ;

/* if no data remains, then exit */
if (points==0)
break;

/* calculate start and end of lock times x/
begin=tstart+start_offset/srate;
end=tend+end offset/srate;
totaltime=end—begin;

/* print out info for lock intervals > 30 seconds */

if (totaltime>30.0) {
printf("Locked from t = %f to %f for %f sec\n",begin,end,totaltime);
printf("Number of data points is %d\n",points);
printf("Start block: %d End block: %d\n",start_block,end.block);
printf ("Start offset: %d End offset %d\n\n",start.offset,end offset);

}
}

return 0;
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3.6 Function: get_data()

int get_data(FILE xfp,FILE xfplock,float *tstart,int npoint,short *location,int *rem,float

*srate,int seek)

This high-level function is an easy way to get the IFO output (gravity wave signal) during periods
when the IFO is locked. When called, it returns the next locked data section of a user-specified
length. It also specifies if the section of data is part of a continuous locked stream, or the beginning

~ of a new locked section.

The arguments are:
fp: Input. Pointer to a file (typically channel.O0) containing the channel 0 data.
fplock: Input. Pointer to a file (typically "channel.10") containing the TTL lock signal.
tstart: Output. The time of the zeroth point in the returned data.
npoint: Input. The number of data points requested by the user.
location: Input. Pointer to the location where the data should be put.
rem: Output. The number of points of data remaining in this locked segment of data.
srate: Output. The sample rate of the fast data channel, in Hz.

seek: Input. If this is zero, then the data is returned in the array location[ ]. However
if this input is non-zero, then get_data performs exactly as described, except that it does
not actually read any data from the file or write to location[ ]. This is useful to quickly
skip over un-interesting regions of the data, for example the first several minutes after the
interferometer acquires lock.

This function returns 0 if there is no remaining locked data stream of the requested length. It
returns 1 if it is just starting on a new locked section of the data stream, and it returns 2 if the
data is part of an on-going locked sequence.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It is possible to simplify it
for fixed-length block sizes. It should also be modified to return a complete set of different
channels, by adding additional arguments to specify which channels are desired and where
the data should be placed. This could also be used to eliminate the seek argument.
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3.7 Example: gwoutput program

This example uses the function get.data() described in the previous section to print out a two-
column file containing the IFO output for the first locked section containing 100 sample points. In
the output, the left column is time values, and the right column is the actual IFO output (note
that because this comes from a 12 bit A-D converter, the output is an integer value from -2047 to
2048). The program works by acquiring data 100 points at a time, then printing out the values,
then acquiring 100 more points, and so on. Whenever a new locked section begins, the program
prints a banner message to alert the user. Note that typical locked sections contain =~ 107 points
of data, so this program should not be used for real work — it’s just a demonstration!

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

main() {
float tstart,time,srate;
int remain,i,npoint,code;
FILE xfp,*fplock;
short =*xdata;

/* open the IFO output file and lock file */
fp=grasp_open("GRASP_DATAPATH","channel.O");
fplock=grasp_open("GRASP_DATAPATH","channel.10");

/* specify the number of points of output & allocate array */
npoint=100;
data=(short *)malloc(sizeof (short)#*npoint);

while (1) {
/* fill the array with npoint points of data */
code=get_data(fp,fplock,&tstart,npoint,data,&remain,&srate,0);
/* if no data remains, exit loop */
if (code==0) break;
/* if starting a new locked segment, print banner */
if (code==1) {
printf("____________ NEW LOCKED SEGMENT ____________ \n\n");
printf (" Time (sec)\t IF0 output\n");
}
/* now output the data */
for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf ("%f\t%d\n",time,datalil);

}

/* close the data files, and return */
fclose(fp);

fclose(fplock);

return 0;
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3.8 Example: animate program

This example uses the function get_data() described in the previous section to produce an an-
imated display showing the time series output of the IFO in a lower window, and a simulta-
neously calculated FFT power spectrum in the upper window. This output from this program
must be piped into a public domain graphing program called xmgr. This may be obtained from
http://plasma-gate.weizmann.ac.il/Xmgr/. (This lists mirror sites in the USA and Europe
also). Some sample output of animate is shown in Figure 2.

Spectrum
100 T T T T
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Q
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0 1 1 L. n 1
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
f (Hz)
IFO output 4
200.0 T T T

im
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-100.0

-200.0 : : L
22.00 2210 22.20 22.30 22.40
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Figure 2: Snapshot of output from animate. This shows the (whitened) CIT 40-meter IFO a few
seconds after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:

animate | xmgr -pipe &
to get an animated display showing the data flowing by and the power spectrum changing, starting
from the first locked data. You can also use this program with command-line arguments, for
example

animate 100 4 500 7 900 1.5 | xmgr -pipe &
will show the data from time ¢ = 100 to time ¢ = 104 seconds, then from ¢ = 500 to ¢ = 507, then
from ¢ = 900 to ¢t = 901.5. Notice that the sequence of start times must be increasing.

Note: The xmgr program as commonly distributed has a simple bug that needs to be repaired,
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case O:
== delt=(x[ilen-1]}-x[0])/(ilen-1.0);
== T=(x[ilen~1]-x[0]);
setlength(cg,specset,ilen/2);
xx=getx(cg,specset);

case 1:
== delt=(x{ilen-1]1-x[0]1)/(ilen-1.0);
== T=(x[ilen~-1]-x[0]);

Figure 3: The corrections to a bug in the xmgr program are indicated by the arrows above. This
bug is in the routine do_fourier () in the file computils.c.

in order for the frequency scale of the Fourier transform to be correct. The corrected version of
xmgr is shown in Figure 3.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

int main(int argc,char s*argv) {
void graphout(float,float,int);
float tstart=1.e35,srate=1.e—30,tmin,tmax,dt;
double time;
int remain,i,seq=0,code,npoint=4096,seek;
FILE *fp,*fplock;
short xdata;

/* open the IFO output file and lock file */
fp=grasp_open("GRASP_DATAPATH","channel.0");
fplock=grasp_open ("GRASP_DATAPATH","channel.10");

/* allocate storage space for data */
data=(short *)malloc(sizeof (short)s*npoint);
/* handle case where user has supplied t or dt arguments */
if (arge==1) {
tmin=—1.e30;

dt=2.e30;
arge=—1;
}
/* now loop ... %/
seq=argc;

while (argc!=1) {
/* get the next start time and dt */
if (arge!=-1) {
sscanf (argv[seq—arge+1],"%f", &tmin) ;
sscanf (argv[seq—arge+2] ,"%f" ,&dt) ;
argc—=2;
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/* calculate the end of the observation interval, and get data */
tmax=tmin+dt;
while (1) {
if (tstart<tmin— (npoint+20.)/srate) seek=1; else seek=0;
code=get_data(fp,fplock,&tstart,npoint,data,&remain, &srate, seek) ;
/* if no data left, return */
if (code==0) return 0;
/* we need to be outputting now... */
if (tmin<=tstart){ '
for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf ("%f\t%d\n",time,datalil);
}
/#* put out information for the graphing program */
graphout (tstart,tstart+npoint/srate, (argc==1 && time>=tmax));
}
/* if we are done with this interval, try next one */
if (time>=tmax) break;
}
}
/* close files and return */
fclose(fp);
return O;

/* This routine is pipes output into the xmgr graphing program * /
void graphout(float x1,float x2,int last) {
static int count=0;
printf("&\n"); /* end of set marker */
/* first time we draw the plot x/
if (count==0) {

printf("@doublebuffer true\n"); /* keeps display from flashing */
printf("@s0 color 3\n"); /* IFO graph is green x/
printf("@view 0.1, 0.1, 0.9, 0.45\n"); /x set the viewport for IFO =/
printf ("@with gi\n"); /* reset the current graph to FFT x/
printf("@view 0.1, 0.6, 0.9, 0.95\n");/* set the viewport FFT *
printf("@with glO\n"); /* reset the current graph to IFO */
printf ("@world xmin %f\n",x1); /* set min x */

printf("eworld xmax %f\n",x2); /* set max x */
printf("@autoscale\n"); /* autoscale first time through */
printf("@focus off\n"); /* turn off the focus markers */
printf("@xaxis label \"t (sec)\"\n"); /x IFO axis label x/
printf("@fft(s0, 1)\n"); /* compute the spectrum */
printf("@sl color 2\n"); /* FFT is red */

printf("Cmove g0.s1 to gl.sO0\n"); /x move FFT to graph 1 */
printf("@with gi\n"); /* set the focus on FFT */
printf("egl type logy\n"); /* set FFT to log freq axis */
printf("@autoscale\n"); /* autoscale FFT */

printf("@subtitle \"Spectrum\"\n"); /x set the subtitle */
printf("@xaxis label \"f (Hz)\"\n"); /* FFT axis label x/

printf("@with gO\n"); /* reset the current graph IFO */
printf("@subtitle \"IFD output %d\"\n",count++);/* set IFO subtitle x/
if (!last) printf("@kill sO\n"); /* kill IFO; ready to read again */
}
else {
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/* other times we redraw the plot */
printf ("@s0 color 3\n");
printf("@fft(s0, 1)\n");

printf ("@sl color 2\n");

printf ("@move g0.sl to gl.s0\n");

/* set IFO green =/

/* FFT it %/

/* set FFT red =/

/* move FFT to graph 1 */

printf ("@subtitle \"IFQ output %d\"\n",count++);/x set IFO subtitle x/

printf ("@world xmin %f\n",x1);
printf ("@world xmax %f\n",x2);
printf ("Qautoscale yaxes\n");
printf ("@clear stack\n");

if (!last) printf("ekill s0\n");
printf ("@with gi\n");

printf ("@gl type logy\n");
printf("@clear stack\n");

if (!last) printf("@kill sO\n");
printf ("@with gO\n");

}

return;

/* set min x */
/* set max x %/
/* autoscale IFO x*/
/* clear the stack */
/* kill IFO data */
/* switch to FFT */
/x set FFT to log freq axis x/
/* clear stack =/
/* kill FFT =/
/* ready to read IFO again */
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3.9 Function: read sweptsine()

void read sweptsine(FILE *fpss,int *n,float **freq,float **real,float **imag)
This is a low-level routine which reads in a 3-column ASCII file of swept sine calibration data used
to calibrate the IFO.

The arguments are:

fpss: Input. Pointer to a file in which the swept sine data can be found. The format of this data
is described below. o

n: Output. One greater than the number of entries (lines) in the swept sine calibration file.
This is because the read_sweptsine returns, in addition to this data, one additional entry at
frequency f = 0.

freq: QOutput. The array *freq[1..*n~-1] contains the frequency values from the swept sine
calibration file. The routine adds an additional entry at DC, *freq[0]=0. Note: the routine
allocates memory for the array.

real: Output. The array *real[1..*n-1] contains the real part of the response function of the
IFO. The routine adds *real [0]=0. Note: the routine allocates memory for the array.

imag: Output. The array *imag[1..*n-1] contains the imaginary part of the response function
of the IFO. The routine adds *imag[0]=0. Note: the routine allocates memory for the array.

The swept sine calibration files are 3-column ASCII files, of the form:

fi Ty 11
f2 T2 i2
f m Tm tm

where the f; are frequencies, in Hz, and r; and i; are dimensionless ratios of voltages. There are
typically m = 801 lines in these files. Each line gives the ratio of the IFO output voltage to a
calibration coil driving voltage, at a different frequency. The r; are the “real part” of the response,
i.e. the ratio of the IFO output in phase with the coil driving voltage, to the coil driving voltage.
The i#; are the “imaginary part” of the response, 90 degrees out of phase with the coil driving
voltage. The sign of the phase (or equivalently, the sign of the imaginary part of the response) is
determined by the following convention. Suppose that the driving voltage (in volts) is

Veoil = 10 cos(wt) = 10Re™* (3.9.1)

where w = 27 x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of
the interferometer output to this is (again, in volts)

Viro = 6.93 cos(wt) + 4 sin(wt)
= 6.93 cos{wt) — 4 cos(wt + 7/2)
= 8 ReiWt=m/0) (3.9.2)

This is shown in Figure 4. An electrical engineer would describe this situation by saying that the
phase of the response Virg is lagging the phase of the driving signal Vi, by 30°. The corresponding
line in the swept sine calibration file would read:
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Figure 4: This shows a driving voltage V. (solid curve) and the response voltage Viro (dotted
curve) as functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of
the in-phase and out-of-phase components of Viro are contained in the swept-sine calibration files.

60.000 0.6930 —0.40000

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote
this entry in the swept sine calibration file by S(60) = 0.8 e~*"/¢ = 0.693 — 0.400i. Because the
interferometer output is real, there is also a value implied at negative frequencies which is the
complex conjugate of the positive frequency value: S(—60) = S*(60) = 0.8 e"™/6 = 0.693 + 0.4005.

Because the interferometer has no DC response, it is convenient for us to add one additional
point at frequency f = 0 into the output data arrays, with both the real and imaginary parts of
the response set to zero. Hence the output arrays contain one element more than the number of
lines in the input files. Note that both of these arrays are arranged in order of increasing frequency;
after adding our one additional point they typically contain 802 points at frequencies from 0 Hz to
5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine cali-
bration curve was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in
the channel.O files to reconstruct the differential motion Al(¢) (in meters) of the interferometer
arms? Here we address the closely related question: given Viro, how do we reconstruct Vo;? We
choose the sign convention for the Fourier transform which agrees with that of Numerical Recipes:
equation (12.1.6) of [1}. The Fourier transform of a function of time V'(¢) is

V(f) = / 2™V (t)dt. (3.9.3)
The inverse Fourier transform is
V)= [T, (394

With these conventions, the signals (3.9.1) and (3.9.2) shown in in Figure 4 have Fourier compo-
nents:

Veoit(60) =5 and  Veou(—60) =5,
Viro(60) = 46/ and  Vipo(—60) = 4e~*/6. (3.9.6)
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At frequency fo = 60 Hz the swept sine file contains
5(60) = 0.8 e~¥"/6 = §(—60) = $*(60) = 0.8 &™/6. (3.9.7)

since S(—f) = S*(f).
With these choices for our conventions, one can see immediately from our example (and gener-
alize to all frequencies) that '

Vilf) = g% S99

In other words, with the Numerical Recipes [1] conventions for forward and reverse Fourier Trans-

forms, the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by
the complex conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain
a “glitch” in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.
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3.10 Function: calibrate()

void calibrate(FILE *fpss,int num,float *complex,float srate,int method,int order)
This is a intermediate-level routine which reads in a 3-column ASCII file of swept sine calibration
data used to calibrate the IFO, and outputs an array of interpolated points suitable for calibration
of FFT’s of the interferometer output.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine data can be found. The format of this
data is described below.

srate: Input. The sample rate Fyymple (in Hz) of the data that we are going to be calibrating.

num: Input. The number of points N in the FFT that we will be calibrating. This is typically
N = 2F where k is an integer. In this case, the number of distinct frequency values at which a
calibration is needed is 251 4+1 = N/2+1, corresponding to the number of distinct frequency
values from 0 (DC) to the Nyquist frequency fyquist: See for example equation (12.1.5) of
reference [1]. The frequencies are f; = %Fsample fori=0,---,N/2.

complex: Input. Pointer to an array complex[0..s] where s = 2F +1. The routine calibrate ()
fills in this array with interpolated values of the swept sine calibration data, described in the
previous section. The real part of the DC response is in complex[0], and the imaginary part
is in complex[1]. The real/imaginary parts of the response at frequency f; are in complex[2]
and complex[3] and so on. The last two elements of complex[ ] contain the real/imaginary
parts of the response at the Nyquist frequency Fgample/2-

method: Input. This integer sets the type of interpolation used to determine the real and imag-
inary part of the response, at frequencies that lie in between those given in the swept sine
calibration files. Rational function interpolation is used if method=0. Polynomial interpola-
tion is used if method=1. Spline interpolation with natural boundary conditions (vanishing
second derivatives at DC and the Nyquist frequency) is used if method=2.

order: Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then
order is the order of the interpolating polynomial. If rational function interpolation is used,
then the numerator and denominator are both polynomials of order order/2 if order is
even; otherwise the degree of the denominator is (order+1)/2 and that of the numerator is

(order-1)/2.

The basic problem solved by this routine is that the swept sine calibration files typically contain
data at a few hundred distinct frequency values. However to properly calibrate the IFO output,
one usually needs this calibration information at a large number of frequencies corresponding to
the distinct frequencies associated with the FFT of a data set. This routine allows you to choose
different possible interpolation methods. If in doubt, we recommend spline interpolation as the
first choice. The interpolation methods are described in detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: It might be better to interpolate values of f2 times the swept-sine response function,
as this is the quantity needed to compute the IFO response function.
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3.11 Example: print_ss program

This example uses the function calibrate() to read in a swept sine calibration file, and then prints
out a list of frequencies, real, and imaginary parts interpolated from this data. The frequencies are
appropriate for the FFT of a 4096 point data set with sample rate srate. The technique used is

spline interpolation.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"
#define NPOINT 4096

int main() {
float cplx[NPOINT+2],srate,freq;
int npoint,i;
FILE =fp;

/* open the swept-sine calibration file »/
fp=grasp_open("GRASP_DATAPATH","swept-sine.ascii");

/* number of points of (imagined) FFT x/
npoint=NPOINT;

/* a sample rate often used for fast channels */
srate=9868.4208984375;

/* swept sine calibration filename is first argument */
calibrate(fp,npoint,cplx,srate,2,0);

/* print out frequency, real, imaginary interpolated values * /
printf("Freq (Hz)\tReal\t\tImag\n");
for (i=0;i<=NPOINT/2;i++) {

freq=ixsrate/NPOINT;

printf ("%e\tle\t/e\n",freq,cplx [2%i] ,cplx[2xi+1]);

}

return 0;
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3.12 Function: normalize gw()

void normalize gw(FILE *fpss,int npoint,float srate,float *response)

This routine generates an array of complex numbers R(f) from the information in the swept
sine file and an overall calibration constant. Multiplying this array of complex numbers by (the
FFT of) channel.O yields the (FFT of the) differential displacement of the interferometer arms
Al in meters: Al(f) = R(f)Co(f). The units of R(f) are meters/ADC-count.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine normalization data can be found.

npoint: Input. The number of points N of channel.O which will be used to calculate an FFT
for normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of channel.O.

response: Output. Pointer to an array response(0..s] with s = N + 1 in which R(f) will be
returned. By convention, R(0) = 0 so that response [0]=response[1]=0. Array elements
response [2i] and response [2i+1] contain the real and imaginary parts of R(f) at frequency
f =israte/N. The response at the Nyquist frequency response [N]=0 and response [N+1]=0
by convention.

The absolute normalization of the interferometer can be obtained from the information in the
swept sine file, and one other normalization constant which we denote by Q. It is easy to understand
how this works. In the calibration process, one of the interferometer end mirrors of mass m is driven
by a magnetic coil. The equation of motion of the driven end mass is

d2

m—Al = F(t 3.12.1

Al = () (3121)
where F'(t) is the driving force and Al is the differential length of the two interferometer arms, in
meters. Since the driving force d(¢) is proportional to the coil current and thus to the coil voltage,
in frequency space this equation becomes

N e = 1‘;‘IF O
(—27if)*Al = constant X Vo = constant x S0 (3.12.2)

We have substituted in equation (3.9.8) which relates Viro and V. The IFO voltage is directly
proportional to the quantity recorded in channel.0: Viro = ADC x Cp, with the constant ADC
being the ratio of the analog-to-digital converters input voltage to output count.

Putting together these factors, the properly normalized value of Al, in meters, may be obtained
from the information in channel.O0, the swept sine file, and the quantities given in Table 4 by

@ x ADC

Al=R(f)xCy with R(f)=

where the ~denotes Fourier transform, and f denotes frequency in Hz. (Note that, apart from the
complex conjugate on S, the conventions used in the Fourier transform drop out of this equation,
provided that identical conventions (3.9.3,3.9.4) are applied to both Al and to Cp). The constant
quantity @ indicated in the above equations has been calculated and documented in a series of
calibration experiments carried out by Robert Spero. In these calibration experiments, the in-
terferometer’s servo was left open-loop, and the end mass was driven at a single frequency, hard
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Table 4: Quantities entering into normalization of the IFO output.

Description Name Value Units
u Gravity-wave signal (channel.0) | Cp varies ADC counts
A—D converter sensitivity ADC 10/2048 Viro (ADC counts) ™"
-~ Swept sine calibration - S(f) from file - Vipo (Vc(',u)_1
Calibration constant Q 1.428 x 107_74” ~ meter ,,H,Z,z (Vcoirlr)_,lﬁ

enough to move the end mass one-half wavelength and shift the interferences fringes pattern over
by one fringe. In this way, the coil voltage required to bring about a given length motion at a
particular frequency was established, and from this information, the value of @ may be inferred.
During the November 1994 runs the value of Q) was given by

v9.35 Hz _ymeter Hz? Veoil
Q = ———k—— = 1.428 x 10 -—Vco;— where k = 21399m (3124)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrate().




3.13 Example: power_spectrum program
This example uses the function normalize_gw() to produce a normalized, properly calibrated power
spectrum of the interferometer noise, using the gravity-wave signal from channel.O0, the TTL-lock

signal from channel.10 and a swept-sine calibration curve.
The output of this program is a 2-column file; the first column is frequency and the second

column is the noise in units of meters/v/ Hz.
A couple of comments are in order here:
1. Even though we only need the modulus, for pedagogic reasons, we explicitly calculate both the
real and imaginary parts of Al(f) = R(f)Co(f).
2. The fast Fourier transform of Al, which we denote FFT[Al], has the same units (meters!) as Al.

As can be immediately seen from Numerical Recipes equation (12.1.6) the Fourier transform
Al has units of meters-sec and is given by Al = At FFT[Al], where At is the sample interval.

The (one-sided) power spectrum of Al in meters/+/Hz is P = \/% |Al| where T' = NAG¢ is the
total length of the observation interval, in seconds. Hence one has

2 [2At
P= a7 Ot [FFT[AL] = 4/ == [FFT[A]]. (3.13.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed
(see the example program calibrate and the function avg spec() to see how this works).

A sample of the output from this program is shown in Figure 5.

Displacement Spectrum
19 Nov 94 run 3

-10
T

10 T

Meters/rHz

-20 L ]
10 100 1000
Frequency (Hz)

Figure 5: An example of a power spectrum curve produced with power_spectrum. The spectrum
produced off a data tape (with 100 point smoothing) is compared to that produced by the HP

spectrum analyzer in the lab.
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- /* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"
#define NPOINT 65536

int main() {
void realft(float*,unsigned long,int);
~float response[NPOINT+2],data[NPOINT] ,tstart,freq; - -
float res_real,res_imag,dl_real,dl_imag,cO_real,cO_imag,spectrum,srate, factor;
“FILE xfpifo,*fplock,*fpss;
int i,npoint,remain;
short datas[NPOINT];

/* open the IFO output file, lock file, and swept-sine file x/
fpifo=grasp_open("GRASP_DATAPATH","channel.0");
fplock=grasp_open("GRASP_DATAPATH","channel.10");
fpss=grasp_open("GRASP_DATAPATH","swept-sine.ascii");

/* number of points to sample and fft (power of 2) x/
npoint=NPOINT;
/* skip 200 seconds into locked region (seek=1) */
while (tstart<200.0)
get_data(fpifo,fplock,&tstart,npoint,datas ,&remain,&srate,1);
/* and get next stretch of data from TTL locked file (seek=0) x/
get_data(fpifo,fplock,&tstart,npoint,datas, &remain,&srate,0);
/* convert gw signal (ADC counts) from shorts to floats */
for (i=0;i<NPOINT;i++) datal[il=datas[i];
/* FFT the data */
realft(data—1,npoint,1);
/* get normalization R(f) using swept sine file */
normalize_gw(fpss,npoint,srate,response);
/* one-sided power-spectrum normalization, to get meters/rHz * /
factor=sqrt(2.0/(sratexnpoint));
/* compute dl. Leave off DC (i=0) or Nyquist (i=npoint/2) freq =/
for (i=1;i<npoint/2;i++) {
/* frequency x/
freq=ixsrate/npoint;
/* real and imaginary parts of tilde c0 */
cO_real=data[2xi];
cO_imag=data[2*i+1];
/* real and imaginary parts of R */
res_real=response[2xi];
res_imag=response[2xi+1];
/* real and imaginary parts of tilde dl */
dl_real=cO_realxres.real—cO_imag*res_imag;
dl_imag=cO_realxres_imag+cO_imagrres.real;
/* [tilde dl] =/
spectrum=factorssqrt(dl_real*dl real+dl_imagxdl_imag);
/* output freq in Hz, noise power in meters/rHz */
printf("%e\t%e\n",freq,spectrum);

[r—

}

return 0;
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Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of
the 60 Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) super-
posed on a continuum background (electronics noise, laser shot noise, etc) In such situations,
there are better ways of finding the noise power spectrum (for example, see the multi-taper
methods of David J. Thompson [23], or the textbook by Percival and Walden [24]). Using
methods such as the F-test to remove line features from the time-domain data stream might
reduce the sidelobe contamination (bias) from nearby frequency bins, and thus permit an
effective reduction of instrument noise near these spectral line features. Further details of
these methods, and some routines that implemen them, may be found in Section 10.16.




3.14 Example: calibrate program

This example uses the function normalize gw() and avg.spec() to produce an animated display,
showing the properly normalized power spectrum of the interferometer, with a 30-second charac-
teristic time moving average. After compilation, to run the program type:
calibrate | xmgr -pipe & o ,

to get an animated display showing the calibrated power spectrum changing. An example of the
output from calibrate is shown in Figure 6. Note that most of the execution time here is spent
passing data down the pipe to xmgr and displaying it. The display can be speeded up by a factor of
ten by binning the output values to reduce their number to a few hundred lines (the example pro-
gram calibrate binned.c implements this technique; it can be run by typing calibrate_binned

| xmgr -pipe).

Calibrated IFO Spectrum

i 80.521896 sec since last lock. t = 80.521896 sec.
10 . T T

10" [ ]

~11

107 [ h

0-13 L o

-

-14

y
ST

10»19

meters/rHz
—
[=]
T

10 100 1000
f(Hz)

Figure 6: This shows a snapshot of the output from the program calibrate which displays an
animated average power spectrum (Welch windowed, 30-second decay time).

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"
#define NPOINT 4096

int main(int argc,char sxargv) {
void graphout(int,float,float);
void realft(float*,unsigned long,int);
float data[NPOINT],average [NPOINT],response [2+xNPOINT+4] ;
float spec,decaytime;
float srate,tstart=0,freq,tlock;
FILE xfpifo,+fpss,*fplock;
int i, j,code,npoint,remain,ir,ii,reset=0,pass=0;
short datas[NPOINT];
double mod;

/* open the IFO output file, lock file, and swept-sine file */
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fpifo=grasp_open("GRASP_DATAPATH","channel.O");
fplock=grasp_open("GRASP_DATAPATH", "channel.10");
fpss=grasp_open("GRASP_DATAPATH", "swept-sine.ascii®);

/* number of points to sample and fft (power of 2) */
npoint=NPOINT;

/* set the decay time (sec) =/
decaytime=30.0;
/* get data */
while ((code=get.data(fpifo,fplock,&tstart,npoint,datas,&remain,&srate,0))) {
/* put data into floats */
for (i=0;i<npoint;i++) datal[i]=datas[i];
/* get the normalization =/
if (!pass++)
normalize gw(fpss,2«npoint,srate,response);
/* Reset if just locked =/
if (code==1) {
reset=0;
tlock=tstart;
}
/* track average power spectrum, with Welch windowing. */
avg_spec(data,average,npoint,&reset,srate,decaytime, 2);
/* loop over all frequencies except DC (j=0) & Nyquist (j=npoint/2) */
for (j=1;j<npoint;j++) {
/* subscripts of real, imaginary parts */
ii=(ir=j+j)+1;
/* frequency of the point %/
freq=0.5xsratexj/npoint;
/* determine power spectrum in (meters/rHz) & print it */
mod=response [ir]*response[ir]+response[iil*response[ii];
spec=sqrt (average[j]*mod) ;
printf ("%e\t/%e\n" ,freq,spec);
}
/* print out useful things for xmgr program ... */
graphout (0, tstart,tlock);

}

return O;

}

void graphout(int last,float time,float tlock) {
static int count=0;
printf("&\n"); /* end of set marker */
/* first time we draw the plot */
if (count++==0) {

printf("@doublebuffer true\n"); /* keeps display from flashing */
printf("@focus off\n"); /* turn off the focus markers */
printf("@s0 color 2\n"); /* FFT is red */ ‘
printf("@g0 type logxy\n"); /* set graph type to log-log */
printf("@autoscale \n"); /* autoscale FFT x/
printf("@world xmin %e\n",10.0); /* set min x */
printf("@world xmax %e\n",5000.0); /* set max x */

printf ("@world ymin %e\n",1.e—19); /* set min y */
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printf("@world ymax %e\n",1.e-9); /* set max y */
printf("@yaxis tick minor on\n"); /* turn on tick marks */
printf("@yaxis tick major on\n"); /* turn on tick marks */
printf("@yaxis tick minor 2\n"); /* turn on tick marks */
printf("@yaxis tick major 1\n"); /* turn on tick marks */
printf ("@redraw \n"); /* redraw graph */

printf("@xaxis label \"f (Hz)\"\n"); /* FFT horizontal axis label /

printf("@yaxis label \"meters/rHz\"\n"); /* FFT vertical axis label x/

printf("@title \"Calibrated IF0 Spectrum\"\n");/ set title */

/* set subtitle */

printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time—tlock,time);

if (!last) printf("@kill sO\n"); /* kill graph; ready to read agai %/
}
else {
/* other times we redraw the plot */
/* set subtitle x/
printf("@subtitle \"}%.2f sec since last lock. t = %.2f sec.\"\n",time—tlock,time);
printf("@s0 color 2\n"); /* FFT is red =/
printf("@g0 type logxy\n"); /* set graph type to log-log =/
printf ("@world xmin %e\n",10.0); /* set min x */
printf("@world xmax %e\n",5000.0); /* set max x */
printf("@world ymin %e\n",1.e—19); /* set min y */
printf("@world ymax %e\n",1.e—9); /* set max y */
printf("@yaxis tick minor on\n"); /* turn on tick marks */
printf("@yaxis tick major om\n"); /* turn on tick marks */
printf("@yaxis tick minor 2\n"); /* turn on tick marks */
printf("@yaxis tick major 1i\n"); /* turn on tick marks */
printf("@redraw\n"); /* redraw the graph */
if (!last) printf("@kill sO\n"); /* kill graph, ready to read again */
}
return;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for power_spectrum example program.
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3.15 Example: diag program

This program is a frequency-domain “novelty detector” and provides a simple example of a time-
frequency diagnostic method. The actual code is not printed here, but may be found in the GRASP
directory src/examples/examples. 40meter in the file diag.c.

The method used by diag is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a
second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each
frequency bin, this provides a value S(f).

3. Using the same auto-regressive averaging technique described in avg_spec () the mean value of
S(f) is maintained in a time-averaged spectrum (S(f)). The exponential-decay time constant
for this average is AVG_TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average AS(f) = |S(f) —
(S(f))| is determined. Note that the absolute value used here provides a more robust first-
order statistic than would be provided by a standard variance (AS(f))2.

5. Using the same auto-regressive averaging technique described in avg_spec() the value of
AS(f) is maintained in a time-averaged absolute difference (AS(f)). The exponential-decay
time constant for this average is also set by AVG_TIME.

6. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) > THRESHOLD x (AS(f))
then a point is plotted for that frequency bin; otherwise no point is plotted for that frequency
bin. In this example, THRESHOLD is set to 6.

7. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) < INCLUDE x (AS(f)) then
the values of S(f) and AS(f) are used to “refine” or “revise” the auto-regressive means
described previously. In this example, INCLUDE is set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out
the oldest 1024 points from the start of the buffer, and the whole loop is restarted at step 2
above.

The diag program can be used to analyze any of the different channels of fast-sampled data, by
setting CHANNEL appropriately. It creates one output file for each locked segment of data. For
example if CHANNEL is set to O (the IFO channel) and there are four locked sections of data, one
obtains a set of files:

chOdiag.000, chOdiag.001, chOdiag.002, and chOdiag.003.

In similar fashion, if CHANNEL is set to 1 (the magnetometer) one obtains files:

chldiag.000, chidiag.001, chidiag.002, and chidiag.003.

These files may be used as input to the xmgr graphing program, by typing:

xmgr chOdiag.000 childiag.000

(one may specify as many channels as desired on the input line). A typical pair of outputs is shown
in Figures 7 and 8. By specifying several different channels on the command line for starting xmgr,
you can overlay the different channels output with one another. This provides a visual tool for
identifying correlations between the channels (the graphs shown below may be overlaid in different
colors).
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Figure 7: A time-frequency diagnostic graph produced by diag. The vertical line pointed to by

the arrow is a non-stationary noise event in the IFO output, 325 seconds into the locked section.
It sounds like a “drip” and might be due to off-axis modes in the interferometer optical cavities.

0.0 et
180.0

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool.
It might be possible to improve its high-frequency time resolution by being clever about using
intermediate information during the recursive calculation of the FFT. One should probably
also experiment with using other statistical measures to assess the behavior of the different
frequency bins. It would be nice to modify this program to also examine the slow sampled
channels (see comment for get_data()).
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Figure 8: A time-frequency diagnostic graph produced by diag. This shows the identical period
as the previous graph, but for the magnetometer output. Notice that the spurious event was not
caused by magnetic field fluctuations.
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4 GRASP Routines: Reading/using FRAME format data

The LIGO and VIRGO projects have recently adopted a data format standard called the FRAME
format for time-domain data. The 40-meter laboratory at Caltech implemented this data for-
mat in Spring 1997; data taken after that time is in the FRAME format. The FRAME Ili-
braries are publicly available from the VIRGO project; they may be downloaded from the site
http://lapphp.in2p3.fr/virgo/FrameL. Contact Benoit Mours mours@lapp.in2p3.fr for fur-
ther information.. :

The GRASP package includes routines for reading and using data in the FRAME format. Also
included in the GRASP package is a translator (see Section 10.15) which translates data from the
old data format used in 1994 to the new FRAME format. Data distributed for use with GRASP
will primarily be distributed in this new FRAME format, and over a period of time we will remove
from the GRASP package all of the code and routines which make use of the old format. In order
to help make the transition from old format to FRAME format as smooth as possible, the GRASP
package currently contains both old format and FRAME format versions of all of the example
programs. For example animate and animateF are two versions of the same program. The first
reads data in the old format, the second reads data in the FRAME format. If you are new to
GRASP, we don’t recomend that you waste your time with the old data format; start using the
FRAME format immediately.

Data distributed in the FRAME format may not be compatible with future releases of the
FRAME library, so if the FRAME libraries are updated you may need to obtain a new copy of the
standard 40-meter test data set from November 1994. The data that has been distributed and is
currently being distributed makes use of either version 2.20 or 2.30 of the FRAME library. Only two
files in the GRASP package (src/utility/frameinterface.cand src/examples/examplesutility/transla
depend upon the version of the FRAME library. We distribute GRASP with versions of these files
appropriate for different releases (currently 2.20, 2.30, and 2.33) of the FRAME library. The ver-
sion 2.30 FRAME library data format is compatible with versions 2.30 and 2.33 of the FRAME
library.

In order to give the 1994 40-meter data a form as similar as possible to the data being taken
in 1997 and beyond, the channel names used have been given equivalent “FRAME” forms. These
are shown in Table 5.

Note that new data created in the frame format will attempt to address at least a couple of
the problems in the “old format” data. In particular, new frame format data (i.e., post 1996) has
sample rate in Hz always being powers of 2, for example, 4,096 Hz or 16 Hz or 16,384 Hz. In
addition, each frame always contains a power-of-two number of seconds of data. These conventions
will make it easy to “match up” sample of channels taken at different rates, and to do FFT’s of
the channels. However the 1994 data does not conform to either of these conventions: each frame
of 1994 data contains 5000 samples of the slow channels, and 50,000 samples of the fast channels,
during a 5.06666 - - - second interval.
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Channel # < 14 Nov 94 FRAME name > 18 Nov 94 FRAME name
0 IFO output IFO_.DMRO IFO output IFO_DMRO
1 unused magnetometer IFO.Mag.x
2 unused microphone IFO_Mike
3 microphone IFO Mike unused
4 dc strain IFO.DCDM dc strain IFO_DCDM
5 mode cleaner pzt PSL.MC.V mode cleaner pzt PSLMC_V
5 seismometer IFO_ Seis_1 seismometer IFO_Seis_1
7 unused slow pzt PSL_SPZT.V
3 unused power stabilizer PSL_PSS
9 unused unused
10 TTL locked IFO.Lock TTL locked IFO_Lock
11 arm 1 visibility IFO_EAT arm 1 visibility IFO_EAT
12 arm 2 visibility IFO_SAT arm 2 visibility IFO_SAT
13 mode cleaner visibility IFO.MCR mode cleaner visibility IFO_MCR
14 slow pzt IFO_SPZT unused IFO_SPZT
15 arm 1 coil driver SUS_EE_Coil.V arm 1 coil driver SUS_EE_Coil .V

Table 5: Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast”
channels, sampled at about 10 kHz; the remaining twelve are the “slow” channels, sampled at
about 1KHz. The equivalent “FRAME” format names are also given.
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4.1 Time-stamps in the November 1994 data-set

There is a serious problem in the original data format used in November 1994. To understand the
nature of this problem, remember that the individual data samples (fast channels) are taken at
about 10kHz, so that the time between samples is about 100 usec. Ideally, the time-stamps of the
individual blocks should be recorded with a precision which is substantially greater than this, i.e.

a few psec at the most. However the November 1994 time stamps are recorded in two ways: as™

an integer number of seconds and msec (with 1000 usec resolution) and as a floating point elapsed
time. This latter quantity has a resolution of less than one usec at early times, but a resolution of
about 2000 usec at late times (say 15,000 sec into a run).

Thus, in translating the November 1994 data into frames (which have 1 nanosec resolution time-
stamps), a reasonable effort was made to “correct” these time-stamps as much as possible, and to
specify the time at which each data block begins as precisely as possible. After some research, we
believe that the each block of old-format data is precisely 76/15 = 5.0666666 - - - seconds long. So we
have corrected the time stamps accordingly. One can show that in general, our time stamps agree
with those in the original data, when they are expressed as floats, i.e. with the precison recorded
in the original data set. There are some blocks where there is an error in the least-significant b1t
of the cast-into-float quantity; we do not understand this as well as we would like.

Please, be warned that the absolute time indicated by these stamps is not correct! These time
stamps were not taken with a modern GPS clock system, or even with an old-fashioned WWV
system. Our understanding is that the real-time computer system on which these data were origi-
nally taken had its clock set by wristwatch, with an accuracy of perhaps +£5 minutes.. Indeed the
computer system crashed on November 15, 1994 and the clock was subsequently reset again, so
even the time difference can not be trusted between Novemberl4 and Novemberl8 data. It appears
that the computer clock was not reset after November15th, so the relative times in the remaining
data may be trustworthy with somewhat better than +1 msec accuracy.

In any data anaysis work (such as pulsar searching) where it is important to have precise time-
stamps, these shortcomings must be taken into account. If you really want to determine the times
more precisely than a millisecond, our only suggestion is to examine the seismometer data channel
and correlate it with similar data taken by a system with good time-stamps. We don’t know where
to find such data, but it might exist, somewhere, in the public domain. If you do go to this trouble,
please write to us and tell us the conclusions of your study. We would be delighted to correct the
absolute offset error in these November 1994 time-stamps, if someone could show us how to do it!
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4.2 Function: fget_ch()

int fget_ch(struct fgetoutput *fgetoutput,struct fgetinput *fgetinput)
This is a general function for sequentially reading one or more channels of FRAME format data.
It can be used to obtain either locked sections only, or both locked and unlocked sections, and
to retrieve calibration information from the FRAME data. It concatenates multiple frames and
multiple files containing frames as necessary, to return continuous-in-time sequences.

The inputs to the routine fget_ch() are contained in a structure:

struct fgetinput {
int nchan;
char **chnames;
int npoint;
short **locations;
char *(xfiles)();
int inlock;
int seek;
int calibrate;

};

The different elements of the structure are:
nchan: Input. The number of channels that you want to retrieve (> 1).

chnames: Input. The list of channel names. Each element of chnames[0. .nchan-1] is a pointer
to a null-terminated string. Note that the number of channels requested, and their names,
must not be changed after the first call to fget_ch. It is assumed that the first channel in
the list has the fastest sample rate of any of the requested channels.

npoint: Input. The number of points requested from the first channel. (May change with each
call.)

locations: Input. The locations in memory where the arrays corresponding to each channel
should be placed are locations[0..nchan-1]. (May change with each call.)

files(): Input. The name of a function, which takes no arguments, and returns a pointer to a
null-terminated character string. This string is the name of the file to look in for FRAME
format data. If no further frames remain in the file, then the function files() is called
again. When this function returns a null pointer, it is assumed that no further data remains.
A useful utility function called framefiles() has been provided with GRASP, and may be
used as this argument. (May change with each call.)

inlock: Input. Set to zero, return all data; set to non-zero, return only the locked sections of
data. If set nonzero, then on output fgetoutput.locklow and fgetoutput.lockhi will be

set.

seek: Input. Set to zero, return data. Set to non-zero, seek past the data, performing all normal

operations, but do not actually write any data into the arrays pointed to by Locations[0. .nchan-1].

(May change with each call.) This is useful for skipping rapidly past uninteresting regions of
data, for example, the first few minutes after coming into lock.

calibrate: Input. If set non-zero, return calibration information. If set to zero, do not return
calibration information. (May change with each call.)
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Except as noted above, it is assumed that none of these input arguments are changed after the first
call to fget_ch(). It is also assumed that within any given frame, the numbers of points contained
in different channels are exact integer multiples or fractions of the numbers of points contained in
= the other channels.

The outputs from the routine fget_ch() are contained in a structure:

struct fgetoutput {
double tstart;
double srate;
int *npoint;
int *ratios;
int discarded;

e double tfirst;

| double dt;
double lostlock;
double lastlock;
int returnval;
int frinum;
float *fri;
int tcalibrate;
int locklow;
int lockhi;

};

The different elements of the structure are:

tstart: Output. Time stamp of the first point output in channel chnames [0]. Note: please see
the comments in Section 4.1.

{ srate: Output. Sample rate (in Hz) of channel chnames [0].

npoint: Output. The number of points returned in channel chnames [i] is npoint [i]. Note that
npoint [0] is precisely the number of points requested in the input structure fgetinput.npoint.

- ratios: Qutput. The sample rate of channel chnames[0] divided by the sample rate of channel
chnames[i] is given in ratios[i]. Thus ratios[0]=1.

discarded: The number of points discarded from channel chnames [0]. These points are discarded
because there is a missing period of time between two consecutive frames, or because the
instrument was not in lock for long enough to return the requested number of points {(or for
both reasons).

tfirst: Output. The time stamp of the first point returned in the first call to fget_ch().
dt: Output. By definition, tstart-tfirst, which is the elapsed time since the first time stamp.
lostlock: Output. The time at which we last lost lock (if searching only for locked segments).

lastlock: Output. The time at which we last regained lock (if searching only for locked segments).

the request has been satisfied by beginning a new locked or continuous-in-time section, and
2 if the data returned is part of an ongoing locked or continuous-in-time sequence.
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fgetinput.inlock=0;

else {
/* only locked %/
fgetinput.inlock=1;

fgetinput.seek=0;
fgetinput.calibrate=0;
fgetinput.locations[0]=data;

while (1) {
/* get npoint points of data */
code=fget_ch(&fgetoutput,&fgetinput);
tstart=fgetoutput.dt;
srate=fgetoutput.srate;

/* if no data remains, exit loop */

if (code==0) break;

/* if starting a new locked segment, print banner */

if (code==1) {

____________ NEW LOCKED SEGMENT ____________\n\n");
printf(" Time (sec)\t IFO output\n");

}

/* now output the data */

for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf ("%£\t%d\n",time, (int)datali]);

}

/#* close the data files, and return */
return 0;
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4.6 Example: animateF program

This example uses the function £get_ch () described in the previous section to produce an animated
display showing the time series output of the IFO in a lower window, and a simultaneously calculated
FE'T power spectrum in the upper window. To run this program, type
setenv GRASP_FRAMEPATH /usr/local/GRASP/18nov94.1frame
animateF | xmgr -pipe

This output from this program must be piped into a public domain graphing program called xmgr.
This may be obtained from http://plasma-gate.weizmann.ac.il/Xmgr/. (This lists mirror sites
in the USA and Europe also). Some sample output of animateF is shown in Figure 9.

Spectrum
100 T T T T

10

0 1 L L
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
f(Hz)

IFO output 4

200.0

100.0

0.0 ¥

-100.0

-200.9 A . ' - ' : :
22.00 22.10 22.20 22.30 22.40

t (sec)
Figure 9: Snapshot of output from animate. This shows the (whitened) CIT 40-meter IFO a few
seconds after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:

animateF | xmgr -pipe &
to get an animated display showing the data flowing by and the power spectrum changing, starting
from the first locked data. You can also use this program with command-line arguments, for
example

animateF 100 4 500 7 900 1.5 | xmgr -pipe &
will show the data from time ¢ = 100 to time ¢ = 104 seconds, then from t = 500 to ¢ = 507, then

62




case 0:
==> delt=(x[ilen-1]1-x[0])/(ilen-1.0);
== T=(x[ilen-1]-x[0]);
setlength(cg,specset,ilen/2);
xx=getx(cg,specset);

case 1:
== delt=(x[ilen-1]-x[0])/(ilen-1.0);
== T=(x[ilen-1]-x[01);

Figure 10: The corrections to a bug in the xmgr program are indicated by the arrows above. This
bug is in the routine do_fourier() in the file computils.c.

from ¢ = 900 to t = 901.5. Notice that the sequence of start times must be increasing. Note: the
start times are measured relative to the first data point in the first frame of data.

Note: The xmgr program as commonly distributed has a simple bug that needs to be repaired,
in order for the frequency scale of the Fourier transform to be correct. The corrected version of
xmgr is shown in Figure 10.

/* GRASP: Copyright 1997, Bruce Allen %/
#include "grasp.h"

int main(int argc,char xxargv) {
void graphout(float,float,int);
float tstart=1.e35,srate=1.e-30,tmin,tmax,dt;
double time;
int i,seq=0,code,npoint=4096;
short xdata;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

/* number of channels x/
fgetinput.nchan=1;

/* source of files */
fgetinput.files=framefiles;

/* storage for channel names, data locations, points returned, ratios */
fgetinput.chnames=(char **)malloc(fgetinput.nchanksizeof(char *));
fgetinput.locations=(short **)malloc(fgetinput.nchanxsizeof (short *));
fgetoutput.npoint=(int *)malloc(fgetinput.nchanssizeof (int));
fgetoutput.ratios=(int *)malloc(fgetinput.nchanxsizeof (int));

/= set up channel names, etc. for different cases */
fgetinput.chnames[0]="IF0_DMRO";

/* set up for different cases »/
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if (NULL!'=getenv("GRASP_REALTIME")) {
/* 40 meter lab */
fgetinput.chnames[0]=getenv ("GRASP_REALTIME");
fgetinput.inlock=0;
}
else {
/* Nov-1994 data. set */
fgetinput.inlock=1;

}

/* number of points to get x/
fgetinput.npoint=npoint;

/* don’t seek, we need the sample values! */
fgetinput.seek=0;

/* but we don’t need calibration information */
fgetinput.calibrate=0;

/* allocate storage space for data */
data=(short x)malloc(sizeof (short)*npoint);
fgetinput.locations[0}=data;

/* handle case where user has supplied t or dt arguments */
if (arge==1) {

tmin=—1.e30;

dt=2.e30;

argc=—1;

}

/* now loop ... %/
seg=argc;
while (argc!=1) {
/* get the next start time and dt */
if (argc!=-1) {
sscanf (argv[seq—arge+1],"%f",&tmin);
sscanf (argv[seq—argc+2] ," 41", &dt);
argc—=2;

/* calculate the end of the observation interval, and get data x/

tmax=tmin+dt;
while (1) {

/* decide whether to skip (seek) or get sample values */

if (tstart<tmin-(npoint+20.)/srate)
fgetinput.seek=1;

else
fgetinput.seek=0;

/* seek, or get the sample values */
code=fget_ch(&fgetoutput,&fgetinput);

/* elapsed time, sample rate x/

tstart=fgetoutput.dt;
srate=fgetoutput.srate;

64




/* if no data left, return %/
if (code==0) return 0;

/* we need to be outputting now... */
if (tmin<=tstart){
for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf ("%f\t/d\n",time,datalil);

}

/* put out information for the graphing program »*/
graphout (tstart,tstart+npoint/srate, (argc==1 && time>=tmax));
}
/* if we are done with this interval, try next one */
if (time>=tmax) break;
}
}
return O;

}

/* This routine is pipes output into the xmgr graphing program */
void graphout(float x1,float x2,int last) {
static int count=0;
printf ("&\n"); /* end of set marker */
/* first time we draw the plot %/
if (count==0) {

printf ("@doublebuffer true\n"); /* keeps display from flashing =/
printf("@s0 color 3\n"); /* IFO graph is green */
printf("@view 0.1, 0.1, 0.9, 0.45\n"); /* set the viewport for IFO x/
printf ("Q@with gi\n"); /* reset the current graph to FFT */
printf("@view 0.1, 0.6, 0.9, 0.95\n");/* set the viewport FFT x/
printf("@with gO\n"); /* teset the current graph to IFO =/
printf ("@world xmin %f\n",x1); /* set min x %/

printf ("@world xmax %f\n",x2); /* set max x */

printf ("Gautoscale\n"); /* autoscale first time through */
printf("@focus off\n"); /* turn off the focus markers =/
printf("@xaxis label \"t (sec)\"\n"); /* IFO axis label x/
printf("@fft(s0, 1)\n"); /* compute the spectrum */
printf("@si color 2\n"); /* FFT is red =/

printf("@move g0.s1 to gl.s0\n"); /* move FFT to graph 1 =/
printf("@with gi\n"); /* set the focus on FFT x/
printf("@gl type logy\n"); /* set FFT to log freq axis */
printf ("@autoscale\n"); /* autoscale FFT */

printf ("@subtitle \"Spectrum\"\n"); /= set the subtitle =/
printf("@xaxis label \"f (Hz)\"\n"); /* FFT axis label x/

| printf("@with gO\n"); /* reset the current graph IFO */
| printf("@subtitle \"IF0 output %d\"\n",count++);/* set IFO subtitle x/
1 if (!last) printf("@kill sO\n"); /* kill IFO; ready to read again */
| }
% else {
| /= other times we redraw the plot x/

printf("@sO color 3\n"); /* set IFO green »*/

printf ("@fft(s0, 1)\n"); /x FFT it =/

|
|
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F printf("@sl color 2\n"); /* set FFT red =/

. printf("emove g0.s1l to gl.sO\n"); /* move FFT to graph 1 */
printf("@subtitle \"IFD output %d\"\n",count++);/x set IFO subtitle =/
£= printf("@world xmin %f\n",x1); /* set min x */
t printf("@world xmax %f\n",x2); /* set max x */
b printf("Qautoscale yaxes\n"); /* autoscale IFO */
- printf("@clear stack\n"); /# clear the stack */
¢ if (!last) printf("@kill sO\n"); /= kill IFO data */
L o printf ("@with gi\n"); /* switch to FFT =/
| printf(*@gl type logy\n"); /* set FFT to log freq axis */
| £ printf("@clear stack\n"); /* clear stack =/
B if (!last) printf("ekill sO\n"); /% kill FFT =/
| o printf("@with gO\n"); /* ready to read IFO again */
B }
} : return;

ooy,

P
; i
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4.7 Swept-sine calibration information

The swept sine calibration files are 3-column ASCII files, of the form:

fo 7o i

f 1 i1

fa T3 io
fm Tm im

where the f; are frequencies, in Hz, and r; and i; are dimensionless ratios of voltages. There are
typically m = 801 lines in these files. The data from these files (as well as one additional line of

the form

0.0 0.0 0.0
showing vanishing response at DC) have been included in the frames. Each line gives the ratio of

the IFO output voltage to a calibration coil driving voltage, at a different frequency. The r; are the
“real part” of the response, i.e. the ratio of the IFO output in phase with the coil driving voltage,
to the coil driving voltage. The i; are the “imaginary part” of the response, 90 degrees out of phase
with the coil driving voltage. The sign of the phase (or equivalently, the sign of the imaginary part
of the response) is determined by the following convention. Suppose that the driving voltage (in

volts) is .
Veoil = 10 cos(wt) = 10Re™* (4.7.1)

where w = 27 x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of
the interferometer output to this is (again, in volts)

Wro = 6.93 cos(wt) + 4 sin(wt)
= 6.93 cos(wt) —4 cos{wt + 7/2)
= 8Reltm/O (47.2)

This is shown in Figure 11. An electrical engineer would describe this situation by saying that the
phase of the response Viro is lagging the phase of the driving signal Vo by 30°. The corresponding
line in the swept sine calibration file would read:

60.000 0.6930 —0.40000

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote
this entry in the swept sine calibration file by S(60) = 0.8 e~*"/6 = 0.693 — 0.400i. Because the
interferometer output is real, there is also a value implied at negative frequencies which is the
complex conjugate of the positive frequency value: S(—60) = S*(60) = 0.8 /6 = 0.693 + 0.400.

Because the interferometer has no DC response, it is convenient for us to add one additional
point at frequency f = 0 into the output data arrays, with both the real and imaginary parts of
the response set to zero. Hence the output arrays contain one element more than the number of
lines in the input files. Note that both of these arrays are arranged in order of increasing frequency;
after adding our one additional point they typically contain 802 points at frequencies from 0 Hz to
5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine cali-
bration curve was taken immediately before each data tape was generated.
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Figure 11: This shows a driving voltage Vo (solid curve) and the response voltage Viro (dotted
curve) as functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of
the in-phase and out-of-phase components of Viro are contained in the swept-sine calibration files.

We will shortly address the following question. How does one use the dimensionless data in the
swept-sine calibration curve to reconstruct the differential motion Al(¢) (in meters) of the inter-
ferometer arms? Here we address the closely related question: given Viro, how do we reconstruct
Veoit? We choose the sign convention for the Fourier transform which agrees with that of Numerical
Recipes: equation (12.1.6) of [1]. The Fourier transform of a function of time V'(t) is

V() = / 2T (1) dt. (4.7.3)
The inverse Fourier transform is
V() = / =2 (£)df. (4.7.4)
With these conventions, the signals (4.7.1) and (4.7.2) shown in in Figure 11 have Fourier compo-
nents:
f/coil(60) =35 and 17(:oil(_60) =3, (475)
Viro(60) = 46™/®  and  Vipo(—60) = 4e™"/S, (4.7.6)
At frequency fo = 60 Hz the swept sine file contains
S(60) = 0.8 e~/ = §(—60) = S*(60) = 0.8 &/, (4.7.7)
since S(—f) = S*(f).
With these choices for our conventions, one can see immediately from our example (and gener-
alize to all frequencies) that

Veoid(f) = ;IZ?) (4.7.8)

In other words, with the Numerical Recipes [1] conventions for forward and reverse Fourier Trans-
forms, the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by
the complex conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain
a “glitch” in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.

68




4.8 Function: GRcalibrate()

void GRcalibrate(float *fri,int frinum,int num,float *complex,float srate,int method,int
order) —
This is a intermediate-level routine which takes as input a pointer to an array containing the swept g
sine data, and outputs an array of interpolated points suitable for calibration of FFT’s of the g
interferometer output.

The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is £ri [0]=fo,
fril[1)=rg, fri[2]=io, fri[3]=f1, fri[4]=r1, fri[5]=i1,... and the total length of the array
is fri[0. .frinum-1].

frinum: Input. The number of entries in the array fril[0..frinum-1]. If this number is not
divisible by three, something is wrong! ;

num: Input. The number of points N in the FFT that we will be calibrating. This is typically
N = 2% where k is an integer. In this case, the number of distinct frequency values at which a
calibration is needed is 25~14+1= N /2+ 1, corresponding to the number of distinct frequency
values from 0 (DC) to the Nyquist frequency fayquist- See for example equation (12.1.5) of
reference [1]. The frequencies are f; = ﬁ sample for i =0,---, N/2.

srate: Input. The sample rate Fiampe (in Hz) of the data that we are going to be calibrating.

complex: Input. Pointer to an array complex[0..s] where s = 25+ 1. The routine calibrate()
fills in this array with interpolated values of the swept sine calibration data, described in the
previous section. The real part of the DC response is in complex[0], and the imaginary part
is in complex[1]. The real/imaginary parts of the response at frequency fi are in complex [2]
and complex[3] and so on. The last two elements of complex[ ] contain the real/imaginary
parts of the response at the Nyquist frequency Feample/2-

method: Input. This integer sets the type of interpolation used to determine the real and imag-
inary part of the response, at frequencies that lie in between those given in the swept sine
calibration files. Rational function interpolation is used if method=0. Polynomial interpola-
tion is used if method=1. Spline interpolation with natural boundary conditions (vanishing
second derivatives at DC and the Nyquist frequency) is used if method=2.

order: Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then
order is the order of the interpolating polynomial. If rational function interpolation is used,
then the numerator and denominator are both polynomials of order order/2 if order is
even; otherwise the degree of the denominator is (order+1)/2 and that of the numerator is
(order-1)/2.

The basic problem solved by this routine is that the swept sine calibration data in a frame
typically contain data at a few hundred distinct frequency values. However to properly calibrate
the IFO output, one usually needs this calibration information at a large number of frequencies
corresponding to the distinct frequencies associated with the FFT of a data set. This routine
allows you to choose different possible interpolation methods. If in doubt, we recommend spline
interpolation as the first choice. The interpolation methods are described in detail in Chapter 3 of

reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu
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Comments: It might be better to interpolate values of f2 times the swept-sine response function,
as this is the quantity needed to compute the IFO response function.
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4.9 Example: print_ssF program

This example uses the function GRcalibrate () to read the swept sine calibration information from
a frame, and then prints out a list of frequencies, real, and imaginary parts interpolated from this
data. The frequencies are appropriate for the FFT of a 4096 point data set with sample rate srate.
The technique used is spline interpolation. To run this program, and display a graph, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame

print_ssF > outputfile

xmgr -nxy outputfile

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"
#define NPOINT 4096

int main() {
float cplx[NPOINT+2],srate,freq;
int npoint,i;
struct fgetoutput fgetoutput;
struct fgetinput fgetinput;

/* we need to ask for some sample values, even though all we want is calibration */
fgetinput.npoint=256;

/* number of channels */
fgetinput.nchan=1;

/* storage for channel names, data locations, points returned, ratios */
fgetinput.chnames=(char **)malloc(fgetinput.nchanxsizeof (char *));
fgetoutput.npoint=(int *)malloc(fgetinput.nchanxsizeof (int));
fgetoutput.ratios=(int *)malloc(fgetinput.nchanxsizeof(int));

/* use utility function framefiles() to retrieve file names */
fgetinput.files=framefiles;

/* don’t care if IFO is in lock */
fgetinput.inlock=0;

/* don’t need data anyway, so might as well seck */
fgetinput.seek=1;

/% but we DO need the calibration information */
fgetinput.calibrate=1;

/* set the channel name %/
fgetinput.chnames[0]="IFO_DMRO";

/* number of points of (imagined) FFT x/
npoint=NPOINT;

/* now get the data (none) and calibration (what we want) */
fget_ch(&fgetoutput,&fgetinput);
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/* the fast-channel sample rate */
srate=fgetoutput.srate;

/* swept sine calibration array is first argument =/
GRcalibrate (fgetoutput.fri,fgetoutput.frinum,npoint,cplx,srate,2,0);

/* print out frequency, real, imaginary interpolated values %/
printf ("# Freq (Hz)\tReall\t\tImag\n");
for (i=0;i<=NPOINT/2;i++) {

freg=issrate/NPOINT;

printf ("%e\the\t%e\n",freq,cplx[2+xi],cplx[2%i+1]);

}

return 0O;

Swept Sine Calibration Curve
18 Nov 1994, run 2
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Figure 12: A swept sine calibration curve, showing the real and imaginary parts, produced by the
example program print_ssF.




4.10 Function: GRnormalize()

void GRnormalize(float *fri, int frinum, int npoint, float srate,float *response)
This routine generates an array of complex numbers R(f) from the swept sine information in
a frame, and an overall calibration constant. Multiplying this array of complex numbers by (the
FFT of) the raw IFO data yields the (FFT of the) differential displacement of the interferometer
arms Al in meters: Al(f) = R(f)Crro(f). The units of R(f) are meters/ADC-count.
The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is fri[0]=fo,
fril1]=rg, fri[2]=ig, fri[3]=f1, fril4]=ry, fri[5]=i,... and the total length of the array
is fri[0..frinum-1].

frinum: Input. The number of entries in the array fri[0..frinum-1]. If this number is not
divisible by three, something is wrong!

npoint: Input. The number of points N of IFO output which will be used to calculate an FFT
for normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of the IFO output.

response: Output. Pointer to an array response[0..s] with s = N + 1 in which R(f) will be
returned. By convention, R(0) = 0 so that response [0]=response[1]=0. Array elements
response [2i] and response [2i+1] contain the real and imaginary parts of R(f) at frequency
f = israte/N. The response at the Nyquist frequency response [N]=0 and response [N+1]=0
by convention.

The absolute normalization of the interferometer can be obtained from the information in the
swept sine file, and one other normalization constant which we denote by Q. It is easy to understand
how this works. In the calibration process, one of the interferometer end mirrors of mass m is driven
by a magnetic coil. The equation of motion of the driven end mass is

d2
m——Al = F(t) (4.10.1)

where F(t) is the driving force and Al is the differential length of the two interferometer arms, in
meters. Since the driving force d(t) is proportional to the coil current and thus to the coil voltage,
in frequency space this equation becomes

(—27rz'f)22§l = constant X V.o = constant X %I—?%. (4.10.2)
We have substituted in equation (4.7.8) which relates Viro and Vi The IFO voltage is directly
proportional to the quantity recorded in the IFO output channel: Viro = ADC x Ciro, with the
constant ADC being the ratio of the analog-to-digital converters input voltage to output count.
Putting together these factors, the properly normalized value of Al, in meters, may be obtained
from the information in the IFO output channel, the swept sine calibration information, and the
quantities given in Table 6 by

Al =R(f)xCro  with R(f)= :%%SD—%—), (4.10.3)
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. Table 6: Quantities entering into normalization of the IFO output.

Description Name Value Units
= Gravity-wave signal (IFO output) | Ciro varies ADC counts
A—D converter sensitivity ADC 10/2048 Viro (ADC counts) ™"
- Swept sine calibration S(f) from file ~Viro (Veoi) ™"
Calibration constant Q 1.428 x 1074 | meter Hz? (Voi) ™"

where the ~ denotes Fourier transform, and f denotes frequency in Hz. (Note that, apart from
the complex conjugate on S, the conventions used in the Fourier transform drop out of this equa-
tion, provided that identical conventions (4.7.3,4.7.4) are applied to both Al and to Ciro). The
constant quantity @ indicated in the above equations has been calculated and documented in a
series of calibration experiments carried out by Robert Spero. In these calibration experiments,
{ the interferometer’s servo was left open-loop, and the end mass was driven at a single frequency,
I hard enough to move the end mass one-half wavelength and shift the interferences fringes pattern

over by one fringe. In this way, the coil voltage required to bring about a given length motion at
i a particular frequency was established, and from this information, the value of @ may be inferred.
During the November 1994 runs the value of Q was given by

P —

Cpe v9.35 Hz meter Hz? Veoil
{ = —— =142 e here k = 21399—————-. 4104
E Q A 8 x 10 Vo where 3 gmeter TR ( )

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrate().
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4.11 Example: power_spectrumF program

This example uses the function GRnormalize () to produce a normalized, properly calibrated power
spectrum of the interferometer noise, using the gravity-wave signal and the swept-sine calibration
information from the frames.

The output of this program is a 2-column file; the first column is frequency and the second
column is the noise in units of meters/ vHz. To run this program, and display a graph, type

setenv GRASP_FRAMEPATH /usr/local/GRASP/18nov94.1frame

power_spectrumF > outputfile

xmgr -nxy outputfile

A couple of comments are in order here:

1. Even though we only need the modulus, for pedagogic reasons, we explicitly calculate both the
real and imaginary parts of Al(f) = R(f)Crro(f)-

2. The fast Fourier transform of Al, which we denote FFT[Al], has the same units (meters!) as Al.
As can be immediately seen from Numerical Recipes equation (12.1.6) the Fourier transform
Al has units of meters-sec and is given by Al = At FFT[Al], where At is the sample interval.

The (one-sided) power spectrum of Al in meters/vHz is P = \/% |Al | where T' = NAt is the
total length of the observation interval, in seconds. Hence one has

p) 2AL -
P= w7 At IFFTAL} = 4/ <5 [FFT(AI]. (4.11.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed
(see the example program calibrate and the function avg.spec() to see how this works).

A sample of the output from this program is shown in Figure 13.

/+* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h”
#define NPOINT 65536

int main() {
void realft(floatx,unsigned long,int);
float response[NPOINT+2],data[NPOINT],freq;
float res_real,res_imag,dl_real,dl_imag,cO_real,cO_imag,spectrum,srate,factor;
int i,npoint;
short datas[NPOINT];
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

/* We need only the IFO output */
fgetinput.nchan=1;

/* use utility function framefiles() to retrieve file names x/
fgetinput.files=framefiles;

/* storage for channel names, data locations, points returned, ratios */
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- fgetinput.chnames=(char xx)malloc(fgetinput.nchanxsizeof (char *));

i fgetinput.locations=(short *x)malloc(fgetinput.nchanxsizeof (short *));
‘ fgetoutput.npoint=(int *)malloc(fgetinput.nchanssizeof (int));
fgetoutput.ratios=(int *)malloc(fgetinput.nchan*sizeof (int));

¢ /* set channel name x/
fgetinput.chnames[0]="IF0_DMR0D";

ey

Pr—

/* are we in the 40-meter lab? %/

e if (NULL!=getenv("GRASP_REALTIME")) {
R /* for Caltech 40-meter lab */
fgetinput.inlock=0;

else {
/* for Nov 1994 data set */
fgetinput.inlock=1;

————

{ }
e /#* number of points to sample and fft (power of 2} */
fgetinput.npoint=npoint=NPOINT;
fgetinput.calibrate=1;

/* the array where we want the data to be put x/
fgetinput.locations[0]=datas;

i,

/* skip 200 seconds into locked region (just seek, no need for data) */
fgetinput.seek=1;
fgetoutput.tstart=fgetoutput.lastlock=0.0;

while (fgetoutput.tstart—fgetoutput.lastlock<200.0)

L fget_ch(&fgetoutput, &fgetinput);

/* and get next stretch of data (don’t seek, we need data) */
fgetinput.seek=0;
fget_ch(&fgetoutput,&fgetinput);

; /+ the sample rate */
! srate=fgetoutput.srate;

/* convert gw signal (ADC counts) from shorts to floats */
for (i=0;i<NPOINT;i++) data[il=datas[i];

/* FFT the data */
realft(data—1,npoint,1);

/* get normalization R(f) using swept sine calibration information from frame */
GRnormalize(fgetoutput.fri,fgetoutput.frinum,npoint,srate,response);

/* one-sided power-spectrum normalization, to get meters/rHz x/
factor=sqrt(2.0/(sratexnpoint));
/* compute dl. Leave off DC (i=0) or Nyquist (i=npoint/2) freq =/
for (i=1;i<npoint/2;i++) {

/* frequency */

freq=ixsrate/npoint;

/* real and imaginary parts of tilde c0 =/

i
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cO_real=data[2xi];

cO_imag=data[2+i+1];

/* real and imaginary parts of R */
res_real=response [2xi] ;

res_imag=response [2xi+1];

/* real and imaginary parts of tilde dl x/
dl.real=cO.real*res_real —cO_imag*res_imag;
dl_imag=cO_realxres_imag+cO_imagsres_real;
/= [tilde dl} =/
spectrum=factor*sqrt(dl_realxdl_real+dl_imagxdl_imag) ;
/* output freq in Hz, noise power in meters/rHz x/
printf ("/e\t%e\n",freq,spectrum);

}

return 0;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of
the 60 Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) super-
posed on a continuum background (electronics noise, laser shot noise, etc) In such situations,
there are better ways of finding the noise power spectrum (for example, see the multi-taper
methods of David J. Thompson [23], or the textbook by Percival and Walden [24]). Using
methods such as the F-test to remove line features from the time-domain data stream might
reduce the sidelobe contamination (bias) from nearby frequency bins, and thus permit an
effective reduction of instrument noise near these spectral line features. Further details of
these methods, and some routines that implemen them, may be found in Section 10.16.
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Figure 13: An example of a power spectrum curve produced with power_spectrumF. The spectrum
produced off a data tape (with 100 point smoothing) is compared to that produced by the HP
spectrum analyzer in the lab.
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4.12 Example: calibrateF program

This example uses the function GRnormalize() and avg spec() to produce an animated display,
showing the properly normalized power spectrum of the interferometer, with a 30-second charac-
teristic time moving average. After compilation, to run the program type:

setenv GRASP_FRAMEPATH /usr/local/GRASP/18nov94.1frame

calibrateF | xmgr -pipe &
to get an animated display showing the calibrated power spectrum changing. An example of the
output from calibrateF is shown in Figure 14. Note that most of the execution time here is
spent passing data down the pipe to xmgr and displaying it. The display can be speeded up
by a factor of ten by binning the output values to reduce their number to a few hundred lines
(the example program calibrate_binnedF.c implements this technique; it can be run by typing
calibrate binnedF | xmgr -pipe).

Calibrated IFO Spectrum

80.521896 sec since last lock. t = 80.521896 sec.
107 ¢ T a

10-13

~14

°, | Z
- WWMWMW

10—19

meters/rHz
)
T

10 . 100 1000
f (Hz)

Figure 14: This shows a snapshot of the output from the program calibrateF which displays an
animated average power spectrum (Welch windowed, 30-second decay time).

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"
#define NPCINT 4096

int main() {
void graphout(int,float,float);
float data[NPOINT],average [NPOINT],response [2x+NPOINT+4];
float spec,decaytime;
float srate,tstart=0,freq,tlock;
int i,j,code,npoint,ir,ii,reset=0,pass=0;
short datas[NPOINT];
double mod;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

79




JUITE N i
¥

E T m—

ot T,

/* number of channels needed is one */
fgetinput.nchan=1;

/* use utility function framefiles() to retrieve file names */
fgetinput.files=framefiles;

/* storage for channel names, data locations, points returned, ratios */
fgetinput.chnames=(char *x)malloc(fgetinput.nchan*sizeof (char *));
fgetinput-locations=(short s+)malloc(fgetinput.nchanxsizeof (short *));
fgetoutput.npoint=(int *)malloc(fgetinput.nchanksizeof (int));
fgetoutput.ratios=(int *)malloc(fgetinput.nchan*sizeof (int));

/* set up channel name */
fgetinput. chnames [0]="IFO_DMRO";

/* set up channel names for different cases */

if (NULL!=getenv("GRASP_REALTIME")) {
/* for Caltech 40-meter lab x/
fgetinput.inlock=0;

}

else {
/* for Nov 1994 data set x/
fgetinput.inlock=1;

}

/* number of points to sample and fft (power of 2) */
fgetinput.npoint=npoint=NPQINT;

/* we do need the data, so don’t seek x/
fgetinput.seek=0;

/* do need calibration information */
fgetinput.calibrate=1;

/* where to put the data points x/
fgetinput.locations[0] =datas;

/* set the decay time (sec) x/
decaytime=30.0;

/* get data */

while (code=fget._ch(&fgetoutput,&fgetinput)) {
tstart=fgetoutput.dt;
srate=fgetoutput.srate;

/* put data into floats */
for (i=0;i<npoint;i++) datal[il=datas[i];

/* use the swept-sine calibration (properly interpolated) to get R(f) */
if (!pass++) GRnormalize(fgetoutput.fri,fgetoutput.frinum,2+npoint,srate,response);

/* Reset if just locked */
if (code==1) {
reset=0;
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tlock=tstart;

}

/* track average power spectrum, with Welch windowing. =/
avg-spec(data,average,npoint,&reset,srate,decaytime,2);

/* loop over all frequencies except DC (j=0) & Nyquist (j=npoint/2) */
for (j=1;j<npoint;j++) {
/* subscripts of real, imaginary parts %/
ii=(ir=j+j)+1;
/* frequency of the point */
freq=0.5xsrate*j/npoint;
/* determine power spectrum in (meters/rHz) & print it */
mod=response [ir] «response[ir]+response[iil *response[ii];
spec=sqrt(average[j]*mod) ;
printf ("%e\tke\n",freq,spec);
}
/* print out useful things for xmgr program ... */
graphout (0, tstart,tlock);

}

return 0;

}

void graphout(int last,float time,float tlock) {
static int count=0;
printf("&\n"); /* end of set marker */
/* first time we draw the plot =/
if (count++==0) {

printf ("@doublebuffer true\n"); /* keeps display from flashing */
printf("@focus off\n"); /* turn off the focus markers */
printf ("@sO color 2\n"); /* FFT is red */

printf("@g0 type logxy\n"); /* set graph type to log-log */
printf("@autoscale \n"); /* autoscale FFT =/
printf("@world xmin %e\n",10.0); /* set min x */

printf ("@world xmax %e\n",5000.0); /* set max x */
printf("@world ymin %e\n",1.e—19); /* set min y */

printf ("@world ymax %e\n",1.e—9); /* set max y */

printf ("@yaxis tick minor on\n"); /* turn on tick marks */
printf("@yaxis tick major on\n"); /* turn on tick marks */
printf("@yaxis tick minor 2\n"); /* turn on tick marks */
printf ("@yaxis tick major 1i\n"); /* turn on tick marks */
printf("@redraw \n"); /* redraw graph */

printf ("@xaxis label \"f (Hz)\"\n"); /+ FFT horizontal axis label */
printf ("@yaxis label \"meters/rHz\"\n"); /x FFT vertical axis label x/
printf("@title \"Calibrated IF0 Spectrum\"\n");/x set title =/
/* set subtitle =/
printf ("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time—tlock,time);
if (!last) printf("ekill sO\n"); /* kill graph; ready to read agai */
}
else {
/#* other times we redraw the plot %/

/* set subtitle =/
printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time—tlock,time);
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}

printf("@s0 color 2\n");
printf ("@g0 type logxy\n™);

printf("@world
printf ("@world
printf ("@world
printf ("@world
printf("@yaxis
printf("@yaxis

printf("@yaxis

printf ("@yaxis

printf ("@redraw\n");

xmin
xmax
ymin
ymax
tick
tick
tick
tick

%e\n",10.0);
%e\n",5000.0);
%e\n",1.e—19);
%e\n",1.e—9);
minor on\n");
major on\n");
minor 2\n");
major 1\n");

if (!last) printf("@kill sO\n");

return;

/* FFT is red */

/* set graph type to log-log %/
/* set min x */
/* set max x x/

/* set min y */

/* set max 'y */

/* turn on tick marks x/
/* turn on tick marks x/

/* turn on-tick marks */

/* turn on tick marks */

/* redraw the graph =/

/* kill graph, ready to read again */

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for power_spectrumF example program.
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4.13 Example: diagF program

This program is a frequency-domain “novelty detector” and provides a simple example of a time-
frequency diagnostic method. The actual code is not printed here, but may be found in the GRASP
directory src/examples/examples frame in the file diagF.c. To run the program type:

setenv GRASP_FRAMEPATH /usr/local/GRASP/18nov94.1frame

diagF &
which will start the diagF program in the background.

The method used by diagF is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a
second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each
frequency bin, this provides a value S(f).

3. Using the same auto-regressive averaging technique described in avg_spec () the mean value of
S(f) is maintained in a time-averaged spectrum (S(f)}. The exponential-decay time constant
for this average is AVG_TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average AS(f) = [S(f) —
(S(f))| is determined. Note that the absolute value used here provides a more robust first-
order statistic than would be provided by a standard variance (AS(f))2.

5. Using the same auto-regressive averaging technique described in avg-spec() the value of
AS(f) is maintained in a time-averaged absolute difference (AS(f)). The exponential-decay
time constant for this average is also set by AVG_TIME.

6. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) > THRESHOLD x (AS(f))
then a point is plotted for that frequency bin; otherwise no point is plotted for that frequency
bin. In this example, THRESHOLD is set to 6.

7. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) < INCLUDE x (AS(f)) then
the values of S(f) and AS(f) are used to “refine” or “revise” the auto-regressive means
described previously. In this example, INCLUDE is set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out
the oldest 1024 points from the start of the buffer, and the whole loop is restarted at step 2
above.

The diagF program can be used to analyze any of the different channels of fast-sampled data, by
setting CHANNEL appropriately. It creates one output file for each locked segment of data. For
example if CHANNEL is set to 0 (the IFO channel) and there are four locked sections of data, one
obtains a set of files:

chOdiag. 000, chOdiag.001, chOdiag.002, and chOdiag.003.

In similar fashion, if CHANNEL is set to 1 (the magnetometer) one obtains files:

chldiag.000, chldiag.001, chldiag.002, and chidiag.003.

These files may be used as input to the xmgr graphing program, by typing:

xmgr chOdiag.000 chidiag.000

(one may specify as many channels as desired on the input line). A typical pair of outputs is shown
in Figures 15 and 16. By specifying several different channels on the command line for starting
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Figure 15: A time-frequency diagnostic graph produced by diag. The vertical line pointed to by

the arrow is a non-stationary noise event in the IFO output, 325 seconds into the locked section.

It sounds like a “drip” and might be due to off-axis modes in the interferometer optical cavities.

0‘0 __ cie e
180.0

xmgr, you can overlay the different channels output with one another. This provides a visual tool for
identifying correlations between the channels (the graphs shown below may be overlaid in different
colors).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool.
It might be possible to improve its high-frequency time resolution by being clever about using
intermediate information during the recursive calculation of the FFT. One should probably
also experiment with using other statistical measures to assess the behavior of the different
frequency bins. It would be nice to modify this program to also examine the slow sampled
channels (see comment for get_data()).
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Figure 16: A time-frequency diagnostic graph produced by diag. This shows the identical period
as the previous graph, but for the magnetometer output. Notice that the spurious event was not
caused by magnetic field fluctuations.
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5 GRASP Routines: Gravitational Radiation from Binary Inspi-
ral

One of the principal sources of gravitational radiation which should be detectable with the first or
second generation of interferometric detectors is binary inspiral. This radiation is produced by a
pair of massive and compact orbiting objects, such as neutron stars or black holes.

The simplest case is when the two objects are describing a circular orbit about their common
center-of-mass, and neither object is spinning about its own axis. With these assumptions the
system is then described, at any time, by the masses m1 and my of the objects, and their orbital
frequency Q. (It is also necessary to describe the orientation of the orbital plane and the positions
of the masses at a given time; these are details we will sort out later).

For convenience in dealing with dimensional quantities, we introduce the Solar Mass Mg and
the Solar Time Tt defined by

My = 1.989 x 10% grams (5.0.1)
To = (g-) My = 4.89128 x 107 sec. (5.0.2)

GRASP functions typically measure masses in units of Mg and times in units of seconds.
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5.1 Chirp generation routines

The next several subsections document a number of routines for generating “chirps” from coalescing
binaries. This package of routines is intended to be versatile, flexible and robust; and yet still
fairly simple to use. The implementation we have included in this package is based on the second
post-Newtonian treatment of binary inspiral presented in [6] and augmented by the spin-orbit
and spin-spin corrections presented in [7]. The notation we use — even in the source code - closely
reflects the notation used in those papers. In keeping with that notation, these routines calculate the
orbital phase and orbital frequency. The gravitational-wave phase of the dominant quadrupolar
radiation can be obtained by multiplying the orbital phase by two. The routines can be used
to compute a few chirp waveforms (say to make transparencies for a seminar), or for wholesale
computations of a bank of matched filters.

The routines are flexible in the sense that they have a number of run-time options available
for choosing the post-Newtonian order of the phase calculations, or choosing whether or not to
include spin effects. We have also isolated those parts of the code where the messy post-Newtonian
coefficients appear; thus the routines may be easily modified to include yet higher-order post-
Newtonian terms as they become available.

The post-Newtonian equations for the orbital phase evolution are notoriously ill-behaved [8, 9]
as the binary system nears coalescence. In this regime the expansion parameters [namely the
relative velocity v/c of the bodies and/or the field strength GM;ot/ (rorbit)] used in the derivation
are comparable to unity. In post?>-Newtonian calculations higher orders such as post3-Newtonian
terms have been discarded. Because of this truncation, quantities that are are positive definite in
an exact calculation (say the energy-loss rate, or the time derivative of the orbital frequency) often
become negative in their post-Newtonian expansion when the orbital separation becomes small.
When this happens you are using a post-Newtonian expression in a regime where its validity is
questionable. This is cause for concern, and it may be cause for terminating a chirp calculation;
but, it need not crash your code. A full-scale gravitational-wave search will need to compute chirps
over a broad range of parameters, virtually assuring that any post-Newtonian chirp generator will
be pushed into a region of parameter space where it doesn’t belong. These routines are designed
to traverse these dangerous regions of parameter space as well as possible and gently warn the user
of the dangers encountered. The calling routines may wish to act on the warnings coming from the
chirp generator. For example a severe warning may prompt the calling routine to discard a given
filter from a data search, because the second post-Newtonian calculation of the chirp is so dubious
that it can’t give meaningful results.

In the next several sections we detail the use of three routines used to compute the “chirp”
of a coalescing binary system. The first routine we describe is phase_frequency(). This is the
underlying routine for the other chirp routines. Given a set of parameters (e.g. the two masses,
and the upper and lower cut-off frequency for the chirp) it returns the orbital phase and orbital
frequency evolution as a function of time. Next we describe chirp filter() which returns two
(unnormalized) chirp signals. This routine can be used for wholesale production of a bank of
templates for a coalescing binary search. The routine strain() returns the full second post-
Newtonian gravitational wave strain. This can be used for plotting and examining the expected
waveform of a given coalescing binary, or to add a “realistic” signal into detector noise. The strain
output contains all the (sub)harmonic structure and its amplitude reflects the true astrophysical

distance to the source.
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5.2 Function: phase_frequency()

int phase_frequency(float m1, float m2, float spinl, float spin2, int n_phaseterms,
float *phaseterms, float Initial_Freq, float Max_Freq_Rqst,
float *Max_Freq_Actual, float Sample_Time, float **phase, float **frequency,
int *steps_alloc, int #*steps_filld, int err_cd_sprs)

This function computes the orbital phase and orbital frequency evolution of an inspiralling
binary. It returns an integer termination code indicating how and why the chirp calculation termi-
nated. This routine is the engine that powers the other chirp generation routines. The arguments

are:
m1: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.
spinil: Input. The dimensionless spin parameter of body-1. See section on spin effects.
spin2: Input. The dimensionless spin parameter of body-2. See section on spin effects.

n phaseterms: Input. Integer describing the number of post-Newtonian (pN) approximation
terms implemented in the phase and frequency calculations. In the present implementation
this should be set to 5. '

phaseterms: Input. The array phase_terms[0. .n phaseterms-1] specifies which pN approxima-
tion terms will be included in the phase frequency calculations. Setting phase_terms[i]=0.0
nullifys the term. Setting phase_terms[i]=1.0 includes the term. This allows for easy run-
time nullification of any term in the phase and frequency evolution, e.g. setting phase_terms(4]1=0.0
eliminates the second post-Newtonian terms from the calculation.

Initial Freq: Input. The starting orbital frequency of the chirp in Hz.

Max _Freq_Rqst: Input. The requested orbital frequency where the chirp will stop. However, the
actual calculation may not proceed all the way to this orbital frequency. This is discussed at

length below.

Max_Freq-Actual: Qutput. The floating number *Max _Freq-Actual is the orbital frequency in Hz
where the chirp actually terminated.

Sample.Time: Input. The time interval between successive samples, in seconds.

phase: Input/Output. The phase ephemeris ) in radians is stored in the array *phase [0. . steps £i11d-1].
Input in the sense that much of the internal logic of phase_frequency() depends on how the
pointers *phase (and *frequency below) are set. If either is set to NULL memory allocation
will be performed inside phase_frequency(). If both are not NULL then it is assumed the
calling routine has allocated the memory before calling phase_frequency().

frequency: Input/Output. Similar to phase above. The frequency ephemeris f = d€2/dt is stored
in the array *frequency (0. .stepsfilld-1].

steps.alloc: Input/Output. The integer *steps_alloc is the number of floating point entries
allocated for storing the phase and frequency evolution, i.e. the length of **phase and
*xfrequency. This integer should be set in the calling routine if memory is allocated there,
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or it will be set inside phase _frequency() if memory is to be allocated there. If both of the
pointers *phase and *frequency are not NULL then phase frequency () understands that the
calling routine is taking responsibility for allocating the memory for the chirp, and the calling
routine must set *steps_alloc accordingly. In this case phase frequency () will fill up the
arrays **phase and **frequency until the memory is full (i.e fill them with *steps_alloc
of floats) or until the chirp terminates, whichever is less.

steps.£illd: Output. The integer *steps_filld is the integer number of time steps actually
computed for this evolution. It is less than or equal to *steps_alloc.

clscnc_time: Qutput. The float *clscnc_time is the time to coalescence in seconds, measured
from the instant when the orbital frequency is Initial Freq given by t. in Egs.(5.4.1) and
(5.4.2).

err.cd_sprs: Input. Error code supression. This integer determines at what level of disaster
encountered in the computation of the chirp the user will be explicitly warned about with
a printed message. Set to 0: prints all the termination messages. Set to 4000: suppresses
all but a few messages which are harbingers of complete disaster. The termination messages
are numbered from 0 to 3999 loosely in accordance with their severity (the larger numbers
corresponding to more severe warnings). Any message with a number less than err_cd_sprs
will not be printed. A termination code of 0 means the chirp calculation was executed as
requested. A termination code in the 1000’s means the chirp was terminated early because
the post-Newtonian approximantion was deemed no longer valid. A termination code in the
2000’s generally indicates some problem with memory allocation. A termination code in the
3000’s generally indicates a serious logic fault. Many of these “3000” errors result in the
termination of the routine. If you get an error message number it is easy to find the portion
of source code where the fault occured; just do a character string search on the four digit

number.

This phase and frequency generator has a number of very specialized features which will be dis-
cussed later. However, before we proceed further, we show a simple example of how phase_frequency ()
can be used.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function will need to be extended when results of order 2.5 and 3 post-Newtonian
calculations have been reported and published.
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5.3 Example: phase_evoltn program

This example uses phase_frequency() to compute the phase and frequency evolution for an in-
spiraling binary and prints the results on the screen (stdout). The other output messages go to
stderr.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

" int main() {

float ml,m2,spinl,spin2,phaseterms[5],clscnc_time,*ptrphase,*ptrfrequency;
float time,Initial Freq,Max_Freq_Rgst,Max Freq_Actual,Sample_Time,time_in_band;
int steps_alloc,steps_filld,i,n_phaseterms,err_cd_-sprs,chirp_ok;

/* Set masses and spins of the orbital system: */
mi=m2=1.4;

spinl=spin2=0.;

/* Set ORBITAL frequency range of the chirp and sample time: x/

Initial Freq=60.; /* in cycles/second */
Max_Freq_Rqst=2000. ; /* in cycles/second */
Sample_Time=1./9868.4208984375; /* in seconds */

/* post-Newtonian [O(1/¢"n)] terms you wish to include (or supress)
in the phase and frequency evolution: */

n_phaseterms=5; /* the number of entries in phaseterms */
phaseterms[0] =1.; /* The Newtonian piece */
phaseterms[1] =0.; /* There is no O(1/c) correction */
phaseterms[2] =1.; /* The post-Newtonian correction */
phaseterms (3] =1.; /* The tail correction */

phasetermsf4] =1.; /* The 2PN correction * /

/* Set memory-allocation and error-code supression logic: */
ptrphase=ptrfrequency=NULL;
err_cd_sprs=0;

/* Use phase_frequency() to compute phase and frequency evolution: */

chirp_ok=phase_frequency(ml,m2,spinl,spin2,n_phaseterms,phaseterms,
Initial _Freq,Max Freq Rqst,&Max Freq_Actual,Sample_Time,&ptrphase,
&ptrfrequency,&steps_alloc,&steps_£illd,&clscnc_time,err_cd_sprs);

/* ... and print out the results: */

time_in_band=(float) (steps_filld—1)=Sample_Time;

fprintf (stderr,"\nml=%f m2=%f Initial_Freg=/f\n", ml,m2,Initial Freq);

fprintf (stderr, "steps_£filld=}i steps_alloc=}i Max_Freq_Actual=/f\n",
steps_filld,steps_alloc,Max_Freq_Actual);

fprintf(stderr,"time_in_band=%f clscnc_time=%f\n",time_in_band,clscnc_time);

fprintf (stderr,"Termnination code: %i\n\n",chirp_ok);

for (i=0;i<steps_filld;i++){
time=i*Sample_Time;
printf ("%i\t%E\t%f\t%f\n",i,time,ptrphase[i],ptrfrequency[i]);

}

return 0;}
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Here is the output from the phase_evoltn example:

GRASP:phase_frequency() :Frequency evolution no longer menotonic.

Terminated at orbital frequency(Hz): 907.465881 and step: 13515 .
Terminating chirp. Termination code set to: 1201
Returning to calling routine.

n1=1.400000 m2=1.400000 Initial_Freq=60.000000
steps_£i11d=13515 steps_alloc=16384 Max_Freq_Actual=907.465881 o
time_in_band=1.369419 clscnc_time=1.369547

Termination code: 1201

0 0.000000 0.000000 60.000000
1 0.000101 0.038086 60.001659
2 0.000203 0.076416 60.003315
3 0.000304 0.114502 60.004967
4 0.000405 0.152710 60.006622
5 0.000507 0.190918 60.008278
6 0.000608 0.229126 60.009930
13507 1.368709 807.409851 731.514954
13508 1.368811 807.882446 753.420715
13509 1.368912 808.369873 778.076355
13510 1.369013 808.873962 806.010376
13511 1.369115 809.397034 837.697449
13512  1.369216 809.941467 872.924805 | ‘
13513  1.369317 810.508545 907.445435 i
13514 1.369419 811.090820 907.465881 {

The first four lines of output come directly from phase_frequency(), and are printed to stderr.
These give a warning message telling why the chirp calculation was terminated; it no longer had
monotonically increasing frequency. It also tells where the chirp was terminated; after computing
13515 points it has reached a frequency of 907Hz. The termination code (1201) is also printed.
Knowing the termination code makes it easy to find the segment of source code that produced the
termination; just do a search for the character string “1201” and you will find the line of code where
the termination code was set. Setting err_cd_sprs greater than 1201 would suppress the printing
of this warning message and all messages with a termination code less than 1201. However, even
without the printed message the calling routine can determine the value of the termination code;
it is returned by phase_frequency(). v

The rest of the output comes from the phase_evoltn program. The quantity time_in band=
(stepsfilld—1)xSample Time is the length (in seconds) of the computed chirp. The quantity
clscnc_time is the value of ¢, that enters Egs.(5.4.1) below. The four column output from left to
right is the integer index of the data points, time stamp of each point in seconds (starting arbitrarily
from zero), the orbital phase in radians (starting arbitrarily from zero), and the orbital frequency
(starting from the initial frequency of 60Hz).

To summarize: It takes about 1.37 seconds for two 1.4M, objects to spiral in from an orbital
frequency of 60Hz to an orbital frequency of 907Hz. The chirp calculation was terminated at 907Hz
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— instead of the requested 2000Hz — because the post-Newtonian expression used to compute the
chirp is clearly out of its region of validity: the frequency is no longer increasing. Examining
the last few data points shows that the frequency was rising quickly — as expected — until the
last two data points. During this inspiral the orbital system went through 811.09/(27) ~129.09
revolutions. The two integer numbers steps_filld and steps_alloc are the number of actual data
points computed and the number of floating point memory slots allocated, respectively. (Memory is
allocated in blocks of 4096 floats at a time. Thus steps_alloc will generally exceed steps_£illd.)
The values of the phase and frequency at every 1/Sample_Time= 1.10333 x 10™* seconds starting.-
from when the binary had an orbital frequency of 60Hz until it neared “coalescence” at 907Hz have
been calculated.
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5.4 Detailed explanation of phase_frequency() routine

The phase_frequency () routine starts with inputs describing the physical properties of the system
(the masses) and an initial frequency from which to start the evolution. We then compute the orbital
frequency evolution [in cycles/second] directly from the formula given in [6]

— Mg -3/8 (743 _1_1) 55 3T s

0 = 167rTomm{@ * 2688 T 32" © 10°
1855009 56975~ 371 5\ s /8} o
(14450688 2580487 T 2048" > o7 (5.4.1)

where myot is the total mass of the binary in grams. The time integral of this equation gives the
orbital evolution in cycles. Multiplying by 27 yields the orbital phase in radians

o1 3715 55 3r
1) = _ = 5/8 (_ oY > 93/8 _ ____(_)1/4
o) = ¢ n{@ * 5062 T 98" 1
0275495 284875 1855 L\ 4 /8}
(14450688 + 258048 T 2048 > © ' (5.'4‘2)

Here © is a dimensionless time variable

o=1% ; _y, (5.4.3)

N = p/Muot, and t. is the time of coalescence of the two point masses. Similarly the constant ¢, is
the phase at coalescence, which is arbitrarily set in phase_frequency() so that ¢ = 0 at the the
initial time. [See the detailed discussion of the phase conventions below.] Also notice that the mass
quantities only appear as ratios with the solar Mass My, and the time only appears as a ratio with
the quantity Tg = 4.89128 x 107 in Eq.(5.0.2).

These formulations of the post-Newtonian equations for the phase and frequency are simple to
implement: each pass through the loop increments the time by the sample time (Sample_Time in
the example) and computes the phase and frequency using Eqs. (5.4.1) and (5.4.2). However, there
is an alternative formulation. In deriving these equations the “natural” equation that arises is of
the form f = F(f). [See e.g. [10] Eq.(3).] This in turn can be integrated to give an equation of the
form t.—t = T(f). In our formulation this equation has been inverted — throwing away higher-order
post-Newtonian terms as you go — to give Eq.(5.4.1). However the equation in the form t.—t = T'(f)
can also be implemented directly. In this type of formulation one would again increment the time,
but then use a root-finding routine to find the frequency at each time step. Our chosen method has
the advantage of avoiding a time-consuming root-finder at each time step; however the alternative
formulation has undergone fewer damaging post-Newtonian transformations, and may therefore be
more accurate.

In our formulation we only need to call a root-finding routine at the start of the chirp to find the
value of ¢, —t when the system is at the initial frequency. In order to insure that we find the correct
root for the starting time we begin a search at a time when the leading order prediction of the
frequency is well below the desired starting frequency. We step forward in time until we bracket the
root; we then call the Numerical Recipes root-finder rtbis() to compute the root precisely. This
is depicted in the lower right corner of figure 17 where we show the value of the “time” coordinate
X that corresponds to an initial frequency of 60Hz. This method is virtually assured of finding the
correct root in that it will find the first solution as we proceed from right to left in figure 17. The
primary problem in finding this root is that there may actually be no meaningfull start-time for
the specified chirp. For example, if you you were to specify a chirp with two 1.4Mg objects with
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an initial frequency of 1000Hz, you can see from the figure that there is no value of X (i.e. t, —t)
that corresponds to this frequency. In this case phase frequency() will search from right to left
for the start time. It will notice that it is passing over the peak in the graph and out of the regime
of post-Newtonian viabilty. It will then terminate the search and notify the caller that there is no
solution for the requested chirp.

The behavior of the frequency equation is shown in figure 17. As time increases the frequency
rises to a maximum and then begins to decrease dramatically. Notice that the maximum occurs
when the dimensionless time-parameter © = %g% = X?® is approximately unity;-this-feature
is only weakly dependent on the mass ratio. The fact that © ~ 1 means the post-Newtonian
corrections in Eq.(5.4.1) are comparable to the leading order term. Therefore, this peak is a natural
place to terminate the post-Newtonian chirp approximation. In the example the code terminated
the chirp for precisely this reason. [See the warning message.]

Although it is not shown in the figure the behavior of f as X nears zero is very abrupt; the
function goes sharply negative and then turns around and diverges to +00 as X — 0 (i.e. t — t.).
This abrupt behavior will happen on a time scale of order T, (a few microseconds). Typical sample
times are likely to be on the order of a tenth of a millisecond, and therefore the iterative loop may
step right over this maximum-minimum-divergence behavior of the frequency function altogether.
Don’t worry. The routine phase frequency() handles this case gracefully. The routine will stop
the chirp calculation and warn the caller if the time stepper goes beyond the coalescence time. It
will also stop the chirp calculation if it senses that the time has stepped over the dip in frequency
and is on the strongly divergent part of the frequency curve near the X = 0 axis.
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Figure 17: Orbital frequency as a function of the “time” coordinate X = ( STomin:
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5.5 Function: chirp filters()

int chirp_filters(float mi, float m2, float spinl, float spin2, int n_phaseterms,
float *phaseterms, float Initial_Freq, float Max_Freq_Rgst,
float *Max_Freq_Actual, float Sample_Time, float **ptrptrCos,
float **ptrptrSin, int *steps_alloc, int *steps_filld, int err_cd_sprs)

This function is a basic stripped-down chirp generator. It computes two — nearly orthogonal — chirp
waveforms for an inspiralling binary. The two chirps differ in phase by 7/2 radians. The chirp values
are given by Eqgs.(5.6.1) and (5.6.2). Just as the phase and frequency calculator phase frequency ()
returns an integer number which describes how the chirp calculation was terminated, this routine
does also.

The arguments are:

nl: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.
spinl: Input. The dimensionless spin parameter of body-1. See section on spin effects.
spin2: Input. The dimensionless spin parameter of body-2. See section on spin effects.

n_phaseterms: Input. Integer describing the number of terms implemented in the phase and
frequency calculations. In the present implementation this should be set to 5.

phaseterms: Input. The array phase_terms[0..n_phaseterms—1] describes which terms will be
included in the phase frequency calculations. Setting phase_terms[i]l=0 nullifys the term.
Setting phase_terms[i]=1 includes the term. This allows for easy run-time nullification of
any term in the phase and frequency evolution, e.g. setting phase_terms [4]=0 eliminates the
second post-Newtonian terms from the calculation.

Initial Freq: Input. The starting orbital frequency of the chirp in Hz.

Max_Freq.Rqst: Input. The requested orbital frequency where the chirp will stop. However, the
actual calculation may not proceed all the way to this orbital frequency.

Max Freq_Actual: Output. The floating number *Max_Freq_Actual is the orbital frequency in Hz
where the chirp actually terminated.

Sample.Time: Input. The time interval between points in seconds.

ptrptrCos:  Input/Output. The chirp corresponding to Eq.(5.6.1) 1is stored in
*ptrptrCos[0..stepsfilld-1]. Input in the sense that much of the internal logic of
chirp filters() depends on how the pointers *ptrptrCos (and *ptrptrSin below) are
set. If either is set to NULL memory allocation will be performed inside chirp filters().
If both are not NULL then it is assumed the calling routine has allocated the memory before
calling chirp filters().

ptrptrSin: Input/Output. Similar to ptrptrCos above. The chirp corresponding to Eq.(5.6.2)
is stored in *ptrptrSin{0..stepsfilld-1].

96




steps.alloc: Input/Output. The integer *steps.alloc is the number of floating point entries
allocated for storing the the two chirps, i.e. the number of valid subscripts in the arrays
*xptrptrCos and **ptrptrSin. This integer should be set in the calling routine if memory is
allocated there, or it will be set inside chirp filters() if memory is to be allocated there. If
both of the pointers *ptrptrCos and *ptrptrSin are not NULL then chirp filters() under-
stands that the calling routine is taking responsibility for allocating the memory for the chirp,
and the calling routine must set *steps.alloc accordingly. In this case chirp_filters()
will fill up the arrays **ptrptrCos and **ptrptrSin until the memory is full (i.e fill them
with *steps_alloc of floats) or until the chirp terminates, whichever is less.

steps.f£illd: Output. The integer *steps_filld is the number of time steps (sample values)
actually computed for this evolution. It is less than or equal to *steps_alloc.

clscnc_time: Output. The float *clscnc_time is the time to coalescence in seconds, measured
from the instant when the orbital frequency is Initial Freq given by f. in Egs.(5.4.1) and
(5.4.2).

err.cd_sprs: Input. Error code supression. This integer specifies the level of disaster encountered
in the computation of the chirp for which the user will be explicitly warned with a printed
message. Set to O: prints all the termination messages. Set to 4000: suppresses all but a
few messages which are harbingers of true disaster. The termination messages are numbered
from 0 to 3999 loosely in accordance with their severity (the larger numbers corresponding
to more severe warnings). Any message with a number less than err_cd_sprs will not be
printed. A termination code of 0 means the chirp calculation was executed as requested.
A termination code in the 1000’s means the chirp was terminated early because the post-
Newtonian approximantion was deemed no longer valid. A termination code in the 2000’s
generally indicates some problem with memory allocation. A termination code in the 3000’s
generally indicates a serious logic fault. Many of these “3000” errors result in the termination
of the program. If you get an error message number it is easy to find the portion of source
code where the fault occured; just do a character string search on the four digit number.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.6 Detailed explanation of chirp filters() routine

The routine chirp filters() calls phase_frequency() to find out the how the orbital phase and
frequency evolve in accordance with the input parameters. It then makes a single pass through that
phase and frequency ephemeris, computing the chirps as it goes, and storing the information in the
space already allocated for the phase and frequency. Most of the fault checking and computations
are done in the phase_frequency() routine, and all the errors messages and warnings come from
there. 7

The routine chirp filters() computes

2/3
he(t) = 2(-Mﬁg) [gﬂ@%ﬁ] c0s 26(2) (5.6.1)
and the other orbital-phase chirp which is 7/2 out of phase with h(t)
2/3
ho(t) = 2<M“5) [ﬂ%\"%@] sin26(2) , (5.6.2)

with all the leading numerical factors we display.

If the so called “restricted” post’-Newtonian polarizations [leading order in the amplitude, but
post?-Newtonian phase corrections] are desired, they can be easily assembled from k. and hs. The
“+” (plus) polarization is given by

b (£) = —%(1 +cos?i)he(?) | (5.6.3)

and the “x” (cross) polarization is given by
T
hy () = —2—8—0(005 i) hs(t) . (5.6.4)

Here D is the (luminosity) distance to the source in centimeters, c is the speed of light in centime-
ters/second, and 4 is the inclination angle (radians) of the of the angular momentum axis of the
source relative to the line-of-sight. See Will and Wiseman [7] figure 7 for the precise definition of
the inclination angle.

The restricted post?-Newtonian strain amplitude impinging on the detector can also be calcu-
lated from the output of chirp _filters() by

h(t) = Frho(t) + Fxhx(2) (5.6.5)

where F, and Fy are the detector beam-pattern functions.

In the remainder of this section we will clarify some technical issues involving the orbital phase.
First, in computing ¢(t) in phase_frequency () we have arbitrarily set the constant ¢, in Eq.(5.4.2)
such that ¢ = 0 at the beginning of the chirp. The astrophysical convention for defining the orbital
phase angle ¢ given in [7] measures ¢ in the plane of the orbit from the ascending node. [The
ascending node of the orbit is where body-1 passes through the plane of the sky going away from the
observer.] Choosing ¢, in this way we have assumed that body-1 is passing through the ascending
node of the orbit at the instant we start our chirp. Detailed information about the overall phase is
not needed for many purposes (i.e. matched filters), therefore our choice is of little consequence.
If this information needs to be included for some application, chirpfilters() can be modified to
do so; thus one can leave the computational engine phase_frequency () untouched.
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The second issue involving the phase is a bit more delicate. We have used the true orbital phase
&(t) to compute oscillatory part of the chirp in Egs.(5.6.1) and (5.6.2). But should we use the
logarithmically modulated phase variable

4Gmy f(E
w(t) = ¢ — 25T 1o ), (5.6
in our computation of the chirp? After all, the true phase of the gravitational-wave signal impinging
on the detector is 2¢. Let us examine the effect on our signal replacing sin2¢ in Eq.(5.6.2) with
the logarithmically corrected sin 29

sin2 = sin<2¢ - W In(f(t)/ fo))

= sin2¢ cos<87r—mz—§y—fg ln(f(t)/fo)) — ¢cos 2¢sin<87r—mct3?£ ln[f(t)/fo))
~ (1 + O(l/c6)> sin 26 — (@thﬁ In(F(t)/ fo)) c0s 26 . (5.6.7)

The O[1/cf] is a post3-Newtonian term and can be neglected in the present post?-Newtonian anal-
ysis. However the coefficient of the cos 2¢ is a post3/2-Newtonian order correction to the waveform,
and must be included in any full post?>-Newtonian analysis. This logarithmic term is included in
the waveform calculation in the strain() routine. However, the last line of Eq.(5.6.7) also shows
that the logarithmic phase correction can be considered a post®/2-Newtonian correction to the am-
plitude. In our present restricted post-Newtonian chirp calculation we neglect these higher order
amplitude corrections, so we are justified in neglecting the logarithmic correction to the phase.

The advantage of neglecting the logarithm is that it speeds up the calculation of the chirps:
we don’t have to compute a logarithm at each time step. However, this may be at expense of
accurately tracking the signal phase of a strongly relativistic source. After all much research has
gone into computing the gravitational wave phase from these sources and we shouldn’t willy-nilly
discard these phase corrections. Is it difficult to modify our code to include this term? Not at
all. In fact, the inclusion of the logarithmic correction to the gravitational wave phase would not
affect phase_frequency(), at all. The fact this logarithmic propagation effect only enters the
chirp filters() routine and not the phase_frequency() routine may seem like a computational
quirk, but this actually has a physical origin: The routine phase _frequency() computes the local
orbital phase of the binary; whereas, the physical origin of the logarithmic term is a propagation
effect and has nothing to do with the orbital phase,

This is not say that no log terms will ever be needed in phase_frequency(). Note that at
post4-Newtonian order there are log terms which do affect the local instantaneous orbital motion
of the binary, so if phase_frequency() is ever modified to incorporate that order, then log terms
will appear there also.

Another issue involving the log term in the phase is the presence of the “arbitrary” scale factor
fo entering the definition of ¥(t) in Eq.(5.6.6). The net effect of adjusting this constant is to change
the value of another arbitrary constant in our phase and frequency equations; it shifts the value
of ¢, in Eq.(5.4.3). In order to to facilitate swift computation, we choose f, to be the minimum
frequency of the requested chirp. This insures that the ratio in the logarithm is of order unity

during the chirp computation.
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5.7 Example: filters program

This example uses chirp.filters() to generate two chirps 7/2 out of phase with each other. It
also demonstrates a different memory allocation option than the phase_evoln example program.

/¥ GRASP: Copyright 1997, Bruce Allen */

#include "grasp.h"

int main() {
float mil,m2,spinl,spin2,phaseterms[5],clscnc_time,*ptrCos,*ptrSin;
float time,Initial Freq,Max.Freq-Rqst,Max _Freq_Actual,Sample.Time,time_in_band;
int steps.alloc,steps £illd,i,n_phaseterms,err_cd.sprs,chirp_ok;

/* Set physical parameters of the orbital system: */
ml=m2=1.4;
spinl=spin2=0.;

/* Set ORBITAL frequency range of the chirp and sample time: */
Initial_Freq=60.; /* in cycles/second */
Max_Freq_Rgst=2000. ; /* in cycles/second x/
Sample_Time=1./9868.4208984375; /« in seconds */

/* post-Newtonian [O(1/c"n)] terms you wish to include (or supress)
in the phase and frequency evolution: x/
n_phaseterms=5;

phaseterms[0] =1.; /* The Newtonian piece */
phaseterms[1] =0.; /* There is no O(1/c) correction */
phaseterms[2] =1.; /* The post-Newtonian correction */
phaseterms[3] =1.; /* The tail correction */
phaseterms{4] =1.; /* The 2PN correction */

/* Set memory-allocation and error-code supression logic: */
steps-alloc=10000;

ptrCos=(float *)malloc(sizeof (float)*steps_alloc);
ptrSin=(float x)malloc(sizeof(float)*steps.alloc);
err_cd_sprs=0; /* 0 means print all warnings */

/* Use chirp_filters() to compute the two filters: */

chirp_ok=chirp_filters(mi,m2,spinl,spin2,n phaseterms,phaseterns,
Initial_Freq,Max_Freq_Rgst,&Max_Freq_Actual,Sample_Time,
&ptrCos,&ptrSin,&steps_alloc,&steps_£illd,&clscnc_time,err-cd-sprs);

/* ... and print out the results: */
time_in_band=(float) (steps_£illd—1)*Sample_Time;
fprintf(stderr,"\nm1=Y%f m2=%f Initial_Freq=if\n", ml,m2, Initial _Freq);
fprintf (stderr,"steps_filld=Y%i steps_alloc=%i Max_Freq_ Actual=/f\n",
steps.filld,steps.alloc,Max_Freq_Actual);
fprintf (stderr,"time_in_band=/f clscnc_time=%f\n",time_in_band,clscnc_time);
fprintf(stderr,"Termnination code: %i\n\n",chirp_ok) ;
for (i=0;i<steps_filld;i++){
time=ixSample_Time;
printf ("%i\t%E\t%£\t%f\n",i,time,ptrCos[i],ptrSin{i]);

}

return O;

}

100




Binary Inspiral Chirp

2 X 1.4 solar masses
2000.0 T T

freq (Hz)
3
o
o
o

Twice orbital frequency

0.0 0.5 1.0 1.5

B g LS
R

RS

h~plus

~-0.10

-0.30 L L
0.0 0.5 1.0 1.5

fime (sec)

0.30 T

0.10 b

h-plus

~0.10 E

-0.30 ! . .
1.330 1.340 1.350 1.360 1.370

fime (sec)

Figure 18: The zero-phase chirp waveform from a 2 x 1.4M¢ binary system, starting at an orbital
frequency of 60 Hz. The top graph shows the frequency of the dominant quadrupole radiation as a
function of time, and the middle graph shows the waveform. The bottom graph shows a 40-msec
stretch near the final inspiral/plunge.

Notice that we only allocated enough memory for 10000 points, and we know from the output
from the previous example that this chirp takes 13515 points. Therefore running this example
results in following error message printed to stderr:

GRASP:phase_frequency() :Allocated memory is filled up before
reaching the maximum frequency reqested for this chirp.

Orbital Frequency Reached(Hz): 98.867607, Number of points: 10000
Terminating chirp. Termination code set to: 2001

Returning to calling routine.

However, even though the routine ran out of memory it still computed the first 10000 points of
the chirp and returned them in the arrays #*ptrptrCos[0..steps_alloc-1] and
*ptrptrSin[0..stepsalloc-1].
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- 5.8 Practical Suggestion for Setting Up a Large Bank of Filters:

We have carefully explained (how to avoid) a number of the pitfalls in computing post-Newtonian
chirps. Before using the chirp generators to spit out hundreds or thousands of chirps needed for a

s

{ bank of filters and farming out the computations out to dozens of parallel processors in a massive
o coalescing binary search, we strongly suggest that you edit the examples already given and check
r the routine against the three extreme cases you will encounter in your search. .

£ "~ 1. Try the example with both masses set to the minimum mass in your proposed search, i.e.
compute the phase and frequency evolution and the chirps for the template in the upper right
hand corner in figure 32. This is the template of longest duration. If you are going to have a
memory allocation problem you will have it with this template. Also, knowing the duration
of the longest template in your search will help you decide the length of the segments of data
] which you filter. In general, you want the length of these data segments to be at least several
L times longer than the longest chirp. See Section 5.14 for further details.

§ 2. Try the chirp generator with both masses set to the maximum mass in your search, i.e.
- compute the phase and frequency evolution of the template in the lower left corner of figure
32. This is the shortest duration template and the one least likely to make it to the upper
cut off frequency before going out of the region of post-Newtonian viability. This case will
be the most demanding test of the “chirp-termination” logic in phase frequency(). It is
also possible in the case of extremely large masses that there really is no chirp at all in
_: the frequency regime requested. For example a binary composed of two 100My object will
- coalesce long before it reaches the initial chirp frequency of the 60Hz we are using as our a

lower cutoff frequency in our example. Don’t worry. The routine phase_frequency() will
[ warn you that the root finder was unable to find a viable solution for the initial time. You
' may have to adjust the search range accordingly.

2 3. Try the chirp generator with one mass at the minimum allowed value and the other mass

i at the maximum allowed value, i.e. compute the phase and frequency evolution for the
template in the upper left corner of figure 32. This is the template which is most dominated
by post-Newtonian terms in the evolution.

* If the routine gives satisfactory results for these three cases, it should work for all the cases shown
in figure 32; you are now ready for wholesale production.
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5.9 Function: make_filters()

void make filters(float ml,float m2,float *chl,float *ch2, float fstart,int n,float
srate,int *filled,float *t_coal,int err_cd._sprs)
This function is an even more stripped down chirp generator, which fills a pair of arrays with
waveforms for an inspiralling binary. The two chirps differ in phase by 7/2 radians and are given
by Eqgs.(5.6.1) and (5.6.2). This routine assumes spinless masses, and computes a chirp with phase
corrections up to and including second-order post-Newtonian order.

The arguments are:

mi: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.

chi: Output. Upon return, ch1[0..filled-1] contains the 0-phase chirp. The remaining array
elements chi[filled..n-1] are set to zero.

ch2: Output. Upon return, ch2[0..filled-1] contains the 7/2-phase chirp. The remaining
array elements ch2[filled. .n-1] are set to zero.

fstart: Input. The starting gravity-wave frequency of the chirp in Hz. Note: this is twice the
orbital frequency!

n: Input. The length of the arrays chi[] and ch2[].

srate: Input. The sample rate, in Hz. This is 1/A¢ where At is the time interval between
successive entries in the chl[] and ch2{] arrays.

filled: Output. The number of of time steps actually computed, before the chirp calculation
was terminated, or until the arrays were filled (hence filled < n). Thus, on return, only
the array elements ch1[0..filled-1] and ch2[0..filled-1] are contain the chirp; the
remaining array elements are zero-padded.

t_coal: Output. The time to coalescense measured from the first point output, in ch*[0].

err_cd_sprs: Input. Error code supression. This integer specifies the level of disaster encountered
in the computation of the chirp for which the user will be explicitly warned with a printed
message. Set to 0: prints all the termination messages. Set to 4000: suppresses all but a few
messages which are harbingers of true disaster. (See identical argument in chirp_filters().

This routine assumes that you have already allocated storage arrays for the chirps. Note that
the coalescence time may be much later than the last non-zero entry written into the chi[] and
ch2[] arrays.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.10 Wiener (optimal) filtering

The technique of optimal filtering is a well-studied and well-understood technique which can be
used to search for characteristic signals (in our case, chirps) buried in detector noise. In order to
establish notation, we begin this section with a brief review of the optimal filtering technique.

Suppose that the detector output is a dimensionless strain k(t). (In Section 3 we show how to
construct this quantity for the CIT 40-meter prototype interferometer, using the recorded digital
data stream). We denote by C(t) the waveform of the signal (i.e., the chirp) which we hope to
find, hidden in detector noise, in the signal stream h(t). Since we would like to know about chirps
which start at different possible times ty, we'll take C(t) = T'(¢ — to) where T'(t) is the waveform
of a chirp which enters the sensitivity band of the interferometer at time ¢ = 0 (for the moment,
forget about the fact that the chirps come in two different phase “flavors”).

We will construct a signal S which is a number, defined by

S= /_ = dt h()Q(D), (5.10.1)

where Q(t) is an optimal filter function in time domain, which we will shortly determine in a way
that maximizes the signal-to-noise ratio S/N or SNR. We will assume that @ is a real function of

time.
We use the Fourier transform conventions of (3.9.3) and (3.9.4), in terms of which we can write

the signal S as
s = [Ta [ a [ arermem R (ng ()
_ / °°°° df / ‘: dF's(f — FHRG*(F)

=/ Z dFR(F)Q*()- (5.10.2)

This final expression gives the signal value S written in the frequency domain, rather than in the

time domain.
Now we can ask about the expected value of S, which we denote (S). This is the average of §
over an ensemble of detector output streams, each one of which contains an identical chirp signal

C(t) but different realizations of the noise:
h(t) = C(t) + n(t). (5.10.3)

So for each different realization, C(t) is exactly the same function, but n(t) varies from each
realization to the next. We will assume that the noise has zero mean value, and that the phases
are randomly distributed, so that (7i(f)) = 0. We can then take the expectation value of the signal
in the frequency domain, obtaining

S = [~ arbn@ = [_#Chaw. (5109

We now define the noise N to be the difference between the signal value and its mean for any given
element of the ensemble:

N=S—(S)= /_ Z dFA(F) 5" (f)- (5.10.5)
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The expectation value of N clearly vanishes by definition, so (N) = 0. The expected value of N?
is non-zero, however. It may be calculated from the (one-sided) strain noise power spectrum of the
detector Sp(f), which is defined by

1

(AHR*(F)) = $Sp(FNS(f = 1), (5.10.6)

and has the property that -
(n2(6) = [ Sn() o, (5.10.7)

We can now find the expected value of N2, by squaring equation (5.10.5), taking the expectation
value, and using (5.10.6), obtaining

WY = [T a [ @ @OEOTEes)

- / :df S(IFDIGP
= [Tasnemp. (5.108)

There is a nice way to write the formulae for the expected signal and the expected noise-squared.
We introduce an “inner product” defined for any pair of (complex) functions A(f) and B(f). The
inner product is a complex number denoted by (A4, B) and is defined by

o0
(4.8) = [ df AR (DS (5109)
Because Sy is real, this inner product has the property that (A4, A) > 0 for all functions A(f),
vanishing if and only if A = 0. This inner product is what a mathematician would call a “positive
definite norm”; it has all the properties of an ordinary dot product of vectors in three-dimensional
Cartesian space.

In terms of this inner product, we can now write the expected signal, and the expected noise-
squared, as

C =~ 1, =
(5)=(3Q) and (V') =3(Q.Q). (5.10.10)
(Note that whenever S appears inside the inner product, it refers to the function Sp(|f|) rather
than Sp(f).) Now the question is, how do we choose the optimal filter function @ so that the
expected signal is as large as possible, and the expected noise-squared is as small as possible? The
answer is easy: to maximize the signal-to-noise ratio

¢
<§>2 _ &2 _ 59 (5.10.11)
@.Q

we choose - -
5 cl) _ T{)
Q f = p—
V)= 507D = 5l
Going back to the definition of our signal S, you will notice that the signal S for “arrival time
offset” tgy is given by

e?rifto, (5.10.12)

s = [ an@w

-0
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MAHE ()
e~ sm S (7))

— / df h(f)zl’f*l(f) —21rifto. (51013)

Given a template T and the signal h, the signal values can be easily evaluated for any choice of
arrival times tg by means of a Fourier transform (or FFT, in numerical work). Thus, it is not really
necessary to construct a different filter for each possible arrival time; one can filter data for all
possible choices of arrival time with a single FFT.

The signal-to-noise ratio for this optimally-chosen filter can be determined by substituting the
optimal filter (5.10.12) into equation (5.10.11), obtaining

S\ 5.6y = IC(HP C(hP
(%) —200=2 agay=1/" fsh> (5:10-14)

You will notice that the signal-to-noise ratio S/N in (5.10.11) is independent of the overall normal-
ization of the optimal filter Q: if we make @Q bigger by a factor of ten, both the expected signal
and the expected noise increase by exactly the same amount. For this reason, we will frequently
specify the normalization of the filter so that the expected noise-squared from a specified source is
unity: (N?2) = 1. This adjustment or change of the filter normalization can be obtained by moving
the (fictitious) astrophysical system emitting the chirp template either closer or farther away from
us. Because the metric strain h falls off as 1/distance, the measured signal strength S is then a
direct measure of the inverse distance.

For example, consider a system composed of two 1.4 M masses in circular orbit. Suppose that
normalizing the optimal filter for this system so that (N?) = 1 corresponds to putting the system
at a distance of 15 megaparsecs (i.e., choosing C(t) to be the strain produced by an optimally-
oriented two x 1.4 My system at a distance of 15 megaparsecs). If we then detect a signal with
a signal-to-noise ration S/N = 30, this corresponds to detecting an optimally-oriented source at a
distance of half a megaparsec.

The functions correlate() and productc() are designed to perform this type of optimal
filtering. We document these routines in the following section and in Section s:utility, then provide
a simple example of an optimal filtering program.

There is an additional complication, arising from the fact that the gravitational radiation from
a binary inspiral event is a linear combination of two possible orbital phases, as may be seen by
reference to equations (5.6.1) and (5.6.2). Thus, the strain produced in a detector is a linear
combination of two waveforms, corresponding to each of the two possible (0° and 90°) orbital

phases:

h(t) = aTo(t) + BTeo(t) + n(2). (5.10.15)

Here the subscripts 0 and 90 label the two possible orbital phases; the constants o and 8 depend
upon the distance to the source (or the normalization of the templates) and the orientation of the
source relative to the detector. Thus Tp(t) denotes the (suitably normalized) function h.(t) given
by equation (5.6.1) and Tyo(t) denotes the (suitably normalized) function hs(t) given by equation
(5.6.2).

In the optimal filtering, we are now searching for a pair of amplitudes  and 3 rather than just
a single amplitude. One can easily do this by choosing a filter function

= Tolf) — iTeo(f) o2mifto
o= B . (5.10.16)
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We will assume that the individual filters for each polarization are normalized by the convention
just described, and that they are orthogonal:

Ty To Teo Tho To Tho
—, = ]|=2 and |=—,—=— | =2, and | —,—= | =0. 5.10.17
(Sh Sh) . <5h Sh 9\ 5 S ( )
Note that Tp and Tyg are only exactly orthogonal in the adiabatic limit where they each have many
cycles in any frequency interval df in which the noise power spectrum Sp(f) changes significantly.

Also note that the filter function Q(f) does not correspond to a real filter Q(t) in the time domain,
since Q(—f) # Q*(f), so that the signal

S(to) = (:%Q) (5.10.18)

is a complex-valued functions of the lag to. We define the noise as before, by N = § — (S). It’s
mean-squared modulus is

NP = 36,0
_ l(fo—ifgo To—ifgo>

2 Sy, Sh
1[{{ Ty Tp Too Too
= —|(28 20 290 20|~ o 5.10.19
where we have made use of the orthornormality relation (5.10.17). Now the expected signal at zero
lagto=0is _ _ L _
)= ({0 5) = (eTot Bl To=Tw) _,, 4 98 (5.10.20)
Sh Sp, Sh
Hence the signal-to-noise ratio is
9 a4 (5.10.21)

V(INE)
In the absence of a signal (S) = 0 and the variance of this quantity (from the definition of N) is
unity:

IND) =1. (5.10.22)
In the presence of a signal, the signal-to-noise ratio is
= = \2 s &\ 2
(S)[? 2, a2 _ 1 h Ty h Ty
= ==, 0=.== — = 5.10.23
NPy~ @ E\\ees) T\se S ( )

The attentive reader will notice that we have lost a factor of v/2 in the signal-to-noise ratio compared
to the case where we were searching for only a single phase of waveform. This is because of the
additional uncertainty associated with our lack of information about the relative contributions of
the two orbital phases. In other words, if we know in advance that a waveform is composed entirely
of the zero-degree orbital phase, then the expectation value of the signal-to-noise, determined by
equation (5.10.11) would be given by (S)/N = /2. However if we need to search for the correct
linear combination of the two possible phase waveforms, then the expectation value of the signal-
to-noise is reduced to (S)/N = a.
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5.11 Function: correlate()

void correlate(float *s,float *h,float *c,float *r,int n) This function evaluates the
correlation (as a function of lag time ¢) defined by the discrete equivalent of equation (5.10.13):

o
sy=3 [ & HAEH e (5111)
It is assumed that 2 (f) and &(f) are Fourier transforms of real functions, and that 7(f) is real. The
factor of 1/2 appears in (5.11.1) for efficiency reasons; in order to calculate the integral (5.10.13)
one should set 7(f) = 2/Sx(f). The routine assumes that 7 vanishes at both DC and the Nyquist
frequency.
The arguments are:

s: Output. Upon return, the array s[0..n-1] contains the correlation s(t) at times

t=0,At,2At,---,(n— 1)At. (5.11.2)

h: Input. The array h[0..n-1] contains the positive frequency (f > 0) part of the complex
function A(f). The packing of h into this array follows the scheme used by the Numerical
Recipes routine realft (), which is described between equations (12.3.5) and (12.3.6) of [1].
The DC component h(0) is real, and located in h[0]. The Nyquist-frequency component

( fNyquist) is also real, and is located in h[1]. The array elements h[2] and h[3] contain
the real and imaginary parts, respectively, of R(Af) where Af = 2fxyquist/n = (nAt)~1.
Array elements h[2j] and h([2j+1] contain the real and imaginary parts of h(] Af) for
j=1,---,n/2—1. It is assumed that h(f) is the Fourier transform of a real function, so that
correlate () can infer the negative frequency components from the equation h( f)y=r*(f)

c: Input. The array c[0..n-1] contains the complex function ¢, packed in the same format as
h(f), with the same assumption that &—f) = &*(f). Note that while you provide the function
&(f) to the routine, it is the complez-conjugate of the function contained in the array c[ ]
which is used in calculating the correlation. Thus if 7 is positive, correlate(s,c,c,r,n)
will always return s[0] > 0.

r: Input. The array r[0..n/2] contains the values of the real function f used as a weight in the
integral. This is often chosen to be (twice!) the inverse of the receiver noise, as in equation
(5.10.13), so that 7#(f) = 2/Sr(|f])- The array elements are arranged in order of increasing
frequency, from the DC value at subscript 0, to the Nyquist frequency at subscript n /2. Thus,
the j’th array element r[j] contains the real value 7#(j Af), for j = 0,1,---,n/2. Again it is
assumed that 7(—f) = 7*(f) = 7(f)-

n: Input. The total length of the complex arrays h and ¢, and the number of points in the output
array s. Note that the array r contains n/2 4+ 1 points. n must be even.

The correlation function calculated by this routine is %FF 71 [izé*f] and has the same dimensions

as the product k X & x 7. The definition is

1 n—1
Zh]cjr] e 2midk/n (5.11.3)
_7 =0

where it is understood that hn_; = ﬁ;f and that &,; = ¢}, and that fn_j =7;.
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5.13 Function: orthonormalize()

void orthonormalize(float* chOtilde,float* ch90tilde,float* twice_inv noise,int n,float*

n0,float*x n90) -
This function takes as input the (positive frequency parts of the) FFT of a pair of chirp signals. T
Upon return, the 90° phase chirp has been made orthogonal to the 0° phase chirp, with respect to

the inner product defined by 2/S,. The normalizations of the chirps are also returned. o

‘The arguments are:
chOtilde: Input. The FFT of the zero-phase chirp Tp.
ch90tilde: Input/Output. The FFT of the 90°-phase chirp Tgo.

twice_inv_noise: Input. Array containing 2/S}.

n: Input. Defines the length of the arrays: chOtilde[0..n-1],ch90tilde[0..n-1],and twice_inv noisel..
n0: Output. The normalization of the 0-phase chirp.

n90: Output. The normalization of the 90°-phase chirp.

Using the notation of (5.10.9) one may define an inner product of the chirps. The normalizations

are defined as follows: 1

n2 (Qo, Qo), (5.13.1)

where Qo is the optimal filter defined for the zero-phase chirp Ty. The chirps are orthogalized
internally using the Gram-Schmidt procedure. We first calculate (Qo,Qo) and (Qoo, Qo) then

define € = (Qgo, @0)/(Qo, Qo). We then modify the 90°-phase chirp setting Too — Tgp — €Tp. This
ensures that the inner product (Qgg, Qo) vanishes. The normalization for this newly-defined chirp

is then defined by

N}

(Q90, @0)- (5.13.2)

[N

1 —
n? =~
Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Notice that the filters Qg and Qgp are not in general orthogonal except in the adiabatic
limit as Sp(f) varies very slowly with changing f. Our approach to this is to construct a
slightly-modified ninety-degree phase signal. Note however that this may introduce small
errors in the determination of the orbital phase. This should be quantified.
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5.14 Dirty details of optimal filtering: wraparound and windowing

To carry out optimal filtering, we need to break the data set (which might be hour, days, or weeks
in length) into shorter stretches of N points (which might be seconds or minutes in length). We
can understand the effects of “chopping up” the data most easily in the case for which (1) the
instrument noise is white, so that S,(f) = 1; (2) the source is so close that it’s signal overwhelms
the noise in the IFO, and (3) we are looking for a signal with a given phase (not a linear combination
of the two orbital phases).

We want to calculate a signal S as a function of lag to using an FFT.

S(to) = / R(E)T(t — to)dt ~ S(io) = 3 hiTy—s, (5.14.1)
J

where we have written both the continuous-time and discrete-time version of the same equation.
Using the definition of the discrete Fourier transform, and writing :

N-1 N-1
h; = Z e 2mk/Np,  and Tj—ip = Z e~ 2mili—io)E'/N T, (5.14.2)
k=0 k'=0

one can easily compute that the signal as a function of lag ip is

N—-1N-1N-1 B _ DU
S(io) — Z e—Zka/Nhke—2m(_7-zo)k /NTk, (5.14'3)

7=0 k=0 k’'=0
N-1N-1 e

= N5k7_k,e21mok /Nhkal (5.14.4)
k=0 k’'=0
N—l .. — ~

= Ne~2réiok/Np, T, (5.14.5)
k=0

Thus, if the data is treated as periodic, and the template is treated as periodic, one can compute
the correlation as a function of time using only an FFT. In particular, the use of rectangular
windowing does create sidelobes of the template’s frequency components. However it also creates
identical sidelobes of the signal’s frequency components - so in effect the correlation in the time
domain can be calculated exactly, without any windowing of the signal being necessary.

The only complication arises from the fact that the FFT treats the data as being periodic. Let’s
consider some simple examples to illustrate the effects of this. In all of our examples, the number
of data points is N = 65,536 = 216 and the (schematic) chirp filter has length m = 13,500 and is
zero-padded after that time. Please remember, in all the figures that follow, to identify the far right
hand side of the graph (i = 65535) with the far left hand side (i = 0). Figure 19 shows S(ip) for
a schematic chirp which begins at the first data point in the rectangular window. You will notice
that the filter output peaks at i = 0. If the incoming chirp arrives somewhat later (it starts at
i = 15,000) as shown in Figure 20 then the the filter output peaks at the start time, as shown. A
chirp in the signal which starts at the i = 65,535 — 13,500 as shown in Figure 21 causes the filter
output to peak at ¢ = 52,035. Thus, in order to find chirps, we need to find the maxima of the
filter output over the interval i =0---, N —m.

Chirp filters can be “stimulated” or “triggered” by events that are not chirps. We will shortly
discuss some techniques that can be used to distinguish triggering events that are chirps from
those that are simply noise spikes or other transient (but non-chirp) varities of non-stationary
interferometer noise. Suppose that a chirp filter is triggered by some kind of transient event in
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Filter input

20000.0 40000.0 60000.0
Filter output

I \

. " N
“0.0 200000 40000.0 60000.0

Figure 19: A chirp starting at initial time ¢ = 0 and ending at time ¢ = 13500 is processed through a
chirp filter, whose output peaks at time § = 0. Notice that because of wraparound, the (non-causal)
filter output begins “earlier” than ¢ = 0.

Filter input

i__,*_m N\\ ]I]

s s .
0.0 200000 40000.0 60000.0
Filter output

w/\ J\ f /\/\/\f

s L s
0.0 20000.0 40000.0 60000.0

Figure 20: A chirp starting at initial time 7 = 15,000 and ending at time i = 28, 500 is processed
through a chirp filter, whose output peaks at time ¢ = 15, 000.

the IFO output. At what time did this transient event ocurr? The answer to this question can be
seen by examining the impulse response of the “periodic filter” scheme, as shown in the following
figures. Thus, by searching for maxima in the filter output over the rangei =0,--- ,N-m—1 we
can detect either true chirps in the data stream, starting in the time interval 1 =0,--- N —m —1
and coalescing (roughly speaking) in the time inverval ¢ =m, -, N — 1, or we can detect transient
impulse-like events in the data stream, which take place in the time interval ¢ =m,---,N — 1. In
the GRASP optimal filtering code, after examining the stretch of N data points, we then shift the
data points i = N —m,---, N — 1 into the range i =0,---,m — 1 and aquire a new additional set
of N —m data points covering remaining (new) time interval.

Note that in practice, because the chirp signal has to be convolved with the response function
R(f) of the detector, the impulse response of the filter is typically a few points longer than the
actual chirp signal. For this reason it is smart to assume that the impulse response of your optimal
filter is slightly longer (say a hundred points longer) than the actual time-domain length of the
corresponding chirp. T'his safety margin is set with the #define SAFETY statement in the optimal
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Figure 21: A chirp starting at initial time i = 52, 035.
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Figure 22: An impulse shortly after i = 0.

filtering example. You lose a tiny bit of efficiency but reduce the likelyhood that boundary effects
from the data discontinuity at the start/end of the rectangular window will significantly stimulate
the optimal filter output for ¢ = 0,---, N —m — 1. (See Figs. 22 and 25 to see an illustration of
how this windowing discontinuity will corrupt the filter’s output.)

We have demonstrated explicitly that with no windowing (or rather, rectangular windowing)
of the data, one can find the appropriate correlation between the signal and a filter exactly: the
rectangular window has the same effect on the signal as it does on the template (shifting energy
into sidelobes in identical fashion). The only complication was that because of the periodic nature
of the FFT one has to be caseful about wrap-around errors in relating the output of a filter to the
time of occurence of a signal or impulse.

There is one remaining ugly question. The optimal filter @ depends upon the noise power
spectrum of the detector. In real-world filtering, should this noise power spectrum be calculated
with windowed, or non-windowed data? We can determine the correlation between signal and
template exactly, with only rectangular windowing, because energy in either of these functions is
shifted into sidelobes in identical fashion. However a “quiet” part of the IFO spectrum can be
corrupted by sidelobes of a nearby noisy region. The effect of this is that the signal get rather less
weight from this region of frequency space than it ought, in theory, to receive. This would argue
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Figure 23: An impulse at i = 15, 000.
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Figure 24: An impulse at ¢ = 28, 500.

for using only properly-windowed data to find the noise power spectrum to use in determing an
optimal filter.

In fact, in our experience, it does not make any difference, at least not when you are searching
for binary inspiral chirps. The reason is that the SNR, obtained in an optimal filter is only sensitive
at second order to errors in the optimal filter function. Thus, the errors due to noise sidelobes
which appear if you fail to window the data to calculate an optimal filter are typically not large.
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Figure 25: An impulse shortly before i = 65535
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5.15 Function: find chirp()

void find.chirp(float* htilde,float* chOtilde,float* ch90tilde,float* twice_inv_noise,float
n0,float n90, float* outputO,float* output90,int n,int chirplen,int* offset,float*
snrmax,float* c0,float* c90,float *var)

This routine filters the gravity-wave strain through a pair of optimal filters corresponding to
the two phases of a binary chirp, then finds the time at which the SNR peaks.
The arguments are:

htilde: Input. The FF'T of the gravity-wave strain.

chOtilde: Input. The FFT of the O-degree chirp.

ch90tilde: Input. The FFT of the 90-degree chirp (assumed orthogonal to the 0-degree chirp).
twice_inv_noise: Input. Twice the inverse noise power spectrum, used for optimal filtering.
n0: Input. Normalization of the 0-degree chirp.

n90: Input. Normalization of the 90-degree chirp.

output0: Qutput. A storage array. Upon return, contains the filter output of the O-degree phase
optimal filter.

output90: Output. A storage array. Upon return, contains the filter output of the 90-degree
phase optimal filter.

n: Input. Defines the lengths of the various arrays: chOtilde[0..n-1], ch90tilde[0..n-1],
output0[0..n-1], output90[0..n-1], and twice.inv_ noise[0..n/2].

chirplen: Input. The number of bins in the time domain occupied by the chirp that you are
searching for. This is necessary in order to untangle the wrap-around ambiguity explained
earlier.

offset: Output. The offset, from 0 to n-chirplen-1, at which the signal output (for an arbitrary
linear combination of the two filters) peaks.

snr_max: QOutput. The maximum signal-to-noise ratio (SNR) found.
c0: Output. The coefficient of the 0-phase template which achieved the highest SNR.

c90: Output. The coefficient of the 90°-phase template which achieved the highest SNR. Note
that ¢ + ¢, should be 1.

var: Output. The variance of the filter output. Would be 1 if the input to the filter were colored
Gaussian noise with a spectrum defined by Sp.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.16 Function: freq_inject_chirp()

void freg_inject chirp(float c0,float c90,int offset,float invMpc,float* chOtilde,float*

ch90tilde,float* htilde,int n)

The bottom-line test of any optimal filtering code or searching routines is: can you inject
“fake” signals into the data stream, and properly detecting them, while properly rejecting all other
signatures of instrumental effects, etc. This routirnie injects artificial signals into the frequency-
domain strain A(f). The plane of the binary system is assumed to be normal to the line to the
detector.

The arguments are:

c0: Input. The coefficient of the O0-phase template to inject.
c90: Input. The coefficient of the 90°-phase to inject. Note that c + cZ, should be 1.

offset: Input. The offset number of samples at which the injected chirp starts, in the time
domain.

invMpc: Input. The inverse of the distance to the system (measured in Mpc).
chOtilde: Input. The FFT of the phase-0 chirp (strain units) at a distance of 1 Mpc.
ch90tilde: Input. The FFT of the phase-90 chirp (strain units) at a distance of 1 Mpec.

htilde: Output. The FFT of the gravity-wave strain. Note that this routine adds into and
increments this array, so that if it contains another “signal” like IFO noise, the chirp is
simply super-posed onto it.

n: Input. Defines the lengths of the various arrays chOtilde[0..n-1], ch90tilde[0..n-1], and
htilde[0..n-1].

Note that in making use of this injection routine, you must determine the level of the quantiza-
tion noise of the ADC, and be careful to inject a properly dithered version of this signal when it’s
amplitude is small compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See the comments for time_inject_chirp, particularly with respect to the digital
quantization noise.

118




5.17 Function: time_inject_chirp()

void time_inject_chirp(float c0,float c90,int offset,float invMpc,float* chirp0,float*

chirp90,float* data,float *response,float *work,int n)

This is a time-domain version of the previous function freq_-inject_chirp() which injects
chirps in the time-domain (after deconvolving them with the detector’s response function). This
routine injects artificial signals into the time-domain strain h(t). The plane of the binary system
is assumed to be normal to the line to the detector.

The arguments are:

c0: Input. The coefficient of the 0-phase template to inject.
c90: Input. The coefficient of the 90°-phase to inject. Note that & + c, should be 1.

offset: Input. The offset number of samples at which the injected chirp starts, in the time
domain.

invMpc: Input. The inverse of the distance to the system (measured in Mpc).
chirp0: Input. The time-domain phase-0 chirp (strain units) at a distance of 1 Mpc.
chirp90: Input. The time-domain phase-90 chirp (strain units) at a distance of 1 Mpc.

data: Output. The detector response in time that would be produced by the specified binary
inspiral. Note that this routine adds into and increments this array, so that if it contains
another “signal” like IFO noise, the chirp is simply super-posed onto it.

response: Input. The function R(f) that specifies the response function of the IFO. This is
produced by the routine normalize gw().

work: Output. A working array.

n: Input. Defines the lengths of the various arrays chirp0[0..n-1], chirp90[0. .n-1],data[0..n-1],

work[0..n-1], and response[0..n+1] (note that this ”+” sign is not a typo!).

Note that in making use of this injection routine, you must determine the level of the quantiza-
tion noise of the ADC, and be careful to inject a properly dithered version of this signal when it’s
amplitude is small compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: A short look at the time-domain signal which is injected shows that it has a low-
amplitude spike at the very start. This may be an un-avoidable Gibbs phenomenon associated
with the turn-on of the waveform. A second interesting point is that for many interesting
signals, the amplitude of the injected signal in the time domain is below the level of the
quantization noise. Thus, a sensible injection scheme would be to add it into an appropriately
dithered (float) version of the integer signal stream, then cast that back into an integer. This
should be tried.
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5.18 Vetoing techniques

In an ideal world, the output of an interferometer would be a stationary signal described by Gaussian
statistics (with very rare superposed binary inspiral chirps and other gravitational-wave signals).
This is unfortunately not the case, as can be quickly determined by simply listening to the raw
(whitened) interferometer output. Typically the output is a stationary-sounding hiss, interupted
every few minutes by an obvious irregularity in the data stream. These are typically “pops”,
“bumps”, “clicks”, “howlers”, “scrapers” and other recognizable categories of noises. In at least
some cases, there are “suspects” for these events. For example the pops and bumps might be
problems in any of the hundreds of BNC cable connectors used in the instrument.

It is an unfortunate fact that the output of an optimal filter strongly reflects these events. As
you have seen in the previous section, a delta-function-like impulse signal in the IFO ouput can
cause a large signal in the optimal filter. And in practice, this happens all of the time - the outputs
of optimal chirp filters are frequently triggered by identifiable events in the IFO data stream that
are clearly not binary inspiral chirps. Distinguishing these events from real inspiral chirps is called
vetoing. We have found that two vetoing techniques work particularly well.

The first technique operates in the time domain, and is documented in the routine is_gaussian().
The idea is straightforward: if a chirp detector (optimal filter) is triggered, then we look in the
data stream for an impulse event that might be responsible. Such events can be found by looking
at the statistical distribution of the points in the time domain. If this distribution is significantly
non-Gaussian then it indicates that some large transient event caused the filter to trigger, and the
event is rejected.

The second technique is described here, and operates in the frequency domain. It is a very
stringent test, which determines if the hypothetical chirp which has been found in the data stream
is consistent with a true binary inspiral chirp summed with Gaussian interferometer noise. If this is
true, it should be possible to subtract the (best fit) chirp from the signal, and be left with a signal
stream that is consistent with Gaussian IFO noise. One of the nice features of this technique is
that it can be statistically characterized in a rigorous way.

Suppose that one of our optimal chirp filters Q is triggered with a large SNR at time to. We
will denote the signal value at this time by S:

_ fNy T*(f) —-27r1,fto 8.1
s= )4 R (181)

(Here, fny denotes the Nygist frequency, one-half of the sampling rate.) The chirp template T is
normalized so that the expected value (N?) = 1:

vy |T(HIF _
/0 & S =1 (5.18.2)

We are going to investigate if this signal is “really” due to a chirp by investigating the way in which
S gets its contribution from different ranges of frequencies. To do this, break up the integration
region in this integral into a set of p disjoint subintervals Afi,---,Af, whose union is the entire
range of frequencies from DC to Nyquist. Here p is a small integer (for example, p = 8). This
splitup can be performed using the GRASP function splitup(). The frequency intervals:

Afi = {flI0<f<f}
Afa = {flHh<f<f}

Afp = {f|fo-1 <f<fxy} (5.18.3)

120




are defined by the condition that the expected signal contributions in each frequency band from a

chirp are equal:
ITHE _1 i TP
NS~ A7 (5184
Because the filter is optimal, this also means that the expected noise contributions in each band
from the chirp is the same. The frequency subintervals A f; are fairly narrow in regions of frequency
space where the interferometer is quiet, and they are fairly wide in regions where the IFO is noisy.
Now, define a set of p signal values, one for each frequency interval:

S; = / df AT ) -omifte gor 4 = 1,---,p. (5.18.5)
—afoaf;  Sa(lf])

We have included both the positive and negative frequency subintervals to ensure that the S; are

real. If the detector output is Gaussian noise plus a true chirp, then the expected value of each of

these signal values is (S;) = S/p. In this case the values of AS; = S; —S/p are independent normal

random variables with a mean value of zero and a variance o determined by the expected value of

the noise-squared. Because of our choice of template normalization this is:

o =(AS}) = (N%)/p=1/p. (5.18.6)

Hence, in the presence of a true chirp and interferometer noise, the probability distribution of the
AS; is given by

P
P(ASy,---,AS,) = [[(2m0)~2e=A81/20 = (270)~P/2e=(AST+-+AS})/20, (5.18.7)
=1

Thus, if our optimal chirp filter is triggered by an event, we can check the contributions to the
signal in each of p frequency subintervals, to determine if the distribution of frequency and the

arrival times in the p distinct subintervals is consistent with “chirp + Gaussian noise”.
Because the AS; are independent random variables with zero mean and variance 1/p, the sum

of their squares is described by a x? probability distribution. Define the statistic

2 =3 (A8 (5.18.8)

i=1

Then one can easily compute the probability distribution of r. The probability that r > R in the
presence of a true chirp signal is

P(r>R) = (2r0)??Q, , / rN=1g=r%/20 g (5.18.9)
R

- -F(PL/2)/RZ/2 w e (5.18.10)

= Q(p/2, R*/20), (5.18.11)

where (2, is the p—volume of a unit-radius p—sphere SP. The incomplete gamma function @ is the
same function that describes the likelyhood function in the traditional x? test.

In practice (based on CIT 40-meter data) breaking up the frequency range into p = 8 intervals
provides a very reliable veto for rejecting events that trigger an optimal filter, but which are not
themselves chirps. The value of Q(4,10.0) = 0.0103--- so if 72 > 2.5 then one can conclude that
the likelyhood that a given trigger is actually due to a chirp is less than 1%; rejecting or vetoing
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such events will only reduce the “true event” rate by 1%. However in practice it eliminates almost
all other events that trigger an optimal filter; a noisy event that stimulates a binary chirp filter
typically has 72 ~ 100 or larger!

Note that this technique is probably a computationally-efficient and simple version of the
maximum-likelyhood statistical test. This test is probably obtained in the limit where the number
of frequency bins equals p.
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5.19 Function: splitup()

void splitup(float *working,float template,float *r,int n,float total,int p,int *indices)
This routine takes as inputs a template and a noise-power spectrum, and splits up the frequency =

spectrum into a set of sub-intervals to use with the vetoing technique just described.
The arguments are:

working: Input. An array working[0..n-1] used for working space.

template: Input. The array template[0..n-1] contains the positive frequency (f > 0) part
of the complex function T(f). The packing of T into this array follows the scheme used
by the Numerical Recipes routine realft (), which is described between equations (12.3.5)
and (12.3.6) of [1]. The DC component T(0) is real, and located in template[0]. The
Nyquist-frequency component f’( [Nyquist) is also real, and is located in template[1]. The
array elements template[2] and template[3] contain the real and imaginary parts, respec-
tively, of T(Af) where Af = 2 FNyquist/n = (nAt)™L. Array elements template[2j] and
template[2j+1] contain the real and imaginary parts of T'(j Af) for j =1,---,n/2 - 1.

r: Input. The array r[0..n/2] contains the values of the real function 7 which is twice the
inverse of the receiver noise, as in equation (5.10.13), so that #(f) = 2/Sx(|f|). The array
elements are arranged in order of increasing frequency, from the DC value at subscript 0, to
the Nyquist frequency at subscript n/2. Thus, the j’th array element r[j] contains the real
value #(j Af), for j = 0,1,---,n/2. Again it is assumed that 7(—f) = 7*(f) = 7(f).

n: Input. The total length of the complex arrays template and working, and the number of
points in the output array s. Note that the array r contains n/2 + 1 points. n must be even.

total: Input. This is the total value of the integrated template squared over Sp; the frequency
subintervals are choose so that each of the p subintervals contains 1/p of this total.

p: Input. The number of frequency bands into which you want to divide the range from DC to
f Nyquist-

indices: Quput. The frequency bins of the first frequency band are i=0. .indices[0]. The next ;
frequency band is i=indices[0]+1..indices[1]. The p’th frequency band is i=indices[p-2]+1..indiu
Note that indices[p-1]=n-1.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.20 Function: splitup_freq()

float splitupfreq(float c0,float c90,float *chirpO, float *chirp90,float norm, float*
twice_inv_noise,int n,int offset,int p,int* indices,float* stats, float* working,float*

htilde)

This routine returns the value of the statistic r* = 3°5_, (AS;)2. This is a less-efficient version,
which internally constructs filters for each of the different frequency subintervals, and then filters
the metric perturbation through those filters. It is useful to understand how the different frequency
components behave in the time domain, after filtering.

The arguments are:

c0: Input. The coefficient of the 0-phase template.

c90: Input. The coefficient of the 90°-phase template. Note that ¢ + c3; should be 1.
chirpO: Input. An array chirp0[0..n-1] containing the FFT of the O-phase chirp.
chirp90: Input. An array chirp90(0..n-1] containing the FFT of the 90°-phase chirp.
norm: Input. The normalization of the 0-phase chirp.

twice_inv_noise: Input. The array twice_inv_noise[0..n/2] contains 2/Sp(f), as described
previously.

n: Input. Defines the lengths of the previous arrays.
offset: Input. The offset of the moment of maximum signal in the filter output.
p: Input. The number of frequency bands p for the vetoing test.

indices: Output. An array indices[0..p~1] used for internal storage of the frequency subin-
tervals (see splitup().

stats: Output. An array stats[0..p-1] containing the values of the S; fori =1,---,p.
working: Output. An array working[0..n-1] used for internal storage.

htilde: Input. An array htilde[0..n-1) containing the positive frequency part of R(F).
Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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Note that the input arraysh[ ] and ¢[ ] can be the same array. For example correlate(s,c,c,r,n)
calculates the discrete equivalent of

sy =3 [ dr eln)PA(s) e, (5.11.4)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: For the sake of efficiency, this function-does not include the contribution from either— -
DC or Nyquist frequency bins to the correlation (these are negligible in any sensible data).
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5.12 Function: avg.inv_spec()

void avg_inv.spec(float flo,float srate,int n,double decay,double *norm, float *htilde,
float* mean_pow._spec,float* twice_inv_noise)
This function maintains an auto-regressive moving average (see avg_spec () of the power spectrum
Sk(f), and an array containing 2/Sk(f), which can be used for optimal filtering. This latter array
is set to zero below a specified cuff-off frequency fiow-

The arguments are:

flo: Input. The low frequency cut-off fioy, in Hz.
srate: Input. The sample rate, in Hz. 7
n: Input. The number of points in the arrays.

decay: Input. The quantity exp(—a) as defined in avg spec(). Sets the characteristic decay
time for the auto-regressive average.

norm: Input/Ouput. Used for internal storage. Set to 0 when you want to begin a new auto-
regressive average. Must not be altered otherwise.

htilde: Input. The array htilde[0..n-1] contains the positive frequency FFT of the metric
perturbation.

mean_pow_spec: Output. The array mean_pow_spec[0..n/2] contains the mean power spectrum.
Should be zeroed when resetting to begin a new average.

twice_inv_noise: Output. The array twice_inv.noise[0..n/2] contains 2/Sy(f). It is set to
zero for f < fiow-

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: We assume here that the “correct” thing to do is the average the spectrum, then
invert it. There may be a better way to construct the weight function for an optimal filter,

however.
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5.21 Function: splitup_freq2()

float splitupfreq2(float c0,float c90,float *chirp0, float *chirp90,float norm, floatx
twice_invnoise,int n,int offset,int p,int* indices,float* stats, float* working,float*
htilde)
This routine returns the value of the statistic 72 = 3°F_,(AS;)?. This is a more computationally-
efficient version, which does not filter & through each of the p independent time domain filters. The
arguments are identical to those of splitup _freq(). v

The arguments are:

c0: Input. The coefficient of the 0-phase template.

c90: Input. The coefficient of the 90°-phase template. Note that c3 + c2, should be 1.
chirp0: Input. An array chirp0[0..n-1] containing the FFT of the O-phase chirp.
chirp90: Input. An array chirp90[0..n-1] containing the FFT of the 90°-phase chirp.
norm: Input. The normalization of the 0-phase chirp.

twice_inv.noise: Input. The array twice_inv_noise[0..n/2] contains 2/S,(f), as described
previously.

n: Input. Defines the lengths of the previous arrays.
offset: Input. The offset of the moment of maximum signal in the filter output.
p: Input. The number of frequency bands p for the vetoing test.

indices: Output. An array indices[0..p-1] used for internal storage of the frequency subin-
tervals (see splitup().

stats: Output. An array stats[0..p-1] containing the values of the S; fori =1,---,p.
working: Output. An array working[0..n-1] used for internal storage.

htilde: Input. An array htilde[0..n-1] containing the positive frequency part of A(f).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.22 Example: optimal program

This program reads the 40-meter data stream, and then filters it though a chirp template corre-
sponding to a pair of inspiraling 1.4M¢ neutron stars.

The correspondence between different arrays in this program, and the quantities discussed
previously in this section, is given below. In these equations, At = 1/srate is the sample time in
seconds, and Af = (nAt)~! = srate/npoint is the size of a frequency bin, in Hz. Here n = npoint
is_the number of points in the data stream which are being optimally filtered in one pass..

Chirp templates (in frequency space) for the two polarizations are related to the arrays chlrpO [ ]
and chirpil[ ] by

~ A
To(f) = HSC!fLE chirpo(] (5.22.1)
- A
Toolf) = oo chizpi] (5.22.2)

where the elements chirp0[2j] and chirp0[2j+1] are the real and imaginary parts at frequency
f =jAf (with the exception of the Nyquist frequency, stored in chirp0[1]). Note that to ensure
that quantities within the code remain within the dynamic range of floating point numbers, we
have scaled up the template strain by a constant factor HSCALE; we also scale up the interferometer
output by the same factor, so that all program output (such as signal-to-noise ratios) is independent
of the value of HSCALE. If you're not comfortable with this, go ahead and change HSCALE to 1. It
won’t change anything, provided that you don’t overflow the dynamic range of the floating point
variables! The scaled interferometer response function is "

response| | = HSCALE/ARMLENGTH x R(f), (5.22.3)

where the function R(f) is defined by equation (3.12.3). The Fourier transform h of the dimen-
sionless strain is obtained by multiplying At and the FFT of channel.0 by response[ ], yielding

h(f) =

htilde[]. (5.22.4)
HSCALE

The one-sided noise power spectrum S (f) is the average of

2 - 9 2 (At)? ) 9 2At ) 9
_ __2 (At __ At . 22.
Su(f) = M = 75 peearg Pritdel " = g hvilde]]] (5.22.5)

The power spectrum Si(f) is averaged using the same exponential averaging techmque described
for the routine avg_spec. This average is stored as

2At

—_— _powv_ 22.6
—HSCALE? mean.pow._spec]| ] (5 )

Su(f) = (Ihtilde[]*) = ~SCALE?

Twice the inverse of this average is stored in the array twice_inv noise[ ], so that

2 n HSCALE?
= twice._inv. noise]|. 5.22.7
ST A : (5227
The expected noise-squared for the plus polarization is given by equation (5.10.8):

HE

- |T0(
o) = @@ =5 [ aThl
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11 _1|_(A)? |chir o[]|21LH—SPEE-1-twice inv_noise|]
2nAt 0 | HSCALE? At 2 i
1

1

= FFTO [lchirpo[ ]lzétwi ce_inv.noise[ ]]

1
- Ecorrelate(- -, chirp0[], chirpO[], twice_invnoise[],npoint). (5.22.8)
where the subscript on the inverse FFT means “at zero lag”, and “— f” means “returned by the
call to the function f’. We have chosen a distance for the system producing the “chirp” T f) so
that the expected value of (N2) = 1.
In similar fashion, the signal S at lag ¢y is given by

ho -
S = (_7Q)
— / df h(f TO ) —27r’ifto
Sn(f)
= g — htilde[] At (chi O[])*Mltwi inv.noise|]
= nAt i | HSCALE ®Udscare ‘P At 2 ice-

= FFI1! [htilde[] chirpO]] %twice_inv_noise[]J
— correlate(---,htilde[], chirp0[],twice_invnoise[],npoint), (5.22.9)

where now the subscript on the FFT means “at lag t = ¢ A¢”.

You might wonder why we have been so careful — after all, both the signal and the noise, as .
we've defined them, are dimensionless, so it’s not surprising that all of the factors of At drop out
of the final formulae for the signal and the expected noise-squared. The main reason we’ve been so
long winded is to show exactly how the units cancel out, and to demonstrate that there aren’t any
missing dimensionless constants, like npoint, left out of the program. Some sample output from
this program is shown in the next section.
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- /* GRASP: Copyright 1997, Bruce Allen */
’ #include “"grasp.h"

#define NPOINT 131072 /* The size of our segments of data (13.1 secs) */
— #define FLO 120.0 /* The low frequency cutoff for filtering */
#define ARMLENGTH 40.0 /* Armlength of the IFO, in meters */
' #define HSCALE 1.e21 /* A convenient scaling factor; results independent of it %/
B #define MIN-INTO.LOCK 3.0 /* Number of minutes to skip into each locked section */
- #define SAFETY 1000 /* Padding safety factor to avoid wraparound errors */

int main() {
; void realft(float*,unsigned long,int);
é int i,code,npoint,remain=0,maxi,chirplen,needed,diff 1mpulseoff chirppoints,indices([8];
, float distance,snr_max,srate=9868.4208984375,tstart,var,*mean_povw_spec,timeoff,timestart;
float *data,*htilde,*outputgo,*outputO,*chirpO,*chirpQO,*chOtilde,*chQOtilde,*response;
! float n0,n90,inverse.distance_scale,decaytime,*twice_inv_noise,datastart,tc;
. float 1in0,1in90,invMpc_inject,varsplit,stats(8],gammq(float,float);

double decay,norm,prob;

, short *datas;
P FILE sfpifo,*fpss,xfplock;

;- /* open the IFO output file, lock file, and swept-sine file */

fpifo=grasp_open("GRASP_DATAPATH","channel.O");
fplock=grasp_open("GRASP_DATAPATH","channel.10");
fpss=grasp_open("GRASP_DATAPATH", "swept-sine.ascii");

/* number of points to sample and fft (power of 2) /
needed=npoint=NPOINT;

/* stores ADC data as short integers */
datas=(shortx)malloc(sizeof (short)*npoint);

/* stores ADC data in time & freq domain, as floats */
data=(float *)malloc(sizeof (float)*npoint);

/* The phase 0 and phase pi/2 chirps, in time domain */
chirpO=(float *)malloc(sizeof(float)*npoint);
chirp90=(float *)malloc(sizeof (float)*npoint);

/* Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain */
chOtilde=(float *)malloc(sizeof (float)x*npoint);
ch90tilde=(float *)malloc(sizeof (float)xnpoint) ;

/* The response function (transfer function) of the interferometer /
response=(float x)malloc(sizeof (float)*(npoint+2));

- /* The gravity wave signal, in the frequency domain */
htilde=(float *)malloc(sizeof(float)*npoint);

/* The autoregressive-mean averaged noise power spectrum x /
mean_pow_spec=(float *)malloc(sizeof (float)x(npoint/2+1));

/* Twice the inverse of the mean noise power spectrum */
twice_inv_noise=(float *)malloc(sizeof (float)*(apoint/2+1));
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/* Ouput of matched filters for phase0 and phase pi/2, in time domain, and temp storage */
outputO=(float *x)malloc(sizeof(float)snpoint);
output90=(float x)malloc(sizeof(float)=*npoint);

N

/* get the response function, and put in scaling factor */
normalize_gw(fpss,npoint,srate,response);
for (i=0;i<npoint+2;i++)

response [1] »=HSCALE/ARMLENGTH;

/* manufacture two chirps (dimensionless strain at 1 Mpc distance) */

make_filters(1.4,1.4,chirp0,chirp90,FLO,npoint,srate,&chirppoints,&tc,0);

inverse_distance_scale=2.0xHSCALE* (TSOLARxC_LIGHT/MPC) ;

for (i=0;i<chirppoints;i++}{
chOtilde[i]l=chirpO[i]+=inverse_distance_scale;
ch90tilde[il=chirp90[i]#=inverse.distance_scale;

}

/+ and FFT the chirps */
realft(chOtilde—1,npoint,1);
realft(ch90tilde—1,npoint,1);

/* set length of template including a safety margin */
chirplen=chirppoints+SAFETY;
if (chirplen>npoint) abort();

/+ This is the main program loop, which aquires data, then filters it */
while (1) {
/* Seek MIN_INTO_LOCK minutes into a locked stretch of data */

while (remain<needed) {
code=get.data(fpifo,fplock,&tstart,MIN_INTO_LOCK*60*srate,datas,&remain, &srate,1);

if (code==0) return 0;

}

/#* if just entering a new locked stretch, reset averaging over power spectrum * /
if (code==1) {

norm=0.0;

clear (mean_pow_spec,npoint/2+1,1);

/* decay time for spectrum, in sec. Set to 15x length of npoint sample */
decaytime=15.0*npoint/srate;
decay=exp(—1.0%npoint/(sratexdecaytime));

}

/* Get the next needed samples of data */

diff=npoint—needed;
code=get_data(fpifo,fplock,&tstart,needed,datas+diff,&remain,&srate,0);
datastart=tstart—diff/srate;

/* copy integer data into floats */
for (i=0;i<npoint;i++) datali]=datas[i];

/* inject signal in time domain (note outputO[] used as temp storage only) */
invMpc_inject=0.0;  /* To inject a signal at 10 kpc, set this to 100.0 */
time.inject_chirp(1.0,0.0,12345,invMpc_inject,chirp0,chirp90,data,response, outputO,npoint);
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/* find the FFT of datax/
realft(data—1,npoint,1);

/* normalized delta-L/L tilde */
product (htilde,data,response,npoint/2) ;

/* inject a signal in frequency domain, if desired */
invMpc_inject=0.0;  /x To inject a signal at 10 kpe, set this to 100.0 */
freq_inject_chirp(—0.406,0.9135,23456,invMpc_inject,chOtilde,ch90tilde,htilde,npoint);

/* update the inverse of the auto-regressive-mean power-spectrum x*/
avg_inv_spec(FLO,srate,npoint,decay,&norm,htilde,mean pow_spec,twice_inv_noise);

/* orthogonalize the chirps: we never modify chOtilde, only ch90tilde %/
orthonormalize(chOtilde,ch90tilde,twice_inv_noise,npoint,&n0,&n90) ;

/* distance scale Mpc for SNR=1 */
distance=0.5/n0+0.5/n90;

/* find the moment at which SNR is a maximum */
find chirp(htilde,chOtilde,ch90tilde,twice_inv_noise,n0,n90, outputO,output90,
npoint,chirplen, &maxi,&snr max,&1in0,&1in90,&var);

/* identify when an impulse would have caused observed filter output */
impulseoff=(maxi+chirppoints)npoint;
timeoff=datastart+impulseoff/srate;
timestart=datastart+maxi/srate;

/* if SNR greater than 5, then print details, else just short message */
if (snr.max<5.0)
printf("max snr: %.2f offset: )d data start: %.2f sec. variance: %.5f\n",
snr_max,maxi,datastart,var);
else {
/* See if the nominal chirp can pass a frequency-space veto test */
varsplit=splitup_freq2(1in0*n0/sqrt(2.0),1in90%n90/sqrt(2.0) ,chOtilde,ch90tilde,2.0/(n0%n0)
twice_inv_noise,npoint,maxi,8,indices,stats,outputO,htilde);
prob=gammq(4.0,4.0xvarsplit);
printf("\nMax SNR: %.2f (offset %d) variance %f\n",snr max,maxi,var);
printf(" If impulsive event, offset %d or time %.2f\n",impulseoff,timeoff};
printf (" If inspiral, template start offset %d (time %.2f) coalescence time %.2f\n",
maxi,timestart,timestart+tc);
printf("  Normalization: S/N=1 at %.2f kpc\n",1000.0xdistance);
printf(" Linear combination of max SNR: %.4f x phase 0 + %.4f x phase_pi/2\n",1in0,1in9(
if (prob<0.01)
printf(" Less than 1%j probability that this is a chirp (p=if).\n",prob);
else
printf("  POSSIBLE CHIRP! with > 1%% probability (p=%f).\n",prob);

/* See if the time-domain statistics are unusual or appears Gaussian */
if (is_gaussian(datas,npoint,—2048,2047,1))

printf(" Distribution does mnot appear to have outliers...\n\n");
else
printf("  Distribution has outliers! Reject\n\n");
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}

/* shift ends of buffer to the start */

needed=npoint—chirplen+1;

for (i=0;i<chirplen—1;i++)
datas[i]=datas[i+needed];

/* reset if not enough points remain to fill the buffer =/
if (remain<needed)
needed=npoint;
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5.23 Some output from the optimal program

Some output from the optimal program follows:

max snr: 3.11 offset: 23623 data start: 180.00 sec. variance: 0.94044
max snr: 2.91 offset: 3311 data start: 185.17 sec. variance: 0.84484

max snr: 2.53 offset: 19041 data start: 309.26 sec. variance: 0.70333
max snr: 2.98 offset: 35711 data start: 314.43 sec. variance: 0.67523

Max SNR: 8.71 (offset 42109) variance 0.805030
If impulsive event, offset 55624 or time 325.23
If inspiral, template start offset 42109 (time 323.86) coalescence time 325.23
Normalization: S/N=1 at 116.75 kpc
Linear combination of max SNR: 0.9315 x phase_0 + 0.3638 x phase_pi/2
Less than 1% probability that this is a chirp (p=0.000000).
- Distribution: s= 23, N>3s= 12 (expect 176), N>bs= 0 (expect 0)
Distribution does not appear to have outliers...

max snr: 2.51 offset: 31183 data start: 324.77 sec. variance: 0.63028
max snr: 2.56 offset: 49909 data start: 329.94 sec. variance: 0.66853

max snr: 2.82 offset: 35080 data start: 3002.03 sec. variance: 0.77306
max snr: 2.61 offset: 33141 data start: 3007.20 sec. variance: 0.74268

Max SNR: 89.75 (offset 16678) variance 82.547005
If impulsive event, offset 30193 or time 3015.43
If inspiral, template start offset 16678 (time 3014.06) coalescence time 3015.43
Normalization: S/N=1 at 128.49 kpc
Linear combination of max SNR: -0.3955 x phase_0 + 0.9185 x phase_pi/2
Less than 1% probability that this is a chirp (p=0.000000).
Distribution: s= 29, N>3s= 157 (expect 176), N>5s= 30 (expect 0)
Distribution has outliers! Reject

max snr: 3.24 offset: 22412 data start: 3017.54 sec. variance: 0.99474
max snr: 2.73 offset: 37777 data start: 3022.71 sec. variance: 0.75325

max snr: 2.80 offset: 5893 data start: 4140.89 sec. variance: 0.73240
max snr: 2.75 offset: 46932 data start: 4146.06 sec. variance: 0.69654

Max SNR: 6.08 (offset 30002) variance 0.883380
If impulsive event, offset 43517 or time 4155.64
If inspiral, template start offset 30002 (time 4154.27) coalescence time 4155.64
Normalization: S/N=1 at 113.04 kpc
Linear combination of max SNR: -0.4773 x phase_0 + 0.8787 x phase_pi/2
POSSIBLE CHIRP! with > 1}, probability (p=0.024142).
Distribution: s= 31, N>3s= 399 (expect 176), N>6s= 53 (expect 0)
Distribution has outliers! Reject
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max snr: 2.77 offset: 15985 data start: 4156.40 sec. variance: 0.72095
max snr: 2.69 offset: 47338 data start: 4161.57 sec. variance: 0.69708

This output shows three events that triggered an optimal filtering routine. The first and second
of these events were rejected for different reasons. The first was rejected because if failed the
frequency-distribution test. The second was rejected because it had 30 outlier points. The third
failed for the same reason: it had 53 outlier points.

Next, we show some output when a fake chirp signal is injected into the data stream. This can
be done for example by modifying optimal to read:

invMpc_inject=100.0; /* To inject a signal at 10 kpc, set this to 100.0 */ ,
time_inject_chirp(1.0,0.0,12345,invMpc_inject,chirp0,chirp90,data,response,outputl,npoint):

This produces the following output:

Max SNR: 9.96 (offset 12345) variance 0.872624
If impulsive event, offset 25860 or time 187.79
If inspiral, template start offset 12345 (time 186.42) coalescence time 187.79
Normalization: S/N=1 at 152.17 kpc
Linear combination of max SNR: 0.9995 x phase_0O + -0.0304 x phase_pi/2
POSSIBLE CHIRP! with > 1) probability (p=0.421294).
Distribution: s= 23, N>3s= 12 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

Max SNR: 12.84 (offset 12345) variance 0.834527
If impulsive event, offset 25860 or time 192.96
If inspiral, template start offset 12345 (time 191.59) coalescence time 192.96
Normalization: S/N=1 at 132.47 kpc
Linear combination of max SNR: 0.9953 x phase_O + 0.0973 x phase_pi/2
POSSIBLE CHIRP! with > 1), probability (p=0.949737).
Distribution: s= 22, N>3s= 28 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

Max SNR: 14.86 (offset 12345) variance 0.801640
If impulsive event, offset 25860 or time 198.13
If inspiral, template start offset 12345 (time 196.76) coalescence time 198.13
Normalization: S/N=1 at 127.90 kpc
Linear combination of max SNR: 0.9993 x phase_0 + -0.0372 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.999236).
Distribution: s= 22, N>3s= 35 (expect 176), N>b6s= 0 (expect 0)
Distribution does not appear to have outliers...

The code is correctly finding the chirps, getting the distance and phase and time location of the
chirps about as accurately as one would expect given the level of the IFO noise.
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Figure 26: This shows the event that triggered the 2 x 1.4 solar mass binary inspiral filter with
a SNR of 8.71 (see the first set of sample output from the optimal filtering code above, at time
325.23). This same “event” can also be seen in Figure 7. The horizontal axis is sample number,
with samples ~ 10~ seconds apart; the vertical axis is the raw (whitened) IFO output. The event
labeled “drip” can be heard in the data (it sounds like a faucet drip) and is picked up by the
optimal filtering technique, but it is NOT visible to the naked eye. This event is vetoed by the
splitup technique described earlier - it has extremely low probability of being a chirp plus stationary
noise.

There are several interesting lessons that one can learn from this optimal filtering experience.
The first is that (roughly speaking) the events that trigger an optimal filter (driving the output to
a value much larger than would be expected for a colored-noise Gaussian input) can be broken into
two classes: those which can be seen in the raw data stream, and those which can not. Here, by
“seen in the raw data stream”, we mean “visible to the naked eye upon examination of a graph”.
Shown in the following two figures are examples of each type of spurious event.
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Figure 27: This another event that triggered the 2 x 1.4 solar mass binary inspiral filter with a
SNR of 17.33. This event sounds like a “bump”; it is probably due to a bad cable connection. It
can be easily seen (and vetoed) in the time domain. A close-up of this is shown in the next figure.
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Figure 28: A close-up of the previous graph, showing the structure of the “bump”.
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Figure 29: This another event that triggered the 2 x 1.4 solar mass binary inspiral filter with a
SNR of 32.77. This event sounds like a shovel scraping on the ground; its origin is unknown. It
can be easily seen (and vetoed) in the time domain.
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Figure 30: A close-up of the previous graph, showing the structure of the “scrape”.
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5.24 Structure: struct Template

The structure used to describe the “chirp” signals from coalescing binary systems is: struct
Template {

int num: In order to deal with templates “wholesale” it is useful to number them. The numbering
system is up to you; we typically give each template a number, starting from 0 and going up
to the number of templates minus one!

float f.lo: This is the starting (low) frequency fo of template, in units of sec™!.

float f hi: This is the ending (high) frequency of the template, in units of sec™?

float tau0: The Newtonian time 7y to coalescence, in seconds, starting from the moment when
the frequency of the waveform is flo.

float taul: First post-Newtonian correction 71 to 7o.

float taul5: 3/2 PN correction

float tau20: second order PN correction

float pha0: Newtonian phase to coalescence, radians

float phal: First post-Newtonian correction to pha0

float phal5: 3/2 PN correction

float pha20: second order PN correction

float mtotal: total mass m; + myo, in solar masses

float mchirp: chirp mass ;m'z/ 5, in solar masses

float mred: the reduced mass pu = mymsa/(m; + m2), in solar masses
float eta: reduced mass/total mass 7 = myma/(my + m2)? , dimensionless
float ml: the smaller of the two masses, in solar masses.

float m2: the larger of the two masses, in solar masses.

I3

One may use the technique of matched filtering to search for chirps. The (noisy) signal is
compared with templates, each formed from a chirp with a particular values of m;, ms, and a
“start frequency” fo of the waveform at the time that it enters the bandpass of the gravitational
wave detector. Several theoretical studies [4, 5] have shown how the template filtering technique
performs when the detector is not ideal, but is contaminated by instrument noise.

In the presence of detector noise, one can never be entirely certain that a given chirp (determined
by my, mg) will be detected by a particular template, even one with the exact same mass parameters.
However one can make statistical statements about a template, such as “if the masses m; and mg
of the chirp lie in region R of parameter space, then with 97% probability, they will be detected
if their amplitude exceeds value A”. Thus, associated with each chirp, and a specified level of
uncertainty, is a region of parameter space.
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It turns out that if we use the correct choice of coordinates on the parameter space (m1, ms)
then these regions R are quite simple. If we demand that the uncertainty associated with each
template be fairly small, then these regions are ellipses. Moreover, to a good approximation, the
shape of the ellipses is determined only by the noise power spectrum of the detector, and does not
change significantly as.we move about in the parameter space. These “nice” coordinates (g,71)
have units of time, and are defined by

= — | — - - .24.1
n = () e (5.24.1)
5 (MNP | —8/3-~5/3
= 5 (@) n~ (7 fo) T Ty
and
5 (& \ /43 11 o
= e — — —_— = 5.24.2
T (GnM) (336 T3 ") (rfo) (5:24.2)
- 5 (Mo (743 u -1,
192 (M) (336’7 + 7))o
The symbol
M =mg;+mgy (5:24.3)

denotes the total mass of the binary system, and

mimeo

is the ratio of the reduced mass to M. Notice that 7 is always (by definition) less than or equal to
1/4.

We are generally interested in a region of parameter space corresponding to binary systems, each
of whose masses lie in some given range, say from 1 /2 to 3 solar masses. The region of parameter
space is determined by a minimum and maximum mass; we show an example of this in Figure 31.
Since we may take my < m; without loss of generality, the region of interest is triangular rather
than rectangular. The three lines on this diagram are:

(1) The equal mass line. Along this line n = 1/4.
(2) The minimum mass line. Along this line, one of the masses has its smallest value.
(3) The maximum mass line. Along this line, one of the masses has its largest value.

This triangular region is mapped into the (79, 71) plane as shown in Figure 32 In this diagram, the

lower curve 71 7'02 /3 is the equal mass line (1). The upper curve, to the right of the “kink” is the
minimum mass line (2). The upper curve, to the left of the “kink” is the maximum mass line (3).
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Figure 31: The set of binary stars with masses lying between set minimum and maximum values
defines the interior of a triangle in parameter space
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Figure 32: The triangular region of the previous figure is mapped into a distorted triangle in the
(70, 71) plane. Here fy is 120 Hz.
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5.25 Structure: struct Scope

The set of templates is described by a structure struct Scope. This structure specifies a set of
templates covering the mass range in parameter space described above and shown in Figure 32.
The fields of this structure are:

struct Scope {

int n.tmplt: This integer is the total number of templates needed to cover the region in param-
eter space. This is typically computed or set by template grid().

float mmn: The minimum mass of an object in the binary system, as described above, in solar
masses.

float mmx: The maximum mass of an object in the binary system, as described above, in solar
masses. Together with the m_mn, this describes the region in parameter space covered by the
set of templates.

float theta: The angle of the major axis of the constant ambiguity ellipses, in radians counter-
clockwise from the 7y axis.

float dp: The diameter along the minor axis of the ellipse (in sec). This is twice the radius dzo
given in Table 7.

float dq: The diameter along the major axis of the ellipse (in sec). This is twice the radius dz;
given in Table 7.

float f_start: The frequency fo used in the definitions of 7p and 71 (5.24.1,5.24.2); this is
typically the frequency at which a binary chirp first enters the usable bandpass of the detector.

struct Template* templates: Pointer to the array of templates. This pointer is typically set
by template_grid(), when it allocates the memory necessary to store the templates, and
creates the necessary templates.
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5.26 Function: tau_of mass()

void tau_of mass(float ml, float m2, float pf, float *tau0, float *taul)
This function calculates the coordinates (79, 71) associated with particular values of the masses of
the objects in the binary system, and a particular value of frequency fo.

The arguments are:

mi: Input. The first mass (in solar masses).
m2: Input. The second mass (in solar masses).

pf: Input. The value 7 fy. Here fj is the frequency used in defining the 7 coordinates (see below).
It is often chosen to be at (or below) the frequency at which the chirp first enters the bandpass

of the gravitational wave detector.
tau0: Output. Pointer to 7o (in seconds).

taul: Output. Pointer to 71 (in seconds).

Although one can think of 7y and 71 as coordinates in the parameter space defined by (5.24.1)
and (5.24.2) they have simple physical meanings. 7o is the time to coalescence of the binary
system, measured from the time that the waveform passes through frequency fo, in the zeroth
post-Newtonian approximation. 7 is the first-order post-Newtonian correction to this quantity, so

that to this order the time to coalescence is 79 + 7.
Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.27 Function: m_and_eta()

int m.and_eta(float taul, float taul, float *M, float *eta, float Mmin, float Mmax,
float pf)

This function takes as inputs the coordinates (79, 71). If these correspond to individual masses
my and my each lying in the range from My, to Mmax then the function sets the total mass
M = m; + my and sets n = myms/(m1 + m2)? and returns the value 1. Otherwise, the function
returns 0 and does not change the values of mass M or 7.

The arguments are:

tan0 Input. The value of 75 (positive, sec).
taul Input. The value of m (positive, sec).

M Output. The total mass M (solar masses). Unaltered if no physical mass values are found in
the desired range.

eta Output. The value of 7 (dimensionless). Unaltered if no physical mass values are found in
the desired range.

Mmin Input. Minimum mass of one object in the binary pair, in solar masses (positive).
Mmax Input. Maximum mass of one object in the binary pair, in solar masses (positive).

pf: Input. The value 7fo. Here fo is the frequency at which the chirp first enters the bandpass
of the gravitational wave detector.

The algorithm followed by m_and_eta() is as follows. Eliminate 7 from the equations defining 7o
(5.24.1) and 7 (5.24.2) to obtain the following relation:

M %3 M
— — — ) =0 5.27.1
¢ +co (Me) 3 (M@) , ( )
with the constants given by:
cl = 1155 T@
ca = 47552 (7foTs)% 7o (5.27.2)

ez = 16128 (nfoTp)’m-

Given (rp,71) our goal is to find the roots of equation (5.27.1). It is easy to see that the function
on the lhs of (5.27.1) has at most two roots. The function is positive at M = 0 but decreasing for
small positive M. However it is positive and increasing again as M — oo. Hence the function on
the lhs of (5.27.1) has at most a single minimum for M > 0. Setting the derivative equal to zero
and solving, this minimum lies at a value of the total mass Mct which satisfies

_ 3/2
__]‘;;@t - (g Z_z) (5.27.3)

Hence the lhs of (5.27.1) has no roots if its value is positive at M = My or it has two roots if that
value is negative. (The “set of measure zero” possibility is a single root at Mcrit.)

If 2Mopin < Mgit < 2Mmax then m_and_eta() searches for roots 2Mmin < M < Mcrit and
Mt < M < 2Mp,.y separately, else it looks for a root M in the range 2Mmin < M < 2Mpax. If
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the lhs of (5.27.1) changes sign at the upper and lower boundaries of the interval, then the Numerical
Recipes routine rtsafe() is used to obtain the root with a combination of “safe” bisection and

“rapid” Newton-Raphson.
If a root M is found in the desired range, then 7 is determined by (5.24.1) to be

5 ( M\ 8/3 1o
T.) "8/ =2 5.274
77 256 (M@) (Wfo G) T0 ( )

If n < 1/4 then the smaller and larger masses are calculated from
M M
my = — (1 —Vi- 4n) my = = (1+vI= 4n) . (5.27.5)

(If both roots for M correspond to 7 < 1/4 then an error message is generated and the routine
aborts.) If both m; and msy are in the desired range Mpin < M1, M2 < Mmax then m_and_eta()
returns 1 and sets M and 7 appropriately, else it returns 0, leaving M and 7 unaffected.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.28 Function: tauspace_area()

float tauspace_area(struct Scope *Grid)
This function computes the area of the enclosed region of parameter space shown in Figure 32.
The arguments are:

Grid: Input. This function uses only the minimum mass, maximum mass and the cut-off frequency
fo fields of Grid.

The function returns the numerical value of the area in units of sec?. See the example in the
following subsection. : B

The function uses an analytic expression for the area obtained by integration of formulae
(5.24.1,5.24.2) for 19 and 7 given earlier. For example, to obtain the area of the trapezoidal
region bounded above by the maximum-mass curve and below by the 7y axis, we integrate

A = / o Tl(mmimm)dl(rgwdm

TMmax m

- 4 [Tﬂ_n] 8/3 {—[3 +2(4 + 2a)u + (5 + 9a)u?]
Mg 2u2(1 + u)?/3

L a1 1+2(1+u)1/3}

V3 V3
L 9a-1 log T+ (14 w34+ (1 +uw)?3 } }u=1

6 1=2(1+ w2 + 1+ w3 | fummpin/muma

Here a = 924/743 and Ay is a quantity with dimensions sec? given by

e ME (P
T 49545216 (tMfo)¢/3 \ G

0

The area A, under the minimum-mass curve can be obtained from the formula above by in-
terchanging mmin and Mmmax. (If you wish to use geomtrized units in which the solar mass is
4.92 x 1078 sec simply set G = ¢ = 1.) The area under the equal-mass curve A3 can be obtained
by performing a similar integration along the equal-mass curve

Az

TMmin
/ 71(m, m) ————dTo EZ: m) dm

60875 M3 ( Mo >8/3 _ ( M, )8/3 2\
T 2064384 (1fo M) %3 | \ Mumin Mmax G)

These three results can be combined to give the total area enclosed

Atotal = A1 + A2 - A3 . (5281)

Equation (5.28.1) is the basis of tauspace._area(); the next example shows an application of this
function.

Author: Alan Wiseman, agw@tapir.caltech.edu

Comments: None.
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5.29 Example: area program

This example uses the function tauspace_area() described in the previous section to compute the
area of the specified parameter space. The parameters specifying the region are set: the minimum
and maximum mass in solar masses and the cut off frequency in seconds™. The numerical value
of the area is returned and printed.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

int main() {
struct Scope Grid;
float area;
float template_area(struct Scope x);

/* Specify the parameter space */
Grid.m _mn=0.8;
Grid.m.mx=50.0;
Grid.f_start=140.0;

/* find area of parameter space */
area=template_area(&Grid);

/* and print it =/

printf("The area in parameter space is %f\n",area);
return 0;
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5.30 Function: template_grid()

void template grid(struct Scope *Grid)

This function evolved from grid4.f, a FORTRAN routine written by Sathyaprakash! This function

lays down a grid of templates that cover a particular mass range (the region inside the distorted

triangle shown in Figure 32).
The arguments are:

f

Grid: Input/Output. This function uses as input all of the fields of Grid except for/Grid.n_tmplt
and Grid.templates. On return from template_grid these latter two fields are set. The
- function uses malloc() to allocate storage space and creates in this space|an array con-
" taining Grid.n.tmplt objects of type Template. If you wish to free the memory, call
free(Grid.templates).

i It is easy to cover the parameter space shown in Figure 32 with ellipses. However each ellipse
represents a filter, and filtering takes computer time and memory, so the real problem is to cover the

! parameter space completely, using the smallest possible number of templates. This is a non-trivial
packing problem; while our solution is certainly not optimal, it is quite close.
The algorithm used to place the templates is as follows. We work in coordinates|(zg, z1) which
are rotated versions of (7, 71), aligned along the minor and major axis of the template ellipses. The
input angle Grid.theta is the counterclockwise angle through which the (7p,71) axes are rotated
in order to produce the (zg,z;) axes.

{ Although each template is an ellipse, the problem of packing templates onto the parameter
! space can be more easily described in terms of a more familiar packing problem: packing pennies
on the plane. One can always transform an ellipse into a circle by merely scaling one coordinate
uniformly while leaving the other coordinate unchanged. So we introduce coordinates z; along
the major diameter and z, along the minor diameter of the ellipse, and then “shrinking” the z;
coordinate by the ratio of major to minor diameters. In this way the ellipses are transformed into
circles.

exposed

First, a template is laid down at the point where the equal mass line intersects the maximum
mass line. Then additional templates are placed along the equal mass line, at increasing values of
zo. These templates are staggered up and down in the z; direction. After laying down this set of
templates, the remaining part of parameter space is covered with additional templates, in columns
starting at each of the previously determined template locations. These columns have the same
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value of z¢ as the previously determined templates but increasing values of z;. The columns are
continued until the “leading edge” of the final template lies outside the parameter space.

We can describe the packing (and the “efficiency”) of the packing in terms of the penny-packing
problem. Suppose we start by setting pennies of radius 1/2 on all points in the plane with integer
coordinates, as shown in Figure 33. It is easy to show that the fraction of the plane (i.e., parameter
space!) which is not covered by any pennies is e = 1 — 7/4 = 0.214- - - or about 21%.

Figure 34: Staggering the pennies (or templates) decreases the uncovered fraction of the plane to
9.3%

Now suppose that we “stagger” the pennies as shown in Figure 34. In this case, the fraction
of area not covered ise =1 — 5—\’;—5 = 0.093- - - or about 9.3%. If we wish to completely cover the

missing bits of the plane, then we can do so by increasing the radius of each penny by /5/4 (or,
equivalently, by moving the points at which the pennies lie closer together by that same factor).
The resulting diagram is shown in Figure 35. By increasing the number-density of pennies on the
plane by 25% we have successfully covered up the remaining 9.3% of the area.

-2

Figure 35: Decreasing the spacings of the pennies (or templates) by a factor of (5/4)/2 = 1.118---
then covers the entire plane.

Now it is not possible to implement this algorithm exactly, because we are not attempting to
cover the entire plane, but rather only a finite region of it. You might think that we could just
start laying down templates in the same was as for Figure 35 and stick in a few extra ones for any
parts of the parameter space which were not covered, but unfortunately this would then lead us
to place templates centered at points in (79,71) space that do not correspond to n < 1/4, and for
which the very meaning of a “chirp” is ill-defined.
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Author Detector fo/Hz dzo/msec dzi/msec  6/rad

Sathyaprakash Caltech 40m (Oct 94) 120 2.27 35.2 0.978
Sathyaprakash Caltech 40m (Nov 94) 120 2.55 33.2 1.025
Sathyaprakash Caltech 40m (Nov 94) 140 2.13 32.0 0.964
Owen Initial LIGO 200 0.162 2.109 0.5066
Owen Advanced LIGO 70 0.352 3.970 0.4524

Table 7: Orientation and dimensions of 0.97 ambiguity templates.

The code in template_grid() thus uses a heuristic method to place templates, trying whenever
possible to stagger them in the same way as Figure 35 but then shifting the center locations when
necessary to ensure that the template corresponds to physical values of the mass parameters m;
and ms. This is often referred to as “hexagonal packing”. In practice, to see if this placement has
been successful or not, the function plot_template () can be used to visually examine the template
map.

Table 7 gives information about the appropriate template sizes, spacings and orientations as
found in the recent literature. Note that the quantities dzo and dz; are the radii or semi-minor
and semi-major axes of the constant-ambiguity ellipses, along the xo and z axes as defined earlier.
Equation (3.16-18) of reference [5] do not appear to agree with Table 7, but that is because the
dx; of [5] are defined by (dzi)owen = dli/ VE;. The dl; are the edge lengths of a hypercube in
dimension N, chosen so that if templates are centered on its vertices, then the templates touch in
the center of the cube, so that (dz;)owen = dli/VE;. In our N = 2 dimensional case, this gives
dz; = (dz;)owen/ /2. Note also that in this table, Owen and Sathyaprakash use different definitions
of fo, so that their results may not be directly compared. In Owen’s case, fo refers to the frequency
of maximum sensitivity of the detector, whereas in Sathyaprakash’s case it refers to the frequency
at which the chirp first enters the bandpass of the detector. In the case of the November 1994 data
set, we quote two different sizes an orientations for the ellipses, depending upon the choice of fo.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine evolved from grid4. £, which was written by Sathyaprakash. The method
used to stagger templates is heuristic, and could perhaps be improved. Very small regions of
the parameter space along the equal-mass line (7 = 1/4) may not be covered by any templates.
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5.31 Function: plot_template()

void plot_template(char *filename,struct Scope Grid,int npages,int number)
This function generates a PostScript (tm) file that draws a set of templates on top of the region of
parameter space which they cover.

The arguments are:

filename: Input. Pointer to a character string. This is used as the name of the output file,
into which postscript output is written. We suggest that you use “.ps” as the final three
characters of the filename. These files are best viewed using GhostView.

Grid: Input. The mass range specified by Grid is used to draw an outline of the region in (79,71)
parameter space covered by the mass range, and an ellipse for each template included in Grid
is then drawn on top of this outline.

npages: Input. If there are more than a few templates (and there can be thousands, or more)
it is impossible to view this graphical output unless it is spread across many pages. npages
specifies the number of pages to spread the output across. We suggest at least one page per
hundred templates.

number: Input. Each template specified in Grid is numbered by the field Grid.n_tmplt. If number
is set to 1, then when each ellipse is drawn in parameter space, the number of the template is
placed inside the ellipse so that the particular template associated with each ellipse may be
easily identified. If number is set to 0, then the templates are not identified in this way; each
template is simply drawn as an empty ellipse.

Figure 36: Part of some sample output from plot_template().

Note that the output postscript file is designed to be edited if needed to enable clear viewing of
details. FEach file is broken into pages. At the beginning of each page are commands that set the
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magnification scale of each page, and determine if the page will be clipped at the boundaries of the
paper or not. You can edit these lines in the postscript file to enable you to “zoom in” on part of
the parameter space, if desired. By turning off the clipping, you can easily move off the boundaries
of a given page, if desired. Some sample output from plot_template() is shown in Figure 36. (In
fact, this is part of the output file produced by the example program, showing a small number of
the total of 1001 templates required).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Another option should be added, to print out at the center of each template, the mass
parameters my and mg associated with the template. ' B
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5.32 Example: template program

This example lays down an optimal grid of templates covering parameter space. It also outputs a
postscript file (best viewed with GhostView) which shows the elliptical region of parameter space
covered by each template.

n

/* GRASP: Copyright 1997, Bruce Allen =/
#include "grasp.h"

int main() {
struct Scope Grid;

/* Set parameters for the inspiral search #/
Grid.m_mn=0.8;

Grid.m.mx=50.0;

Grid.theta=0.964;

Grid.dp=2x0.00213; .
Grid.dg=20.0320;
Grid.f_start=140.0;

/* construct template set covering parameter space */
template.grid(&Grid);

/* create a postscript file showing locations of templates */ ‘

plot_template("temp_list.ps",Grid,15,1);
return 0;

Part of a typical picture contained in the output file temp_list.ps is shown in Figure 36 (though
for different parameters than those shown above).
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5.33 Example: multifilter program

This example implements optimal filtering by a bank of properly-spaced templates. One could do
this with trivial modifications of the example optimal program given earlier. Here we have shown
something slightly more ambitious. The multifilter program is an MPI-based parallel-processing
code, designed to run on either a network of workstations or on a dedicated parallel machine. It is
intended to illustrate a particularly simple division of labor among computing nodes. Each segment
of data (of length NPOINT) is broadcast to the next available node. That node is responsible for
filtering the data through a bank of templates, chosen to cover the mass range from MMIN to MMAX.
The output of each one of these filters is a set of 11 signals, which measure the following quantities:

1. The largest signal-to-noise ratio (SNR) at the output of the filter, for the given segment of
data,

2. The distance for an optimally-oriented source, in Mpc, at which the SNR would be unity.

The amplitude « of the zero-degree phase chirp matching the observed signal.

@

The amplitude 3 of the ninety-degree phase chirp matching the observed signal.

>

5. The offset of the best-fit chirp into the given segment of data

6. The offset of the impulse into the given segment of data, which would produce the observed
output.

7. The time of that impulse, measured in seconds from the start of the data segment,

8. The time (in seconds, measured from the start of the data segment) at which an inspiral, best
fitting the observed filter output, would have passed through the start frequency FLO.

9. The time (in seconds, measured from the start of the data segment) at which an inspiral, best
fitting the observed filter output, would have passed through coalescence.

10. The observed average value of the output SNR (should be approximately unity).

11. The probability, using the splitup technique described earlier, that the observed filter output
is consistent with a chirp plus stationary detector noise.

For completeness, we give this code in its entirety here. We also show some typical graphs
produced by the MPE utility nupshot which illustrates the pattern of communication and compu-
tation for an analysis run. For these graphs, the analysis run lasted only about four minutes, and
analyzed about three minutes of IFO data. We have performed an identical, but longer run, which
analyzed about five hours of IFO ouput in just over three hours, running on a network of eight SUN
workstations. The data is analyzed in 6.5 second segments, each of which is processed through a set
of 66 filter templates completely covering the mass range from 1.2 to 1.6 solar masses. For the run
that we have profiled here, STORE_TEMPLATES is set to 1. This means that each slave allocates mem-
ory internally for storing the Fourier-transformed chirp signals; the slaves only compute these once.
However this does place demands on the internal storage space required - in the run illustrated
here each individual process allocated about 34 Mbytes of internal memory. Another version of the
code has also been tested; in this version the slave nodes compute the filters and Fourier transform
them each time they are needed, for each new segment of data. This code has STORE_TEMPLATES
set to 0. This is less efficient computationally, but requires only a small amount of internal storage.
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Figure 37: Output of the nupshot profiling tool, showing the behavior of the multifilter program
running on a workstation network of 8 machines (the fastest of these are Sparc-20 class processors).
This shows the first 8 seconds of operation (time on the horizontal axis). The gray segments show
the slave processes receiving the template list. During the orange segments, the slave processes are
waiting for data; the blue segments show the master transmitting data to each slave. During the
light gray segments, the slaves are computing the templates, during the green segments they are
computing the FFT’s of those templates, and during the purple segments they are correlating the
data against the templates. During the brown segment, the master is waiting to receive data back
from the slaves.

For a given hardware configuration, the optimal balance between these extremes, and between the
amount of redundant broadcasting of data, depends upon the relative costs of communication and
computation, and the amount of internal storage space available.

Based on these figures, it is possible to provide a rough table of computation times. These are
given in tabular form in Table 8.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: There are many other ways in which this optimal filtering code could be parallelized.
This program illustrates one of the possibilities. Other possibilities include: maintaining dif-
ferent templates on different processes, and broadcasting identical IFO data to these different
processes, or parallelizing across both data and templates.

Task Color Approximate time Processing done

data — slaves dark blue 350 msec transfer 384 kbytes

data — master yellow 1 msec transfer 3 kbytes

correlate purple 500 msec 2 fits of 64k floats, and search
splitup (likelyhood) light blue 330 msec several runs through 64k floats
real FFT (one phase) green 150 msec 1 fft of 64k floats

compute template gray 350 msec compute 2 arrays of ~ 18k floats
orthonormalize templates wheat 25 msec several runs through 64k floats

Table 8: Approximate computation times for different elements of the optimal-filtering process.
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Figure 38: This is a continutation of the previous figure. Slave number 1 has completed its com-
putation of the templates, and during the orange segment, waits to make a connection with the
master. This is followed by a (very small) yellow segment, during which the slave transmits data
back to the master, and a blue segment during which the master transmits new data to slave
number 1. Immediately after this, slave number 1 begins a new (purple) sequence of correlation

Figure 39: This is a continutation of the previous figure, and represents the “long-term” or “steady-
state” behavior of the multiprocessing system. In this state, the different processors are spending
all of their time doing correlation measurements of the data, as indicated by the purple segments,
and the master is waiting for the results of the %Jz%lysis (brown segments).




Figure 40: This is a continuation of the previous figure, and shows the termination of some of the
slave processes (all the data has been analyzed, and there is no new data remaining). The blue
segments (data being sent to slaves) are actually termination messages being sent to the different
processes 2,3,4 and 6. Processes 5 and 7 are still computing. In the case of process 7, the data being
analyzed contains a non-stationary “spurion” which triggered most of the filters beyond a pre-set
threshold level. As a result, process 7 is performing some additional computations (the split-up
likelyhood test, shown as light blue segments) on the data.
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/* GRASP: Copyright 1997, Bruce Allen */

/* multifilter.c

This code is intended for machines where computation is cheap,

and communication is expensive. The processsing is organized as
master/slaves (or manager/workers!). The master process sends out data
chunks to individual slave processes. These slave processes analyze

the data against all templates, then return the largest signal values

obtained for each template, along with other parameters like the time of
coalescense and the phase of coalescence. They then get a new data chunk. -
If STORE.TEMPLATES is set to 1, then the filters are computed once,
then stored internally by each slave. This is the correct choice if each

slave has lots of fast memory available to it. If STORE.TEMPLATES is set
to 0, then the slaves recompute the templates each time they use them.

This is the correct choice if each slave has only small amounts of fast
memory available.

*/

#include "mpi.h"
#include "mpe.h"
#include "grasp.h"

#define NPOINT 65536 /* The size of our segments of data (6.5 secs) */

#define FLO 120.0 /* The low frequency cutoff for filtering */

#define ARMLENGTH 40.0 /* Armlength of the IFO, in meters */

#define HSCALE 1.e21 /* A convenient scaling factor; results independent of it */
#define MIN_INTO_LOCK 3.0 /x Number of minutes to skip into each locked section */
#define SAFETY 200 /* Padding safety factor to avoid wraparound errors */
#define CHIRPLEN 18000 /* length of longest allowed chirp */

#define MMIN 1.2 /* min mass object, solar masses x/

#define MMAX 1.6 /* max mass object, solar masses x/

#define DATA_SEGMENTS 25  /x largest number of data segments to process x/

#define NSIGNALS 11 /* number of signal values computed for each template x/

#define STORE_TEMPLATES 1 /x 0: slaves recompute templates. 1: slaves save templates. x/

void shiftdata(};
void realft(floats,unsigned long,int);

struct Saved {
float tstart;
int gauss;

};

short xdatas;

int npoint,remain=0,needed,diff,gauss_test,num_sent=0,fill_buffer();
float xtwice_inv_noise,*htilde,xdata,*mean_pow_spec,tstart;

float srate=9868.4208984375,decaytime,datastart,*response;

double norm,decay;

FILE xfpifo,*fpss,*fplock;

int main(int argc,char xargv(])

{

int *lchirppoints,num stored;
float xltc,*x1lchOtilde,*1ch90tilde;
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int myid,numprocs,i,j,maxi,impulseoff,*chirppoints,indices[8],num templates;
int slave,more_data,temp_no,num recv=0,namelen,completed=0,longest_template=0;
float *tc,ml,m2,+template_list,*sig_buffer,distance,snr max,var,timeoff,timestart;
float n0,n90,inverse_distance_scale,*output90,xoutput0,*chOtilde,*ch90tilde;
float 1in0,1in90,varsplit,stats[8],gammq(float,float);

double prob;

FILE *fpout;

MPI_Status status;

char processor.name[MPI_MAX_PROCESSOR_NAME],logfile name[64] ,name({64];

struct Scope Grid;

struct Saved xsaveme;

/* start MPI, find number of processes, find process number */
MPI.Init(&argc,&argv);

MPI_Comm._size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;
MPI_Get_processor._name(processor.name,&namelen) ;
MPE_Init_log();

/* number of points to sample and fit (power of 2) */
needed=npoint=NPOINT;

/* Gravity wave signal (frequency domain) & twice inverse noise power */
htilde=(float *)malloc(sizeof (float)*npoint+sizeof (float)*(npoint/2+1));
twice_inv_noise=htilde+npoint;

/* Structure for saving information about data sent to slaves */
saveme=(struct Saved x)malloc(sizeof(struct Saved)s*numprocs);

/* MASTER =/

if (myid==0) {
MPE_Describe_state(l,2,"Templates->Slaves","red:vlines3");
MPE_Describe_state(3,4,"Data—~>Slaves", "blue:gray3");
MPE_Describe_state(5,6, "Master Receive","brown:light_gray");
MPE_Describe_state(7,8,"Data->Master","yellow:dark_gray");
MPE_Describe_state(9,10,"Slave Receive","orange:white");
MPE_Describe_state(13,14,"Slaves<templates","gray:black");
MPE_Describe_state(15,16,"compute template","lavender:black");
MPE_Describe_state(17,18,"real fft","lawn green:black");
MPE_Describe_state(19,20,"correlate”, "purple:black");
MPE_Describe_state(21,22,"orthonormalize", "wheat:black");
MPE_Describe_state(23,24,"likelyhood test","light sky blue:black");

/* Set parameters for the inspiral search */
Grid.m. mn=MMIN;

Grid.m_mx=MMAX;

Grid.theta=0.964;

Grid.dp=2x0.00213;

Grid.dq=2%0.0320;
Grid.f_start=140.0;

/* construct template set covering parameter space, m1l m2 storage */
template_grid(&Grid);
num_templates=Grid.n_tmplt;
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PUE—

printf("The number of templates being used is %d\n",num_templates);
template_list=(float *)malloc(sizeof(float)=*2xnum_templates);

/* put mass values into an array */
for (i=0;i<Grid.n_tmplt;i++) {
template_list[2+i]=Grid.templates[i] .mil;
template.list [2xi+1]=Grid.templates[i] .m2;
printf ("Mass values are ml = %f m2 = %f\n",Grid.templates[i].ml,Grid.

}

fflush(stdout) ;

/* storage for returned signals (NSIGNALS per template) */
sig-buffer=(float *)malloc(sizeof (float)*num templates*NSIGNALS) ;

/* broadcast templates */

MPE_Log_event (1,myid,"send");

MPI_Bcast(&num templates,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(template_list,2*num templates,MPI_FLOAT,0,MPI_COMM_WORLD) ;
MPE_Log_event(2,myid,"sent");

/* number of points to sample and fft (power of 2) */
needed=npoint=NPOINT;

/* stores ADC data as short integers */
datas=(short*)malloc(sizeof (short)+*npoint) ;

/* stores ADC data in time & freq domain, as floats */
data=(float x)malloc(sizeof(float)*npoint);

/* The response function (transfer function) of the interferometer */
response=(float *)malloc(sizeof (float)*(npoint+2));

/* The autoregressive-mean averaged noise power spectrum */
mean_pow_spec=(float *)malloc(sizeof (float)*(npoint/2+1));

/* Set up noise power spectrum and decay time */
norm=0.0;

clear (mean_pow_spec,npoint/2+1,1);
decaytime=10.0+npoint/srate;
decay=exp(—1.0*npoint/(sratexdecaytime));

/* open the IFO output file, lock file, and swept-sine file */
fpifo=grasp_open("GRASP_DATAPATH","channel.0Q");
fplock=grasp_open("GRASP_DATAPATH","channel.10");
fpss=grasp.-open("GRASP_DATAPATH","swept-sine.ascii");

/* get the response function, and put in scaling factor */
normalize_gw(fpss,npoint,srate,response);
for (i=0;i<npoint+2;i++)

response [1] *=HSCALE/ARMLENGTH;

/#* while not finished, loop over slaves */

for (slave=1; slave<numprocs;slave++) {
if (get_calibrated.data()) {
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/* if new data exists, then send it (nonblocking?) */
fprintf (stderr,"Master broadcasting data segment %d\n",num_sent+1);
MPE_Log_event(3,myid, "send") ;
MPI_Send(htilde,NPOINT+NPOINT/2+1,MPI_FLDAT,Slave,++num_sent,MPI_CDMM_WORLD);
MPE_Log_event(4,myid,"sent");

saveme [slave—1] .gauss=gauss_test;

saveme [slave—1].tstart=datastart;

shiftdata();

}

else {
/* tell remaining processes to exit =/
MPE_Log_event(3,myid,"send");
MPI_Send(htilde,NPOINT+NPOINT/2+1,MPI_FLOAT,slave,O,MPI_COMM_WORLD);
MPE_Log_event(4,myid,"sent");

}

}

/* now loop, gathering answers, sending out more data */
while (num_sent!=num recv) {
more_data=get_calibrated_data();

/= listen for answer */

MPE_Log_event(5,myid,"receiving. . .");

MPI_Recv(sig_buffer ,NSIGNALSsnum templates,MPI_FLOAT, MPI_ANY_SOURCE,
MPI_ANY_TAG,MPI_COMM_WORLD,&status);

MPE_Log_event (6,myid, "received");

num_recv++;

/* store the answers... */
sprintf (name, "signals.05d",status MPI_TAG-1);
fpout=fopen(name,"w");
if (fpout==NULL) {
fprintf (stderr,"Multifilter: can't open output file %s\n" ,name) ;
MPI_Finalize();
return 1;

}

fprintf (fpout,"# Gaussian %d\n",saveme[status.MPI_SOURCE—1].gauss);
fprintf (fpout,"# tstart %f\n",saveme[status.MPI_SOURCE—1].tstart);
fprintf (fpout,"# snr  distance phase0 phaseS0 maxi\
impulseoff impulsetime startinspiral coalesce variance  prob\n");
for (i=0;i<num templates;i++) {

for (§=0;3j<NSIGNALS—1;j++)

fprintf (fpout,"%g\t",sig buffer [i*NSIGNALS+j]);
fprintf (fpout,"%f\n",sig_buffer [i*NSIGNALS+3]1);

/* if data stream has no obvious outliers, and chirp prob is high, print * /
if (sig-buffer [i*NSIGNALS+10]>0.03 && saveme[status.MPI_SOURCE-1].gauss) {

printf ("POSSIBLE CHIRP: signal file %d, template %d, SNR = %f, prob = %f\n",

status .MPI_TAG—1,i,sig buffer [i*NSIGNALS},sig buffer [i*NSIGNALS+10]);
fflush(stdout);

}

fclose(fpout);
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/* if there is more data, send it off */

if (more_data) {
fprintf (stderr,"Master broadcasting data segment %d\n",num_sent+1);
MPE_Log.event (3,myid, "send");

MPI_Send(htilde,NPOINT+NPOINT/2+1,MPI_FLOAT,status.MPI_SOURCE, ++num sent MPI_COMM_WORLD)'

MPE_Log_event (4,myid,"sent");

saveme [status.MPI_SQURCE—1] .gauss=gauss_test;
saveme [status.MPI_SOURCE—1] .tstart=datastart;
shiftdata();

/* or else tell the process that it can pack up and go home */

else {
printf("Shutting down slave process %d\n",status.MPI_SOURCE);
MPE_Log_event (3,myid, "send") ;
MPI_Send(htilde,NPOINT+NPOINT/2+1 ,MPI_FLOAT,status.MPI_SOURCE,O,MPI_COMM_WORLD) ;
MPE_Log_event (4,myid,"sent");

}

}

/* when all the answers are in, print results */
printf("This is the master - all answers are in!\n");

}

/* SLAVES =/

else {
printf ("Slave %d (¥s) just got started...\n",myid,processor_name);
fflush(stdout);

/* allocate storage space */

/* Ouput of matched filters for phase0 and phase pi/2, in time domain, and temp storage */
outputO=(float *)malloc(sizeof(float)x*npoint);

output90=(£float x)malloc(sizeof(float)s*npoint);

/* get the list of templates to use */

MPE_Log_event(13,myid, "receiving...");
MPI_Bcast(&num_templates,1,MPI_INT,0,MPI_COMM_WORLD) ;

sig buffer=(float *)malloc(sizeof (float)x*num_templates*NSIGNALS);
template_list=(float *)malloc(sizeof (float)*2+num_templates);
MPI_Bcast(template_list,2xnum_templates,MPI_FLOAT,0,MPI_COMM_WORLD);
MPE_Log_event(14,myid, "received");

printf("Slave %d (¥s) just got template list...\n",myid,processor_name);
fflush(stdout);

/* Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain */
num_stored=STORE_TEMPLATES#* (num_templates—1)+1;
lchOtilde=(float *)malloc(sizeof (float)*npoint+num stored);
1ch90tilde=(float *)malloc(sizeof (float)*npointxnum stored) ;
lchirppoints=(int *)malloc(sizeof (float)*num stored);
ltc=(float *)malloc(sizeof(float)*num._stored);

if (lchOtilde==NULL || 1ch90tilde==NULL || lchirppoints==NULL || ltc==NULL) {

fprintf(stderr,"Node %d on machine %s: could not malloc() memory!\n",
myid,processor_name) ;
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abort();

}

/* now enter an infinite loop, waiting for new inputs */

while (1) {
/* listen for data, parameters from master */
MPE_Log-event(9,myid,"receiving. . .");

MPI_Recv(htilde,NPDINT+NPOINT/2+1,MPI_FLDAT,O,MPI_ANY_TAG,MPI_CDMM_WDRLD,&status);
MPE_Log_event (10,myid, "received");
printf("Slave %d (%s) got htilde (and noise spectrum) for segment %d \n",
myid,processor _name,status.MPI_TAG);
" fflush(stdout);

/ if this is a termination message, we are done! */
if (status.MPI_TAG==0) break;

/* compute signals */
for (temp_no=0;temp.no<num_templates;temp.no++) {

chOtilde=1lchOtilde+npoint*temp no*xSTORE_TEMPLATES;
ch90tilde=1ch90tilde+npoint*temp noxSTORE_TEMPLATES;
chirppoints=1lchirppoints+temp_noxSTORE_TEMPLATES;
tc=ltc+temp_noxSTORE_TEMPLATES;

/* Compute the template, and store it internally, if desired =/

if (completed!=num_templates) {
/* manufacture two chirps (dimensionless strain at 1 Mpc distance) x/
mi=template_list[2xtemp_no];
m2=template_list[2xtemp no+1];

MPE_Log.event (15,myid,"computing");
make filters(ml,m2,chOtilde,ch90tilde,FLO,npoint,srate,chirppoints,tc, 4000) ;
MPE_Log_event (16 ,myid, "computed") ;

if (xchirppoints>longest_template) longest_template=xchirppoints;

if (*chirppoints>CHIRPLEN) {
fprintf (stderr,"Chirp mi=Yf m2=Yf length %d too long!\n",ml,m2,
xchirppoints) ;
fprintf(stderr,"Maximum allowed length is %d\n",CHIRPLEN);
fprintf(stderr,"Please recompile with larger CHIRPLEN value\n") ;
fflush{(stderr);
abort();

}

/* normalize the chirp template */
inverse_distance_scale=2.0xHSCALEx (TSOLAR«C_LIGHT/MPC) ;
for (i=0;i<*chirppoints;i++){
chOtilde[i]x=inverse_distance_scale;
ch90tilde[i] *=inverse_distance.scale;

}

/* and FFT the chirps %/
MPE_Log_event (17 ,myid, "starting fft");
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realft(chOtilde—1,npoint,1);
MPE_Log_event(18,myid, "ending fft");
MPE_Log_event(17,myid, "starting f£ft");
realft(ch90tilde—1,npoint,1);
MPE_Log_event(18,myid, "ending fft");

if (STORE_TEMPLATES) completed++;

/* print out the length of the longest template */
if (completed==num templates)
printf("Slave Jd: templates completed. Longest is %d points\n",
myid,longest_template);
fflush(stdout);
} /* done computing the template */

/* orthogonalize the chirps: we never modify ch0tilde, only ch90tilde */
MPE_Log_event(21,myid, "starting");
orthonormalize(chOtilde,ch90tilde,twice_inv_noise,npoint,&n0,&n90);
MPE_Log_event(22,myid, "done");

/* distance scale Mpc for SNR=1 %/
distance=0.5/n0+0.5/n90;

/* find the moment at which SNR is a maximum */

MPE_Log_event(19,myid, "searching");

find_chirp(htilde,chOtilde,ch90tilde,twice_inv_noise,n0,n90, output0,output90,
npoint,CHIRPLEN, &maxi,&snr max,&1in0,&1in%0, &var);

MPE_Log_event (20,myid, "done") ;

/* identify when an impulse would have caused observed filter output */
impulseoff=(maxi++chirppoints)jnpoint;
timeoff=impulseoff/srate;

timestart=maxi/srate;

/* collect interesting signals to return x/
sig_buffer{temp noxNSIGNALS]=snr_max;
sig_buffer[temp no*NSIGNALS+1]=distance;
sig_buffer[temp no*NSIGNALS+2])=1in0;
sig_buffer [temp no*NSIGNALS+3]=1in90;
sig_buffer[temp no*NSIGNALS+4] =maxi;
sig_buffer{temp _no*NSIGNALS+5]=impulseoff;
sig_buffer[temp no*NSIGNALS+6]=timeoif;
sig-buffer[temp noxNSIGNALS+7]=timestart;
sig-buffer[temp no+*NSIGNALS+8]=timestart+xtc;
sig_buffer[temp no*NSIGNALS+9)=var;

prob=0.0;
if (sonr.max>5.0) {
MPE_Log_event (23,myid, "testing");
varsplit=splitup.freq2(1in0*n0/sqrt(2.0),1in90%n90/sqrt(2.0),chOtilde,
ch90tilde,2.0/(n0*n0) ,twice_inv_noise,npoint,maxi,8,
indices,stats,output0,htilde);
prob=gammq(4.0,4.0xvarsplit) ;
MPE_Log_event(24,myid, "done");
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}

sig_buffer [temp_noxNSIGNALS+10]=prob;
} /* end of loop over the templates */

/* return signals to master */
MPE_Log_event(7,myid,"send");
MPI_Send(sig.buffer,NSIGNALS*num templates,MPI_FLOAT,0,status.MPI_TAG,MPI_COMM_WORLD) ;

MPE_Log_event(8,myid,"sent");

} /* end of loop over the data */

/* both slaves and master exit here */

printf("%s preparing to shut down (process J%d)\n",processor name,myid);
sprintf (logfile_name,"multifilter.%d.%d.log" ,numprocs,DATA_SEGMENTS) ;
MPE_Finish log(logfile_name);

MPI_Finalize();

printf("%s shutting down (process %d)\n",processor_name,myid);

return O;

}

/* This routine gets the data set, overlapping the data buffer as needed */
int get_calibrated_data() {
int i,code;

if (num_sent>=DATA_SEGMENTS)
return O;

while (remain<needed) {
code=get_data(fpifo,fplock,&tstart ,MIN_INTO_LOCK«60%srate,
datas,&remain, &srate, 1) ;
if (code==0) return 0;

}

/* Get the next needed samples of data x/

diff=npoint—needed;
code=get_data(fpifo,fplock,&tstart,needed,datas+diff,&remain,&srate,0);
datastart=tstart—diff/srate;

/* copy integer data into floats x/
for (i=0;i<npoint;i++) datalil=datas[i];

/* find the FFT of datax/
realft(data—1,npoint,1);

/* normalized delta-L/L tilde */
product (htilde,data,response,npoint/2) ;

/* update the inverse of the auto-regressive-mean power-spectrum s/
avg_inv_spec (FLO,srate,npoint,decay,&norm,htilde, ,mean_pow_spec,twice_inv_noise);

/* see if the data has any obvious outliers */
gauss_test=is_gaussian(datas,npoint,—2048,2047,0);
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return 1;

}

/* this function shifts data by CHIRPLEN points in buffer x/
void shiftdata() {
int i;
/* shift ends of buffer to the start x/
needed=npoint—CHIRPLEN+1;
for (i=0;i<CHIRPLEN-—1;i++) datas{i]=datas[i+needed];

/* reset if not enough points remain to fill the buffer */
if (remain<needed) needed=npoint;

return;
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5.34 Optimization and computation-speed considerations

The previous subsection describes the multifilter program, which filters data through a bank
of templates. We have experimented with the optimization of this code on several platforms, and
here recount some of that experience.

The first comment is that the Numerical Recipes routine realft () is not as efficient as possible.
In order to produce a production version of the GRASP code, we suggest replacing this function
with a more-optimal version. For example, on the Intel Paragon, the CLASSPACK library pro-
vides optimized real-FFT functions. To replace the realft() routine, we provide a replacement
routine by the same name, which calls the CLASSPACK library. This routine may be found in the
src/optimization/paragon directory of GRASP. By including the object file for this routine in
the linking path, before the Numerical Recipes library, it replaces that the realft() routine.

The second comment is related to inspiral-chirp template generation. The binary inspiral chirps
may be saved in the multifilter program, but one is then limited by the available memory space,
as well as incurring the overhead of frequent disk accesses if that memory space is swapped onto
and off the disk. To avoid this, it is attractive to generate templates “on the fly”, then dispose of
them after each segment of data is analyzed. This corresponds to setting STORE_TEMPLATES to 0 in
multifilter. In this instance, the computational cost of computing binary chirp templates may
become quite high, relative to the cost of the remaining computation (FFT’s, orthogonalization,
searching for the maximum SNR).

To cite a specific example, on the Intel Paragon, we found that the template generation was
almost a factor of ten more time-consuming than the rest of the searching procedure. Some profiling
revealed that the two culprits were the cube-root operation and the calculations of sines and cosines.
Because the floating point hardware on the Paragon only does add, subtract and multiply, these
operations required expensive library calls. In both cases, a small amount of work serves to eliminate
most of this computation time. In the case of the cube root function, we have provided (through
an ifdef INLINE_CUBEROOT in the code) an inline computation of cuberoot in 15 FLOPS, which
only uses add, subtract and multiply. This routine shifts z into the range from 1 — 2, then uses
a fifth-order Chebyshev approximation of z~%/% then make one pass of Newton-Raphson to clean
up to float precision, and returns z'/3 = £=2/3z. In the case of the trig functions we have provided
(through an ifdef INLINE TRIGS in the code) inline routines to calculate the sine and cosine
as well. After reducing the range of the argument to = € [, 7], these use a 6th order Chebyshev
polynomial to approximate the sine and cosine. These techniques speed up the template generation
to the point where it is approximately as expensive as the remaining computations. While there
is some small loss of computational accuracy, we have not found it to be significant. Shown in
Figure 41 is a timing diagram illustrating the relative computational costs of these operations.
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Figure 41: This shows the performance of an “on the fly” template search on the Intel Paragon,
with different levels of optimization. The top diagram uses the Numerical Recipes FFT routine
realft (), and takes about 4.2 seconds to process 6 seconds of data. The middle diagram shows
identical code using the CLASSPACK optimized FFT routine, and takes about 2.1 seconds. Note
that the template generation process is now becoming expensive. The bottom diagram shows
identical code which includes inline functions for cube-root and sine/cosine functions to speed up
the template generation process. The template generation takes about 325 msec, and the entire
search procedure (including template generation) takes 780 msec per template per processor per 6-
second stretch of data. Relative to the top diagram, this represents a speed-up factor of more than
5. Running on 256 nodes, it is possible to filter 5 hours of data through 66 templates (representing
the mass range from 1.2 to 1.6 solar masses) in 5x3600x66x(0.780)/(256x6) seconds = 10.1 minutes.
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6 GRASP Routines: Black hole ringdown

Stellar-sized black hole binaries are an important source of gravitational radiation for ground-based
interferometric detectors. The radiation arises from three phases: the inspiral of the two black hole
companions, the merger of these two companions to form a single black hole, and the ringdown
of this initially distorted black hole to become a stationary Kerr black hole. The gravitational
radiation of the black hole inspiral has been discussed in section 5; calculations of the late stages
of inspiral, the merger, and the early stages of the ringdown have not yet been completed; the
radiation produced in the late stages of black hole ringdown is the topic of this section.

At late times, the distorted black hole will be sufficiently “similar to” a stationary Kerr black
hole that the distortion can be expanded in terms of “resonant modes” of the Kerr black hole. By
“resonant modes” we refer to the eigenfunctions of the Teukolsky equation—which describes linear
perturbations of the Kerr spacetime—with boundary conditions corresponding to purely ingoing
radiation at the event horizon and purely outgoing radiation at large distances. These resonant
modes are also called the quasinormal modes; they are described in the next subsection.
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6.1 Quasinormal modes of black holes

Gravitational perturbations of the curvature of Kerr black holes can be described by two components
of the Weyl tensor: ¥y and W4. Because these are components of the curvature tensor, they have
dimensions of [L~2]. Of particular interest is the quantity ¥, since it is this term that is suitable
for the study of outgoing waves in the radiative zone. The formalism for the study of perturbations
of rotating black holes was developed originally by Teukolsky [17] who was able to separate the
differential equation to obtain solutions of the form .

(r—ipa)* ¥y = e 4 Rpry (r) —2Sem (1) e™P (6.1.1)

where _3Ryy(r) is a solution to a radial differential equation, and _sSsm (1) is a spin-weighted
spheroidal wave function (see [17], equations (4.9) and (4.10)). The black hole has mass M and
specific angular momentum a = c¢J/M (which has dimensions of length) where J is the angular
momentum of the spinning black hole. We shall often refer to the dimensionless angular momentum
parameter, & = c2a/GM = c3J/GM?. For a Kerr black hole, & must be between zero (Schwarzschild
limit) and one (extreme Kerr limit). The observer of the perturbation is located at radius T,
inclination y = cost, and azimuth 3 (see figure 42). The perturbation itself has the spheroidal
eigenvalues £ and m, and has a (complex) frequency w. The constants G and ¢ are Newton’s
gravitational constant and the speed of light.

to observer

spin axis

black hole

axis of \/\

perturbation ﬁ

Figure 42: The polar angle, ¢, and the azimuthal angle, 3, of the observer relative to the spin axis
of a black hole and the (somewhat arbitrary) axis of perturbation.

The important physical quantities for the study of the gravitational waves arising from black
hole perturbations can be recovered from the field U4. In particular, the “4+” and “x” polarizations
of the strain induced by the gravity waves are found by [17]
2¢2
— Wy . (6.1.2)
|w?
The quantity hy = h;; is the metric perturbation that represents the linear polarization state along
e;and e 5 while the quantity Ay, = hm‘ represents the linear polarization state along e; + es The
power radiated towards the observer (per unit solid angle) is

h+—ihx - —

d*E c’r? |
—— = lim ———— |, 2. 6.1.3
dt dQ A arGlw|? [l (6.1.3)
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Thus, in order to compute the relevant information about gravitational waves emitted as pertur-
bations to rotating black hole spacetimes, one needs to calculate the value of ¥4 at large radii from
the black hole.

The quasinormal modes are resonant modes of the Teukolsky equation that describe purely
outgoing radiation in the wave-zone and purely ingoing radiation at the event horizon. The quasi-
normal modes are described by a spectrum of complex eigenvalues (which include the spectrum of
eigenfrequencies wy), and eigenfunctions s Rpp,(r) and _2Spm (1) for each value spheroidal mode
¢ and m. These eigenvalues and functions also depend on the mass and angular momentum of
the black hole. We shall only consider the fundamental (n = 0) mode since the harmonics of
this mode have shorter lifetimes. For the same reason, we are most interested in the quadrupole
(£ =2 and m = 2) mode. The observer is assumed to be at a large distance; in this case, one can
approximate the perturbation as follows:

A . :
Uy~ - e_“"t’e‘_Qng(u)e’mB. (6.1.4)

Here t.e = t — 7*/c represents the retarded time, where r* is a “tortoise” radial parameter. For
large radii, the tortoise radius behaves as r — r log(r/ry) where r,. is the “radius” of the black
hole event horizon. Thus, we see that the tortoise radius is nearly equal to the distance of the
objects surrounding the black hole, and we shall view it as the “distance to the black hole.” The
parameter A represents the amplitude of the perturbation, which has the dimensions of [L™!].
Given the asymptotic form of the perturbation in equation 6.1.4, we can integrate equation 6.1.3
over the entire sphere and the interval t.; € [0,00) to obtain an expression for the total energy
radiated in terms of the amplitude A of the perturbation. Thus, we can characterize the amplitude
by the total amount of energy emitted: A% = 4Gc™"E|w|?*(~Imw). The gravitational waveform is

found to be 12 12
4de f—Imw GE , :
hy —ihy & ——=( —— =) eWhe 8, (u)e™P. 6.1.5
In order to simulate the quasinormal ringing of a black hole, it is necessary to determine the complex
eigenvalues of the desired mode, and then to compute the spheroidal wave function Spy,(u). The
routines to perform these computations are discussed in the following sections.

Rather than computing the actual gravitational strain waveforms at the detector, the routines
will calculate the quantity Hy —iHy = (c*r/GMg)(hs —ihy); the normalization of these waveforms
to the correct source distance is left to the calling routine. The distance normalization can be
computed as follows:

C2T T T T
= = = 2. 1 19(———). 616
GMy ~ Toc (1.4766km) 090 > 107 Stpe (6.1.6)

where T = 4.89128 us is the mass of the sun expressed in seconds (see equation 5.0.2). It will
be convenient to write the time dependence of the strain as the complex function H(Uyet) so that
Hy —iHy = H(Uret)-cSeg (12)]%8. The dimensionless eigenfrequency, & = GMw/c3, depends only
on the mode and the dimensionless angular momentum of the black hole. In terms of this quantity,
the function H(Uret) is

H(Uret) & —De/€ (_I’T;T)l/ : ( Ajit/lo) exp [-)w(ugt) (%) _oo] (6.1.7)

where ¢ is the fractional mass loss due to the radiation in the excited quasinormal mode.
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6.2 Function: qn_eigenvalues()

void qn_eigenvalues(float eigenvalues[], float a, int s, int 1, int m)

This routine computes the eigenvalues associated with the spheroidal and radial wave functions for
a specified quasinormal mode. The arguments are:

eigenvalﬁes: Output. An array, eigenvalues[0..3], which contains, on output, the real and
Imaginary partsof the eigenvalues & and A (see below) as follows: eigenvalues[0] = Re w,
eigenvalues[1] =Imd, eigenvalues[2] = Re A, and eigenvalues[3] =ImA.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, |4| < 1, which
is negative if the black hole is spinning clockwise about the . = 0 axis (see figure 42).

: Input. The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation
(e.g., a scalar field perturbation), +1 for a vector perturbation (e.g., an electromagnetic field
perturbation), or £2 for a spin two perturbation (e.g., a gravitational perturbation).

2]

]

: Input. The mode integer 1 > |s|.
m: Input. The mode integer |m| < 1.

For a Kerr black hole of a given dimensionless angular momentum parameter, 4, with a pertur-
bation of spin-weight s and mode £ and m, there is a spectrum of quasinormal modes which are
specified by the eigenvalues &, and A,,. As discussed in the previous subsection, the eigenvalue o,
is associated with the separation of the time dependence of the perturbation, and it specifies the
frequency and damping time of the radiation from the perturbation. The additional complex eigen-
value A, results from the separation of the radial and azimuthal dependence into the spheroidal
and radial wave functions. Both of these eigenvalues will be necessary for the computation of the
spheroidal wave function (below).

The routine qn_eigenvalues() can be used to compute the eigenvalues of the fundamental
(n = 0) mode. To convert the dimensionless eigenvalue @ to the (complex) frequency of the
ringdown of a Kerr black hole of mass M, one simply computes w = ¢30/GM. The eigenfrequency
is computed using the method of Leaver [14]. Note that Leaver adopts units in which 2M = 1, s0
one finds that & = %wLem, and @ = 20y.,., in our notation. The eigenvalues satisfy the following
symmetry: if pm, = —id, and A, are the eigenvalues for an azimuthal index m, then p_,, = p¥,
and A_,, = A%, are the eigenvalues for the azimuthal index —m.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comment: For simplicity, we require that the spin-weight number, s, be an integer. Thus, the
spinor perturbations xp and x;, associated with s = :I:% respectively [17], are not allowed.
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6.3 Example: eigenvalues program

This example uses the function gn_eigenvalues() to compute the eigenvalues ;W and Ay,
for the s spin-weighted quasinormal mode specified by £ and m, and for a range of values of the
dimensionless angular momentum parameter, 4. To invoke the program, type:

eigenvalues s / m

for the desired (integer) values of s, £, and m. Make sure that £ > |s| and 0 < m < £ (the eigenvalues
for negative values of m can be inferred from the symmetries discussed in subsection 6.2). The
output of the program is five columns of data: the first column is the value of 4 running from just
greater than —1 to just less than 1 (or between 0 and 1 if m = 0), the second and third columns
are the real and imaginary parts of the eigenfrequency @, and the fourth and fifth columns are
the real and imaginary parts of the angular separation eigenvalue A. For the values of a < 0,
the eigenvalues correspond to the mode with azimuthal index —m so that the real part of the
eigenfrequency is positive. A plot of the eigenfrequency output of the program eigenvalues for
several runs with s = —2 is shown in figure 43. The blue curves in figure 43 can be compared to
figure 5 of reference [15] keeping in mind the conversion factors between Leaver’s convention (which
is also used in [15]) and the convention used here (see subsection 6.2).

—’0.10 T T T T
=3

-0.09 4
6
E -0.08

-0.07 + 4

-0.06 - L ! A + L

0.2 0.4 0.6 0.8 1.0

Re(o)

Figure 43: The real and imaginary parts of the eigenfrequencies, @, as computed by the program
eigenvalues with s = —2. Each curve corresponds to a range of values of & from —0.9 (left)
to +0.9 (right) for a single mode £ and |m|. The open circles are placed at the values a = —0.9,
—-0.6, —0.3, 0, +0.3, +0.6, and +0.9 except when m = 0 in which case there are no negative values
of & plotted. The blue curves correspond to the £ = 2 modes and the red curves correspond to the

f = 3 modes.
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/* GRASP: Copyright 1997, Bruce Allen = /
#include "grasp.h"

main(int argc,const char xargv[])

{

float a,da=0.1,eigen[4];
int -s;1,m; -

— ~ /* process the command line arguments * /
if (arge==4) { /x correct number of arguments */

r s = atoi(argv(i]);
1 = atoi(argv(2]);
m = atoi(argv([3]);

} else { /x incorrect number of arguments */
fprintf(stderr,"usage: qn_eigen_values s 1 m\n");
return 1;

}

/* scan through the range of a */
for (a=1-da;a>—1;a—=da) {
¢ /* compute the eigenvalues * /

if (a<0) {

if (m==0) break;

. gqn-eigenvalues(eigen,a,s,l,—m);
; } else {
{ qn-eigenvalues(eigen,a,s,l,m);

/* print the eigenvalues */
printf ("AE\tLE\t%E\t%E\t%f\n" ,a, eigen (0] >eigen(1] ,eigen{2],eigen[3]);

return O;

Author: Jolien Creighton, jolien@tapir.caltech.edu

172



6.4 Function: sw_spheroid()

void sw_spheroid(float *re, float *im, float mu, int reset,
float a, int s, int 1, int m, float eigenvalues[])

This routine computes the spin-weighted spheroidal wave function ;S¢m,(1). The arguments are:
re: Output. The real part of the spin-weighted spheroidal wave function.
im: Output. The imaginary part of the spin-weighted spheroidal wave function.

mu: Input. The independent variable, u = cost with ¢ being a polar angle, of the spin-weighted
spheroidal wave function; —1 < mu < 1.

reset: Input. A flag that indicates that the function should reset (reset = 1) the internally
stored normalization of the spin-weighted spheroidal wave function. The reset flag should be
set if any of the following five arguments are changed between calls; otherwise, set reset =0
so that the routine does not recompute the normalization.

a: Input. The dimensionless angular momentum parameter, —1 < a < 1, of the Kerr black hole
for which the spin-weighted spheroidal wave function is associated.

s: Input. The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation
(e.g., a scalar field perturbation), +1 for a vector perturbation (e.g., an electromagnetic field
perturbation), or +2 for a spin two perturbation (e.g., a gravitational perturbation).

1: Input. The mode integer 1 > |s|.
m: Input. The mode integer |m| < 1.

eigenvalues: Input. An array, eigenvalues[0..3], which contains the real and imaginary parts
of the eigenvalues & and A (see below) as follows: eigenvalues[0] = Re®, eigenvalues[1] =
Im &, eigenvalues[2] = Re A, and eigenvalues[3] = Im A. These may be calculated for

a quasinormal mode using the routine qn_eigenvalues().

The spin-weighted spheroidal wave function is also computed using the method of Leaver [14].
We have adopted the following normalization criteria for the spin-weighted spheroidal wave func-
tions 5Spm (). First, the angle-averaged value of the squared modulus of sSgm (1) is unity: f_{l lsSem () 2dp =
1. Second, the complex phase is partially fixed by the requirement that sSp,(0) is real. Finally, ;
the sign is set to be (—)¢~™2X(™:3) for the real part in the limit that 4 — —1 in order to agree with

the sign of the spin-weighted spherical harmonics Yzm(1,0) (see [13]).
It is sufficient to compute the spin-weighted spheroidal wave functions with s < 0 and aw =

aw > 0 because of the following symmetries [16]:
—sStm (U, aw) = (Spm(—p,aw) with _Egp(aw) = sEgm(aw) (6.4.1)

and
sSem (1, —aw) = 58y _m(—p,aw) with  Epy(—aw) = sE¢ —m(aw) (6.4.2)

where ;Epm = sAmm + s(s + 1).

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.5 Example: spherical program

The program spherical is an example implementation of the routine sw_spheroid() to compute
the standard spin-weighted spherical harmonics [13]. The program also computes these functions
using equation (3.1) of [13] for comparison. According to the normalization convention stated
in subsection 6.4, the relationship between the spin-weighted spheroidal harmonics and the spin-
weighted spherical harmonics is: ' '

sYém(ez ¢) = (277)—1/zssém(cos e)eimqﬁ (6.5.1)

withaw=0and A= ({-3s)({+s+1).
To invoke the program, type:

spherical s £ m

for the desired (integer) values of s, £, and m (£ > |s| and |m| < £). The output is three columns
of data: the first column is the independent variable u between —1 and +1, the second column
is the value of (27)~1/ 2.Sem (1), and the third column is the value of sYem (1,0) as computed
from equation (3.1) of [13]. A comparison of the results produced by the program spherical for
{=m = —s = 2 with the exact values of _5Y22(1s,0) = (5/647)/2(1 + 1)? is shown in table 9.

| u Goldberg sw_spheroid() exact |

—0.99
—-0.95
-0.75
—0.55
-0.35
-0.15
+0.15
+0.35
+0.55
+0.75
+0.95
+0.99

1.576955 x 10~
3.942387 x 10~*
9.855968 x 10~3
3.193334 x 1072
6.662639 x 10~2
1.139351 x 101
2.085525 x 10~!
2.874004 x 107!
3.788640 x 10!
4.829430 x 10~!
5.996378 x 107!
6.244906 x 10!

1.576955 x 10~
3.942387 x 10~4
9.855967 x 1073
3.193333 x 10~2
6.662639 x 102
1.139351 x 10™!
2.085525 x 10~1
2.874005 x 10~1
3.788639 x 10!
4.829430 x 10™1
5.996379 x 10!
6.244906 x 10!

1.576958 x 10~°
3.942395 x 1074
9.855986 x 103
3.193340 x 102
6.663647 x 1072
1.139352 x 10~1
2.085527 x 10~1
2.874006 x 101
3.788641 x 1071
4.829433 x 107!
5.996382 x 10™1
6.244911 x 10~1

Table 9: A comparison of the values of the spin-weighted spherical harmonic Y27 (1, 0) calculated
by equation (3.1) of Goldberg [13], the values of (27)~1/?_559,(u) using routine sw_spheroid(),
and the values of the exact result (5/647)2(1 + u)2. The three methods give excellent agreement.
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/* GRASP: Copyright 1997, Bruce Allen =/
#include "grasp.h"

#define TWOPI 6.28318530718

#define FOURPI 12.5663706144

static int imaxargl,imaxarg2;

#define IMAX(a,b) (imaxargl=(a),imaxarg2=(b),(imaxargl) > (imaxarg2) 7\
(imaxargl) : (imaxarg2))

static int iminargl,iminarg?2;

#define IMIN(a,b) (iminargl=(a),iminarg2=(b),(iminargl) < (imimarg2) 7\
(iminargl) : (iminarg2))

float sw_spherical(float mu, int s, int 1, int m)
/* Computes the spin-weighted spherical harmonic (with phi=0) using
equation (3.1) of Goldberg et al (1967). */

float factrl(int);
float bico(int, int);
float sum,coef,x;
int sign,r,rmin,rmax;

if (mu==-1.0) {
fprintf (stderr,"error in sw_spherical(): division by zero");
return O;

} else {
x=(1+m)/(1 — mu);

}

coef = factrl(l+m)sfactrl(l-m)*(2x1+1)/(factrl(l—s)*factrl(1+s)*FOURPI);
rmin = IMAX(O,m-s);

rmax = IMIN(1-s,1l+m);

sum = 0;

for (r=rmin;r<=rmax;r++) {
(((Q-r+s)%2)==0) 7 (sign = 1) : (sign = —1);
sum += signxbico(l—s,r)*bico(l+s,r+s—m)*pow(x,0.5%(2xr+s—m));

}

|
| sum *= sqrt(coef)*pow(0.5%(1—mu),1);

return sum;

|

| main(int argc, char xargv[])

\ {

| float Sre,Sim,Y,norm=1.0/sqrt(TWOPI),mu=0,dmu=0.02;
‘ float eigenvalues(4];

int s,l,m;

/* process arguments x/
if (argc==4) { /# correct number of arguments */
s = atoi(argv(il);
1 = atoi(argv(2]);
m = atoi(argv([3]);
} else { /x incorrect number of arguments x/
|
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fprintf(stderr,"usage: spherical s 1 m\n");
return 1;

}

/* set the eigenvalues to produce spin-weighted spherical harmonics */
eigenvalues[0] = eigenvalues[i] = eigenvalues{3] = 0;
eigenvalues[2] = (1 — 8)*(1 + s + 1);

/* Teset the normalization */
sw_spheroid(&Sre,&Sim,m,1,0.0, s,1,m,eigenvalues);

for (mu=—1+0.5xdmu;mu<1;mu+=dmu) {
/* compute the spin-weighted spheroidal harmonic * /
sw-spheroid(&Sre,&Sim,mu,0,0.0,s,l,m,eigenvalues) ;
/* compute the spin-weighted spherical harmonic * /
Y = sw_spherical(mu,s,l,m);
/* print results with correct normalization for the spheroidal harmonic */
printf("je\tle\t%e\n" ,mu,norm*Sre,Y) ;

}

return 0;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.6 Example: spheroid program

This is a second implementation of the function sw_spheroid () which is used to compute the spin-
weighted spheroidal wave function associated with a quasinormal ringdown mode of a Kerr black
hole with a certain (specified in the code) dimensionless angular momentum parameter. To invoke

the program, type:
spheroid s £ m

for the desired (integer) values of s, £, and m (£ > |s| and |m| < £) of the desired mode. The output
is three columns of data: the first column is the independent variable u between —1 and +1, the
second column is the value of the real part of ¢Sen(p), and the third column is the value of the
imaginary part of sSp,(u). Figure 44 depicts the output for the spin-weighted spheroidal wave

function —2.522(p).

2 T
——— real part
= —— 10 * imaginary part
mﬁ
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-1 0 1
cosine of polar angie, p

Figure 44: A plot of the real and imaginary parts of the £ = m = —s = 2 spin-weighted spheroidal
wave function, _5S22(u), associated with a black hole with dimensionless angular momentum pa-
rameter @ = 0.98. The imaginary part is scaled by a factor of ten.
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/* GRASP: Copyright 1997, Bruce Allen * /
#include "grasp.h"
#define SPIN 0.98 /« the dimensionless angular momentum parameter */

main(int argc, char xargv[])

{

i float re,im,mu=0,dmu=0.02,a=SPIN;
float eigenvalues[4];

int s,1,m;

/* process arguments x/

e if (arge==4) { /x correct number of arguments */
s atoi(argv(1i]);
1 = atoi(argv({2]);
m = atoilargv([3]);

} else { /# incorrect number of arguments */
fprintf(stderr,"usage: spheroid s 1 m\n");
return 1;

}

/* get the eigenvalues for the appropriate quasinormal mode * /
qn_eigenvalues(eigenvalues,a,s,1,m);

b /* reset the normalization */
sw_spheroid(&re,&im,mu,1,a,s,1,m,eigenvalues);

for (mu=—1+0.5%dmu;mu<1;mu+=dmu) {
/* compute the spin-weighted spheroidal harmonic */
sw_spheroid(&re,&im,mu,0,0. 0,s,1,m,eigenvalues) ;
/* print results %/
printf ("/e\tle\t%e\n" ,mu,re,im);

}

return 0;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.7 Function: gn_ring()

int gn_ring(float iota, float beta,
float eps, float M, float a, int 1, int m,
float dt, float atten, int max,
float **plusPtr, float **crossPtr)

This routine is used to compute the “+” and “x” polarizations of the gravitational waveform,
H (tret), produced by a black hole ringdown at a distance GMg/c?> = Tpe =~ 1.4766km. To obtain
the waveforms at a distance r, multiply the result by GMq /c?*r = Tgc/r. The arguments are:

iota: Input. The polar angle (inclination), ¢ (in radians), of the sky position of the observer with
respect to the (positive) spin axis of the black hole, 0 < iota < 7.

beta: Input. The azimuth, § (in radians), of the sky position of the observer with respect to the
axis of the perturbation at the start time. (0 < beta < 27.)

eps: Input. The fraction of the total mass lost in gravitational radiation from the particular
mode. (0 < eps < 1.)

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, || < 1, which
is negative if the black hole is spinning clockwise about the ¢ = 0 axis (see figure 42).

1: Input. The mode integer £. (1 > 2)
m: Input. The mode integer m. (jm| < 1)
dt: Input. The time interval, in seconds, between successive data points in the returned waveforms.

atten: Input. The attenuation level, in dB, at which the routine will terminate calculation of the
waveforms. Le., the routine will terminate when the amplitude, A = Ag exp(—Imwtyet), falls
below the level Acyro = Ap alog;(—0.1 x atten).

max: Input. The maximum number of data points to be returned in the waveforms.

plusPtr: Input/Output. A pointer to an array which, on return, contains the waveform H.
sampled at intervals dt. If the array has the value NULL on input, the routine allocates an
amount of memory to *plusPtr to hold max elements.

crossPtr: Input/Output. A pointer to an array which, on return, contains the waveform Hy
sampled at intervals dt. If the array has the value NULL on input, the routine allocates an
amount of memory to *crossPtr to hold max elements.

The routine qn ring() returns the number of data points that were written to the arrays
(*plusPtr) [] and (xcrossPtr) []; this is either the number specified by the input parameter max
or the number of points computed when the waveform was attenuated by the threshold atten. The
eigenvalues are obtained from the function qn_eigenvalues(). The waveform is then computed
using Hy — iHy = H(Uret)-eSep(1) V¥ with H(Uret) given by equation (6.1.7). The spheroidal
wave function is obtained from the function sw_spheroid().

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.8 Example: ringdown program

This example uses the function qn_ring() to compute the black hole quasinormal ringdown wave-
form for a preset mode and inclination. The waveform as a function of time is written to standard
output in three columns: the time, the plus polarization, and the cross polarization. A Plot of the
quasinormal ringdown waveform data is shown in figure 45.
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Figure 45: A plot of the plus and cross polarizations of the gravitational wave strain, at a (unphys-
ical!) distance GMp/c® = Tye =~ 1.4766 km, for the fundamental £ = m = 2 mode of a black hole
with mass M = 50M,, dimensionless angular momentum parameter 0.98, and fractional mass loss
€ = 0.03, with inclination and azimuth ¢ = 0 and 8 = 0. The data was produced by the program
ringdown.
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/* GRASP: Copyright 1997, Bruce Allen */

#include "grasp.h"

po
#define IOTA 0.0 /* inclination (radians) */ 5
#define BETA 0.0 /* azimuth (radians) %/
#define EPS 0.03 /* fractional mass loss */
#define MASS 50.0 /* mass (solar masses) */
#define SPIN 0.98 /* specific angular momentum */
#define MODE_L 2 /* mode integer 1 */
#define MODE.M 2 /* mode integer m */
#define SRATE 16000.0 /x sampling rate (Hz) »/
#define ATTEN 20.0 /* attenuation leven (dB) */
#define MAX 1024 /* max number of points in waveform */
main()
{

float *plus,*cross,t,dt=1/SRATE;
int i,n;

/* set arrays to NULL so that memory is allocated in called routines */
plus = cross = NULL;

/* generate the waveform function data */
n = gn_ring(IOTA,BETA,EPS,MASS,SPIN,MODE_L,MODE_M,dt ,ATTEN,MAX, &plus,&cross) ;

/* output the data %/
for (i=0,t=0;i<n;i++,t+=dt) printf("%e\t%e\tle\n",t,plus[il,cross[il);

return O;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.9 Function: gn_gring()

int gqn_qgring(float psiO, float eps, float M, float a,
float dt, float atten, int max, float **strainPtr)

The routine qn.qring() is a quick ringdown generator which constructs a damped sinusoid with a
frequency and quality approximately equal to that of the £ = m = 2 quasinormal mode of a Kerr
black hole and an amplitude approximately equal to angle-averaged strain expected for black hole
radiation at a distance GMg/c? = Tpe ~ 1.4766km. To obtain the waveforms at a distance T,
multiply the result by GMg/c*r = Tpc/r. The arguments to the routine are:

psiO: Input. The initial phase (in radians) of the waveform (see below).
eps: Input. The fractional mass loss in quadrupolar (¢ = m = 2) radiation. (0 < eps < 1.)
M: Input. The mass of the black hole in solar masses. '

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, || < 1, which
is negative if the black hole is spinning clockwise about the ¢ = 0 axis (see figure 42).

dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atten: Input: The attenuation level, in dB, at which the routine will terminate calculation of the
waveforms.

max: Input. The maximum number of data points to be returned in the waveforms.

strainPtr: Input/Output. A pointer to an array which, on return, contains the angle-averaged
waveform sampled at intervals dt. If the array has the value NULL on input, the routine
allocates an amount of memory to *strainPtr to hold max elements.

The routine gn.ring() returns the number of data points that were written to the array
(*strainPtr) [1; this is either the number specified by the input parameter max or the num-
ber of points computed when the waveform was attenuated by the threshold atten. The array
contains the angle averaged waveform

Have(tret) = %Re [H(Uret)])w/]y (6-9-1)

where H(Lret) is given by equation (6.1.7), sampled at time intervals dt. The constant v defines
the initial phase of the waveform. The amplitude factor is set by the following argument: The
gravitational strain (at a distance GMg/c? = Tye ~ 1.4766km) that would be observed by an
interferometer is given by H(tret) = Fy(8, ¢, %) Hy (tretst, ) + Fx (8, ,%)Hy (tret, ¢, B) Where F.,
and Fy represent the antenna patterns of the interferometer. When averaged over 6, ¢, and 1, one
finds (F?) = (F2) = } and (F,Fx) = 0. Thus,

(Hz(tret)>9,¢,'¢7by5 = %(H-?- (treta L 5) + H>2< (tI'Eta L ﬂ))b,ﬁ

%(KH+ - z'HX)(tret: "718),2>L,ﬁ

%IH(Uret)le

J2p) (6.9.2)

ave

2
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where the overbar indicates a time average over a single cycle; approximate equality becomes exact
in the limit of a high quality ringdown. It is in this sense that the quantity H,ye(fret) can be viewed
as an angle-averaged waveform.

Rather than compute the eigenfrequency using the routine qn_eigenvalues (), this routine uses
the analytic fits to the eigenfrequency found by Echeverria [12]. These expressions are:

&~ fa)(1 - tig(a)) (6.9.3)

with
fl@) = 1-0.63(1—a)%®° (6.9.4)
g(a) = (1-a)¥%. (6.9.5)

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: Since this routine does not need to compute the spheroidal wave function and uses an
analytic approximation to the eigenfrequency, it is much simpler than the routine qn_ring().
The approximate eigenfrequencies are typically accurate to within ~ 5%, so this routine is
to be preferred when computing quadrupolar (¢ = m = 2) quasinormal waveforms unless
accuracy is critical.

183

n



ey
i

6.10 Function: gn_filter()

int gn_filter(float freq, float qual,
float dt, float atten, int max, float **filterPtr)

Quasinormal ringdown waveforms are characterized by two parameters: the central frequency of
the waveform, and the quality of the waveform. The parameter space is most easily described in
terms of these variables (rather than the mass and the angular momentum of the corresponding
black hole), so it is useful to construct filters for quasinormal ringdown waveform searches in terms
of the frequency and quality of the waveform. This routine constructs such a filter, with a specified
frequency and quality. The routine returns the number of filter elements computed before a specified
attenuation level was reached. The arguments are:

freq: Input. The central frequency, in Hertz, of the ringdown filter.
qual: Input. The quality of the ringdown filter.
dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atten: Input: The attenuation level, in dB, at which the routine will terminate calculation of the
waveforms.

max: Input. The maximum number of data points to be returned in the waveforms.

filterPtr: Input/Output. A pointer to an array which, on return, contains the filter sampled
at intervals dt. If the array has the value NULL on input, the routine allocates an amount of
memory to *filterPtr to hold max elements.

The constructed filter, ¢(t), is the function
q(t) = e~/ R cos(2r ft) (6.10.1)

where f is the central frequency and Q is the quality. The routine gn_filter() performs no
normalization, nor does it account for different possible starting phases. The latter is not important
for detection template construction. Normalization is achieved using the function qn_normalize(),
which is described later.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.11 Function: gn_normalize()
void qn_normalize(float *u, float *q, float *r, int n, float *norm)
Given a filter, §(f), and twice the inverse power spectrum, r(f), this routine generates a normalized

template @(f) for which 1 = (N?) — %correlate(. ..,u,u,r,n). The arguments are:

u: Output. The array uf0..n-1] contains the positive frequency part of the complex template
function %(f), packed as described in the Numerical Recipes routine realft ().

q: Input. The array q[0..n-1] contains the positive frequency part of the complex filter func-
tion g(f), also packed as described in the Numerical Recipes routine realft ().

r: Input. The array r[0..n/2] contains the values of the real function r(f) = 2/Sp(|f]) used as a
weight in the normalization. The array elements are arranged in order of increasing frequency
from the DC component at subscript 0 to the Nyquist frequency at subscript n/2.

n: Input. The total length of the arrays u and q. Must be even.
norm: Output. The normalization constant, «, defined below.

Given a filter, ¢(t), this routine computes a template, u(t) = aqg(t), which is normalized so that
(u,u) = 2, where (-,-) is the inner product defined by equation (5.10.9). Thus, the normalization

constant is given by
1 1 ’
- == . 6.11.1
= =39 ( )

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.12 Function: find ring()

void find_ring(float *h, float *u, float *r, float *o,
int n, int len, int safe, int *off,
float *snr, float *mean, float *var)

This optimally filters the strain data using an input template and then finds the time at which the
SNR peaks. The arguments are:

h: Input. The FFT of the strain data h(f).

u: Input. The normalized template a(f).

r: Input. Twice the inverse power spectrum 2/S(|f]).

o: Output. Upon return, contains the filter output.

n: Input. Defines the lengths of the arrays h[0..n-11, u[0..n-1], o[0..n-1], and r[0. .n/2].

len: Input. The number of time domain bins for which the filter u(¢) is non-zero. Needed in order
to eliminate the wrap-around ambiguity described in subsection 5.14.

safe: Input. The additional number of time domain bins to use as a safety margin. This number
of points are ignored at the beginning of the filter output and, along with the number of
points len, at the ending of the filter output. Needed in order to eliminate the wrap-around
ambiguity described in subsection 5.14.

off: Output. The offset, in the range safe to n-len-safe-1, for which the filter output is a
maximum.

sanr: Output. The maximum SNR in the domain specified above.
mean: Output. The mean value of the filter output over the domain specified above.

var: Output. The variance of the filter output over the domain specified above. Would be unity
if the input to the filter were Gaussian noise with a spectrum defined by Sj,.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.13 Function: gn_-inject()

void gn_inject(float *strain, float *signal, float *respomnse, float *work,
float invMpc, int off, int n, int len)

This routine injects a signal s(t), normalized to a specified distance, into the strain data A(t), with
some specified time offset. The arguments to the routine are:

strain: Input/Output. The array strain[0..n-1] containing the strain data on input, and the
strain data plus the input signal on output.

signal: Input. The array signall[0..len-1] containing the signal, in strain units at 1 Mpc
distance, to be input into the strain data stream.

response: Input. The array response[0..n+1] containing the response function R(f) of the
IFO.

work: QOutput. A working array work[0..n-1].

invMpc: Input. The inverse distance of the system, measured in 1/Mpc, to be used in normalizing
the signal.

off: Input. The offset number of samples (in the time domain) at which the injected signal starts..
n: Input. Defines the length of the arrays strain[0. .n-1],work[0. .n-1], and response[0. .n+1].

len: Input. Defines the length of the array signal[0..len-1].

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: See the description of the routine time_inject ().
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6.14 Vetoing techniques for ringdown waveforms

Vetoing techniques for binary inspirals have already been described in subsection 5.18; these tech-
niques are equally applicable to searches for ringdown waveforms. However, since ringdown wave-
forms are short lived and have a narrow frequency band, it is much more difficult to distinguish
between a ringdown waveform and a purely impulsive event. Furthermore, since the ringdown
waveform will be preceded by some unknown waveform corresponding to a black hole merger, one

~ should not be too selective as to which events should be vetoed.

Nevertheless, the Caltech 40 meter interferometer data has many spurious events that will
trigger a ringdown filter, and we would expect that other instruments will have similar properties.
These spurious events will (hopefully) not be too common, and most will be able to be rejected if
they are not reported by other detectors. At present, however, we have only the Caltech 40 meter
data to analyze, so we must consider every event that is detected by the optimal filter. The single
vetoing technique that we will use at present is to look for non-Gaussian events in the detector
output using the routine is_gaussian(). Since the expected ringdown waveforms will be only
barely discernible in the raw data, such a test has no chance of accidentally vetoing an actual
ringdown, but it will veto the obvious irregularities in the data.
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6.15 Example: qnoptimal program

This program is a reworking of the program optimal to be run on simulated 40-meter data. Instead
of searching for binary inspiral, qn.optimal searches for an injected quasinormal ringdown wave-
form. Refer to the sections on optimal filtering and the optimal program for a detailed discussion.

The program is setup to inject a quasinormal ringdown, produced by the routine qn_qring(),
due to a black hole of mass M = 50Mg, dimensionless angular momentum parameter a = 0.98,
and fractional mass loss of ¢ = 0.03. The injection occurs at a time of 500s and the source distance
is set to 100kpc. The filter is constructed from the same waveform.

The following is some sample output from gqn_optimal:

max snr: 3.74 (offset 30469) data start: 466.77 variance: 0.72159
max snr: 4.03 (offset 50156) data start: 479.80 variance: 0.78550

Max SNR: 9.26 (offset 70785) variance 0.796263
If ringdown, estimated distance: 0.114364 Mpc, start time: 499.999968
Distribution: s= 40, N>3s= 0 (expect 353), N>5s= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not appear to have outliers

max snr: 3.58 (offset 70974) data start: 505.86 variance: 0.77432
max snr: 3.62 (offset 123006) data start: 1339.81 variance: 0.70885

Max SNR: 67.01 (offset 126129) variance 4.637304
If ringdown, estimated distance: 0.009777 Mpc, start time: 1365.618108
Distribution: s= 40, N>3s= 320 (expect 353), N>5s= 780 (expect 0)
Distribution has outliers! Reject

Max SNR: 93.03 (offset 1295) variance 4.444335
If ringdown, estimated distance: 0.005934 Mpc, start time: 1365.998780
Distribution: s= 40, N>3s= 109 (expect 353), N>5s= 280 (expect 0)
Distribution has outliers! Reject

max snr: 2.71 (offset 127389) data start: 1378.90 variance: 0.29810
max snr: 4.85 (offset 118137) data start: 2152.18 variance: 0.91870

Max SNR: 12.74 (offset 69426) variance 1.332324
If ringdown, estimated distance: 0.081144 Mpc, start time: 2172.249524
Distribution: s= 39, N>3s= 0 (expect 353), N>5s= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not appear to have outliers

max snr: 3.65 (offset 35976) data start: 2178.24 variance: 0.77820
max snr: 3.76 (offset 122854) data start: 2191.28 variance: 0.67849

As can be seen, gqn_optimal is able to find the ringdown and correctly estimates its distance
and time of arrival.
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Author: Jolien Creighton, jolien@tapir.caltech.edu
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/* GRASP: Copyright 1997, Bruce Allen */

#include "grasp.h"

#define NPOINT 131072 /* number of data points */

#define HSCALE 1.0e21 /* convenient scaling factor =/

#define ARMLENGTH 40.0 /* armlength (meters) =/

#define FLO 120.0 /* low frequency cutoff for filtering %/

#define MIN_INTO_LOCK 3.0 /x time (minutes) to skip into each locked section */

#define THRESHOLD 6.0 /* detection threshold SNR */

#define ATTEN 30.0 /* attenuation cutoff for ringdown waveforms */
#define SAFETY 1000 /* padding safety to avoid wraparound errors */ {

#define DATA_SEGMENTS 3000 /x maximum number of data segments to filter */

double datastart;

float response[NPOINT+2],srate=9868.4208984375;
short datas[NPOINT];

int needed=NPOINT; !

main()

{ -
b
t

void realft(float *, unsigned long, int);

double norm; ;s
float data[NPOINT],htilde[NPOINT] ,output[NPOINT]; !
float mean_pow_spec[NPOINT/2+1],twice_inv_noise [NPOINT/2+1]; ‘-
float sring,ringtilde[NPOINT],template [NPOINT];

float decaytime,decay,scale,snr,mean,var,tmpl.norm,dist;
float mass=50.0,spin=0.98,eps=0.03,psi10=0.0,invMpc=10.0,ringstart=500.0; .
int i,code,len,safe=SAFETY,diff,off,n=NPOINT;

/* manufacture quasinormal ring data; obtain length of signal */
ring = NULL;
len = gn_gring(psi0,eps,mass,spin,1.0/srate,ATTEN,n,&ring);

/* normalize quasinormal ring to one megaparsec */

scale = HSCALE*M_SOLAR/MPC;

for (i=0;i<len;i++) ringtildel[il = ringli] *= scale;
for (i=len;i<n;i++) ringtilde(i] = ring[i] = 0;

/* FFT the quasinormal ring waveform */
realft(ringtilde—1,n,1);
if (n<len+2xsafe) abort();

while (1) {

/* fill buffer with number of points needed */
code = fill buffer();

/* if no points left, we are done! */
if (code==0) break;

/* if just entering a new locked stretch, reset averaging over power spectrum x*/
if (code==1) {
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}

norm = O;
clear (mean_pow.spec,n/2+1,1);

/* decay time in seconds: set to 15 x length of NPOINT sample /
decaytime = 15.0%n/srate;
decay = exp(—1.0*n/(sratexdecaytime));

}

/* copy data into floats * /
for (i=0;i<NPOINT;i++) data[i] = datas[i];

/* inject a time-domain signal before FFT (note output is used as temp storage only) * /
gn-inject(data,ring,response,output,invMpc, (int) (sratex(ringstart—datastart)),n, len);

/* compute the FFT of data */
realft(data—1,n,1);

/* normalized dL/L tilde */
product (htilde,data,response,n/2);

/* update auto-regressive mean power spectrum */
avg_inv_spec(FLO,srate,n,decay,&norm,htilde,mean_pow_spec, twice_inv_noise);

/* normalize the ring to produce a template */
gn.normalize(template,ringtilde,twice_inv_noise,n,&tmpl.norm);

/* calculate the filter output and find its maximum */
find_ring(htilde,template,twice_inv.noise,output,n,len,safe,&off,&snr,&mean, &var);

/* perform diagnostics on filter output */
if (snr<THRESHOLD) { / threshold not exceeded: print a short message */
printf("max snr: %.2f (offset %6d) ",snr,off);
printf("data start: %.2f variance: %.5f\n",datastart,var);
} else { /* threshold exceeded */
/* estimate distance to signal (template distance [Mpc] = 1 / tmpl_norm) */
dist = 2/(tmpl_normssnr);
printf ("\nMax SNR: %.2f (offset %d) variance %f\n",snr,off,var);
printf("  If ringdown, estimated distance: %f Mpc, ",dist);
printf("start time: %f\n",datastart+off/srate);
/* See if time domain statistics are non-Gaussian */
if (is_gaussian(datas,n,—2048,2047,1))
printf("  POSSIBLE RINGDOWN: Distribution does not appear to have outliers\n\n");
else
printf("  Distribution has outliers! Reject\n\n");
}

/* shift ends of buffer to the start */

diff = len + 2*safe; /x safety is applied at beginning and end of buffer */
needed = NPOINT — diff;

for (i=0;i<diff;i++) datas[i] = datas[i+needed];

}

return 0;
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/* this routine gets the data, overlapping the data buffer as needed */
int £ill_buffer()

{

static FILE xfpifo,*fplock;

static int first=1,remain=0,num._sent=0;
float tstart;

int i,temp,code=2,diff=NPOINT—needed;

if (first) { /* on first call only x/

FILE xfpss;
first = 0;
diff = 0;

/* open the IFO output file, lock file, and swept-sine file */

fpifo = grasp_open("GRASP_DATAPATH","channel.O");

fplock = grasp_open("GRASP_DATAPATH","channel.10");

fpss = grasp_open("GRASP_DATAPATH","swept-sine.ascii");
/* get the response function and put in scaling factor */
normalize_gw(fpss,NPOINT,srate,response);

for (i=0;i<NPOINT;i++) response[i] x= HSCALE/ARMLENGTH;
fclose(fpss);

}

if (num_sent==DATA_SEGMENTS) return O;

/* if new locked section, skip forward */

while (remain<needed) {
fprintf(stderr,"\nEntering new locked set of data\n");
temp = get_data(fpifo,fplock,&tstart,MIN.INTO_LOCK«60xsrate,datas,&remain,&srate,1);
if (temp==0) return 0;

/* number of points needed will be full length */
needed = NPOINT;

diff = 0;

code = 1;

}

/* get the needed data and compute the start time of the buffer */
temp = get_data(fpifo,fplock,&tstart,needed,datas+diff,&remain,&srate,0);

if (temp==0) return 0;
datastart = tstart — diff/srate;

num_sent++;
return code;
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6.16 Structure: struct gnTemplate

The structure that will hold the filters for quasinormal ringdown waveforms is: struct qnTemplate{
int num: The number of the particular filter.
float freq: The central frequency of the filter template.

, float qual: The quality of the filter template. . =

: b
The actual filter data that corresponds to the parameters set by the fields freq and qual is
generated by the routine gn_filter () above.
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6.17 Structure: struct gnScope

The structure struct gnScope specifies a domain of parameter space and contains a set of tem-
plates that cover this domain. The fields of this structure are: struct gnScope{

int n_tmplt: The total number of templates required to cover the region in parameter space.
This is typically set by qn.template_grid(). '

float freqmin: The minimum frequency of the region of parameter space.
float freq.max: The maximum frequency of the region of parameter space.
float qual-min: The minimum quality of the region of parameter space.
float qual max: The maximum quality of the region of parameter space.

struct qnTemplate *templates: Pointer to the array of templates. This pointer is usually set
by gn_template.grid() when it allocates the memory necessary to store the templates and
creates the necessary templates.

}s

Although we are interested in the physical parameters, such as the mass and angular mo-
mentum, of the black hole sources of gravitational radiation, it will be more convenient to work
with the frequency and quality parameters of damped sinusoids when creating detection templates.
For the fundamental quadrupole quasinormal mode, there is a one-to-one correspondence between
the mass and angular momentum parameters and the frequency and quality parameters which is
approximately given by Echeverria [12].
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6.18 Function: gn template_grid()

void qn_template_grid(float dl, struct gnScope *grid)

This function is responsible for allocating the memory for a grid of templates on the parameter
space and for choosing the location of the templates. The arguments are:

dl: Input. The length of the ‘sides’ of the square templates This quantity should be set to df =
V(2452 1eshola) (see the discussion below). e

grid: Input/Output. The grid of templates of type struct gqnScope. On input, the fields that
relate to parameter ranges should be set. On output, the field n_tmplt is set to the number of
templates generated, and these templates are put into the array field templates[0. .n_tmplt-1]
(which is allocated by the function).

The function qn_template_grid() attempts to create a set of templates, {u;(t)}, which “cover”
parameter space finely enough that the distance between an arbitrary point on the parameter space
and one of the templates is small. A precise statement of this goal, and how it is achieved, can be
found in the paper by Owen [5]. We hilight the relevant parts of reference [5] here.

The templates {u;(t)} are damped sinusoids with a set of frequency and quality parame-
ters {(f,Q):}. They are normalized so that (u;|u;) = 1 where (-|) is the inner product defined
by Cutler and Flanagan [11]. Since we are most interested in the high quality region of parameter
space, it is a good approximation that the value of the one-sided noise power spectrum is approx-
imately constant, Sp(f) = Sn(fi), over the frequency band of the template. This approximation
simplifies the form of the inner product as the noise power spectrum appears in the inner product
as a weighting function.

In order to estimate how close together the templates must be, we define the distance func-
tion ds = 1 — (u;]u;) corresponding to the mismatch between the two templates u; and u;. This
1nterval can be expressed in terms of a metric as ds® = gogdz®dz® where z& = (f, Q)* are coor-
dinates on the two dimensional parameter space. Such an expression is only valid for sufficiently
close points on parameter space. In the limit of a continuum of templates over parameter space,
the metric can be evaluated by gop = —%(u]ﬁaagu) where 8, is a partial derivative with respect
to the coordinate z%. We find that the mismatch between templates that differ in frequency by df

and in quality by d@ is given by

2 = l_S—ﬂ_ 2 o 3 +4Q? 3+8Q2
o= {Q2(1+4Q2)2 9~ 25para0n) LRI+ —p df} (6.18.1)
o 1d@* 1dQdf | ,df*
~sor 107 9 (6.18.2)

In the approximate metric of equation (6.18.2), we have kept only the dominant term in the limit
of high quality. The minimum number of templates, N, required to span the parameter space
such that there is no point on parameter space that is a distance larger than ds3, .eoq from the
nearest template can be found by integrating the volume element /det gog over the parameter
space. Using the approximate metric and the parameter ranges @ < Qmax and f € [fmin, fmax], We
find that the number of templates required is

Q

N (dsthreshold) -1 (Qmax log (f max / f mm)

4\/2

dst?hreshold>_1 Qmax 1 [ f max fmin j’}
= 2700( 0.03 ( 100 ){1+ Tog 100 log(7505;) ~ o8 ( 1015 | - 6189
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The issue of template placement is more difficult than computing the number of templates
required. Fortunately, for the problem of quasinormal ringdown template placement, the metric
is reasonably simple. By using the coordinate ¢ = log f rather than f, we see that the metric
components depend on @ alone. We can exploit this property for the task of template placement
as follows: First, choose a “surface” of constant @ = Qnin, and on this surface place templates
at intervals in ¢ of dp = df/gy, for the entire range of ¢. Here, df = \/(2ds}  eehoia). Then
choose the next surface of constant @ with dQ = df/ggg and repeat the placement of templates
on this surface. This can be iterated until the entire range of ¢) has been covered; the collection of
templates should now cover the entire parameter region with no point in the region being farther
than ds? 014 from the nearest template.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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7 GRASP Routines: Stochastic background detection

7.1 Data File: detectors.dat

This file contains site location and orientation information, a convenient name for the detector, and
filenames for the detector noise power spectrum and whitening filter, for 11 dlfferent detector sites.
These site are: )

(1) Hanford, Washington LIGO site,
(2) Livingston, Louisiana LIGO site,
(3) VIRGO site,

(4) GEO-600 site,

(5) Garching site,

(6) Glasgow site,

(7) MIT 5 meter interferometer,

(8) Caltech 40 meter interferometer,
(9) TAMA-300 site,

(10) TAMA-20 site,

(11) ISAS-100 site.

As explained below, information for additional detector sites can be added to detectors.dat as
needed.

The data contained within this file is formatted as follows: Any line beginning with a # is
regarded as a comment. All other lines are assumed to begin with an integer (which is the site
identification number) followed by five floating point numbers and three character strings, each
separated by white space (i.e., one or more spaces, which may include tabs). The first two floating
point numbers specify the location of the central station (the central vertex of the two detector arms)
on the earth’s surface: The first number is the latitude measured in degrees North of the equator;
the second number is the longitude measured in degrees West of Greenwich, England. The third
floating point number specifies the orientation of the first arm of the detector, measured in degrees
counter-clockwise from true North. The fourth floating point number specifies the orientation of
the second arm of the detector, also measured in degrees counter-clockwise from true North. The
fifth floating point number is the arm length, in cm. The three character strings specify: (i) a
convenient name (e.g., VIRGO or GEO-600) for the detector site, (ii) the name of a data file that

. contains information about the noise power spectrum of the detector, and (iii) the name of a data

file that contains information about the spectrum of the whitening filter of the detector. (We will
say more about the content and format of these two data files in Secs. 7.3 and 7.4.) The information
currently contained in detectors.dat is shown below:

Hanford, Washington LIGO Site (initial detector)

Fred Raab fjr@ligo.caltech.edu
46.45236 119.40753 36.8 126.8 4.e5 Hanford—initial noise_init.dat whiten_init.dat

Livingston, Louisiana LIGO Site (initial detector)
Fred Raab fjr@ligo.caltech.edu
30.56277 90.77425 108.0 198.0 4.e5 Livingston—initial noise_init.dat whiten init.dat

VIRGO Site
Biplab Bhawal biplab@iucaa.iucaa.ernet.in

H O N HE R B
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# 3 43.3 —10.1 71.5 341.5

Raffaele Flaminio flaminio®lapphpO.in2p3.fr
Carlo Bradaschia BRADASCHIAQVAXPIA.PI.INFN.IT
Rosa Poggiani POGGIANI@pisa.infn.it

43.6333 —10.5 71.5 341.5 3.e5 VIRGO XXXXX XXXXX

GE0O—600 as of April 1995
Albrecht Ruediger atr@mpq.mpg.de
52.2467 —9.82167 26.0 292.5 6.e4 GED—600 XXXXX XXXXX

Garching 30 Meter Interferometer
Albrecht Ruediger atrCmpq.mpg.de
48.244 —11.675 329.0 239.0 3.e3 Garching—30 XXXXX XXXXX

Glasgow 10 Meter Interferometer

Albrecht Ruediger atr@mpq.mpg.de

6 55.86 4.23 77.0 167.0

Jim Hough hough@physics.gla.ac.uk

55.8667 4.28333 62.0 152.0 1.e3 Glasgow—10 XXXXX XXXXX

MIT 5 Meter Interferometer
Gabriela Gonzalez gg@tristan.mit.edu
42.3667 71.1 34.5 304.5 5.e2 MIT-5 XXXXX XXXXX

Caltech 40 Meter Interferometer NEEDS CORRECTION
Fred Raab fjr@ligo.caltech.edu
34.1667 118.133 180.0 270.0 4.e3 Caltech—40 40noise.dat 40Owhiten.dat

TAMA 300 Meter
Masa—Katsu Fujimoto fujimoto@gravity.mtk.nao.ac.jp
35.6766 —139.536 90.0 180.0 3.0e4 TAMA—300 XXXXX XXXXX

TAMA 20 Meter

Masa—Katsu Fujimoto fujimoto@gravity.mtk.nao.ac.jp

10 35.6751 —139.536 45.0 315.0 2.0e3 TAMA-—20 XXXXX XXXXX
#

# ISAS 100 Meter delay line

# Hide Mizuno hide@pleiades.sci.isas.ac.jp

11 35.5678 —139.467 42.0 135.0 1.0e4 ISAS—100 XXXXX XXXXX
#

H o H O H K H 0 HHHNHHEHOOHHE N KD H W N R

Site information for new (or hypothetical) detectors can be added to detectors.dat by simply
adhering to the above data format. For example, as the noise in the LIGO detectors improves, one
can accommodate these changes in detectors.dat by adding additional lines that have the same
site location and orientation information as the “old” detectors, but refer to different noise power
spectra and whitening filter data files. The only other requirement is that the site identification
numbers for these “new and improved” detectors be different from the old site identification num-
bers, so as to avoid any ambiguity. Explicitly, one could add the following lines to detectors.dat
to include information about the advanced LIGO detectors:

#
# Hanford, Washington LIGD Site (advanced detector)
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# Fred Raab fjr@ligo.caltech.edu
12 46.45236 119.40753 36.8 126.8 4.e5 Hanford—advanced noise_adv.dat whiten_adv.dat

#
# Livingston, Louisiana LIGO Site (advanced detector)

# Fred Raab fjr@ligo.caltech.edu
13 30.56277 90.77425 108.0 198.0 4.e5 Livingston—advanced noise_adv.dat whiten.adv.dat

#

The file detectors.dat currently resides in the parameters subdirectory of GRASP. In order for
the stochastic background routines and example programs that are defined in the following sections
to be able to access the information contained in this file, the user must set the environment variable
GRASP_PARAMETERS to point to this directory. For example, a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
should do the trick. If, however, you want to modify this file (e.g., to add another detector or
to add another noise curve), then just copy the detectors.dat file to your own home directory,
modify it, and set the GRASP_PARAMETERS environment variable to point to this directory.

Comment: If you happen to find an error in the detectors.dat file, please communicate it to the
caretakers of GRASP.
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7.2 Function: detector_site()

void detector_site(char *detectors_file, int site_choice, float site_parameters[9],
char *sitename, char *noise.file, char *whiten file)

This function calculates the components of the position vector of the central station, and the com-
ponents of the two vectors that point along the directions of the detector arms (from the central
station to each end station), for a given choice of detector site, using information contained in an
input data file. This function also outputs three character strings that specify the site name, the
name of a data file containing the detector noise power information, and the name of a data file
containing information about the detector whitening filter, respectively.

The arguments of detector_site() are:

detectors_file: Input. A character string that specifies the name of a data file containing
detector site information. This file is most likely the detectors.dat data file described in
Sec. 7.1. If the file is different from detectors.dat, it must have the same data format
as detectors.dat, and it must reside in the directory pointed to by the GRASP_PARAMETERS
environment variable (which you may set as you wish). If you want to use the detectors.dat
file distributed with GRASP, use a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing this file. If you want to modify this file (e.g., to add
another detector or to add another noise curve), then just copy the detectors.dat file to
your own home directory, modify it, and set the GRASP_PARAMETERS environment variable to

point to this directory.

site_choice: Input. An integer value used as an index into the input data file. The value of
site_choice should be chosen to match the site identification number for one of the detectors

contained in this file.

site_parameters: Output. site_parameters[0..8] is an array of nine floating point variables
that define the position of the central station of the detector site and the orientation of its
two arms. The three-vector site_parameters[0..2] are the (z,y, z) components (in cm) of
the position vector of the central station, as measured in a reference frame with the origin
at the center of the earth, the z-axis exiting the North pole, and the z-axis passing out the
line of 0° longitude. The three-vector site_parameters[3..5] are the (z,y, z) components
(in cm) of a vector pointing along the direction of the first arm (from the central station to
the end station). The three-vector site_parameters[6..8] are the (z,y, z) components (in
cm) of a vector pointing along the direction of the second arm (from the central station to
the end station).

sitename: Output. A character string that specifies a convenient name (e.g., VIRGO or GEO-
600) for the chosen detector site.

noise file: Qutput. A character string that specifies the name of a data file containing informa-
tion about the noise power spectrum of the detector. (See Sec. 7.3 for more details regarding
the content and format of this data file.)

; wvhiten file: Output. A character string that specifies the name of a data file containing in-
| formation about the spectrum of the whitening filter of the detector. (See Sec. 7.4 for more
} details regarding the content and format of this data file.)
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detectorsite() reads input data from the file specified by detectors._file. This file is
searched (linearly from top to bottom) until the value of site_choice matches the site identification
number for one of the detectors contained in this file. The site location and orientation information
for the chosen detector site are then read into variables local to detector_site(). The values
contained in the array site_parameters[] are calculated from these input variables using standard
equations from spherical analytic geometry. (A correction is made, however, for the oblateness of
the earth, using information contained in Ref. [21].) The site_name, noise_file, and whiten file
character strings are simply copied from input data file. If site_choice does not match any of the
site identification numbers, detector_site() prints out an error message and aborts execution.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.3 Function: noise_power()

void noise_power (char *noise file, int n, float deltaf, double *power)
This function calculates the noise power spectrum P(f) of a detector at a given set of discrete
frequency values, using information contained in a data file.

The arguments of noise_power() are:

noise file: Input. A character string that specifies the name of a data file containing infor-
mation about the noise power spectrum P(f) of a detector. Like the detectors.dat file
described in Sec. 7.1, the noise power data file should reside in the directory pointed to by
the GRASP_PARAMETERS environment variable (which you may set as you wish). If you want
to use the noise power spectrum data files distributed with GRASP, use a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing these files. If you want to use your own noise power
spectrum data files, then simply set the GRASP_PARAMETERS environment variable to point to
the directory containing these files. Note, however, that if a program needs to access both
detector site information and noise power spectrum data, then all of the files containing this
information should reside in the same directory. (A similar remark applies for the whitening
filter data files described in Sec. 7.4.)

n: Input. The number N of discrete frequency values at which the noise power spectrum P(f) is
to be evaluated.

delta.f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fir1 = fi-

power: Qutput. power[0..n-1] is an array of double precision variables containing the values
of the noise power spectrum P(f). These variables have units of strain?/Hz (or seconds).

power [i] contains the value of P(f) evaluated at the discrete frequency f; = iAf, where
1=0,1,---,N—-1.

The input data file specified by noise_file contains information about the noise power spec-
trum P(f) of a detector. The data contained in this file is formatted as follows: Any line beginning
with a # is regarded as a comment. All other lines are assumed to consist of two floating point num-
bers separated by white space. The first floating point number is a frequency f (in Hz); the second
floating point number is the square root of the one-sided noise power spectrum P(f), evaluated at
f- P(f) is defined by equation (3.18) of Ref. [20]:

(W (PR = 56(F = 1) P(F) (7.3.1)

Here () denotes ensemble average, and #(f) is the frequency spectrum (i.e., Fourier transform)
of the strain n(t) produced by the noise intrinsic to the detector. P(f) is a non-negative real
function, having units of strain?/Hz (or seconds). It is defined with a factor of 1/2 to agree with
the standard definition used by instrument builders. The total noise power is the integral of P(f)
over all frequencies from 0 to co (not from —oo to 0o0). Hence the name one-sided.
| Since the frequency values contained in the input data file need not agree with the desired fre-
| quencies f; = t{Af, noise_power () must determine the desired values of the noise power spectrum
| by doing an interpolation/extrapolation on the input data. noise_power () performs a cubic spline
l interpolation, using the Numerical Recipes in C routines spline() and splint(). noise_power ()
} assumes that the length of the input data is < 65536, and it uses boundary conditions for a natural
\
|
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[ spline (i.e., with zero second derivative on the two boundaries). noise_power() also squares the
i output of the splint() routine, since the desired values are P(f)—and not their square roots
(which are contained in the input data file).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations to P(f)
that are not contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) com-
ponents, it is important that the input data file specified by noise_file contain noise power
information down to, and including, zero Hz. This information can be added in “by hand,”
for example, if the experimental data for the noise power spectrum only goes down to 1 Hz.
In this case, setting the values of /P(f) at 0.0,0.1,0.2,---,0.9 Hz equal to its 1 Hz value
seems to be sufficient. (See Sec. 7.4 for a similar comment regarding whiten().)
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7.4 Function: whiten()

void whiten(char *whiten file, int n, float deltaf, double *whiten out)

This function calculates the real and imaginary parts of the spectrum W (f) of the whitening filter

of a detector at a given set of discrete frequency values, using information contained in a data file.
The arguments of whiten() are:

whiten_file: Input. A character string that specifies the name of a data file containing informa-
tion about the spectrum W( f) of the whitening filter of a detector. Like the detectors.dat
and noise power spectrum data files described in Secs. 7.1 and 7.3, the whitening filter data
file should reside in the directory pointed to by the GRASP_PARAMETERS environment variable
(which you may set as you wish). If you want to use the whitening filter data files distributed
with GRASP, use a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing these files. If you want to use your own whitening fil-
ter data files, then simply set the GRASP_PARAMETERS environment variable to point to the
directory containing these files. Note, however, that if a program also needs to access either
detector site information or noise power spectrum data, then all of the files containing this
information should reside in the same directory. '

n: Input. The number N of discrete frequency values at which the real and imaginary parts of
the spectrum W (f) of the whitening filter are to be evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fivr — fi

whiten_out: Output. whiten_ out[0..2*n-1] is an array of double precision variables containing
the values of the real and imaginary parts of the spectrum W (f) of the whitening filter. These
variables have units rHz/strain (or sec™!/2), which are inverse to the units of the square
root of the noise power spectrum P(f). whiten_out [2*i] and whiten out[2*i+1] contain,
respectively, the values of the real and imaginary parts of W(f) evaluated at the discrete
frequency f; = iAf, where¢=0,1,---,N — 1.

The input data file specified by whiten file contains information about the spectrum W(f) of
the whitening filter of a detector. The data contained in this file is formatted as follows: Any line
beginning with a # is regarded as a comment. All other lines are assumed to consist of three floating
point numbers, each separated by white space. The first floating point number is a frequency f (in
Hz). The second and third floating point numbers are, respectively, the real and imaginary parts of
the spectrum W (f), evaluated at f. These last two numbers have units of rHz/strain (or sec™1/2),
This is because the whitening filter is, effectively, the inverse of the amplitude 1/P(f) of the noise
power spectrum.

Since the frequency values contained in the input data file need not agree with the desired
frequencies f; = iAf, whiten() must determine the desired values of the real and imaginary parts
of the spectrum of the whitening filter by doing an interpolation/extrapolation on the input data.
Similar to noise_power () (see Sec. 7.3), whiten() performs a cubic spline interpolation, using the
spline() and splint() routines from Numerical Recipes in C. Like noise_power (), whiten()
assumes that the length of the input data is < 65536, and it uses boundary conditions for a natural
spline. Unlike noise_power(), whiten() does not have to square the output of the splint()
routine, since the data contained in the input file and the desired output data both have the same
form (i.e., both involve just the real and imaginary parts of W(f)).
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations to W(§)

that are not contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) com-
ponents, it is important that the input data file specified by whiten file contain information
about the whitening filter down to, and including, zero Hz. This information can be added in
“by hand,” for example, if the experimental data for the spectrum of the whitening filter only
goes down to 1 Hz. In this case, setting the values of W(f) at-0.0,0.1,0.2,---,0.9 Hz equal
to their 1 Hz values seems to be sufficient. (See Sec. 7.3 for a similar comment regarding
noise_power().)

Also, for the initial and advanced LIGO detector noise models, the spectra W(f) of the
whitening filters contained in the input data files were constructed by simply inverting the
square roots of the corresponding noise power spectra P(f). The spectra of the whitening
filters thus constructed are real. Although this method of obtaining information about the
spectra of the whitening filters is fine for simulation purposes, the data contained in the
actual whitening filter input data files will be obtained independently from that contained in
the noise power spectra data files, and the spectra W( f) will in general be complex. The
function whiten() described above—and all other stochastic background routines—allow for
this more general form of whitening filter data.
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7.5 Function: overlap()

void overlap(float *sitel parameters, float *site2.parameters, int n, float deltaf,

double *gammal2)
This function calculates the values of the overlap reduction function v(f), which is the averaged
product of the response of a pair of detectors to an isotropic and unpolarized stochastic background
of gravitational radiation.

The arguments of overlap() are:

sitel_parameters: Input. sitel_parameters[0..8] is an array of nine floating point variables
that define the position of the central station of the first detector site and the orientation
of its two arms. The three-vector sitel_parameters[0..2] are the (z,y,z) components (in
cm) of the position vector of the central station of the first site, as measured in a reference
frame with the origin at the center of the earth, the z-axis exiting the North pole, and
the z-axis passing out the line of 0° longitude. The three-vector sitel parameters[3..5]
are the (z,y,z) components (in cm) of a vector pointing along the direction of the first
arm of the first detector (from the central station to the end station). The three-vector
sitel_parameters[6..8] are the (z,y,2) components (in cm) of a vector pointing along the
direction of the second arm of the first detector (from the central station to the end station).

site2_parameters: Input. site2_parameters[0..8] is an array of nine floating point variables
that define the position of the central station of the second detector site and the orientation
of its two arms, in exactly the same format as the previous argument.

n: Input. The number N of discrete frequency values at which the overlap reduction function
~(f) is to be evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fir1— fi.

gammal2: Output. gamma12{0..n-1] is an array of double precision variables containing the val-
ues of the overlap reduction «(f) for the two detector sites. These variables are dimensionless.

gamma12[i] contains the value of v(f) evaluated at the discrete frequency f; = iAf, where
i=0,1,---,N—1.

The values of y(f) calculated by overlap() are defined by equation (3.9) of Ref. [20]:

5 A 2B A
V(f) == | dQemifvasle (FrpF 4 FF}) . (7.5.1)
81 Js2
Here ! is a unit-length vector on the two-sphere, AZ is the separation vector between the two
detector sites, and Fi"">< is the response of detector i to the + or x polarization. For the first

detector (i = 1) one has
Ff* = % (ReX8 - PP77) (@) , (7.5.2)

where the directions of the first detector’s arms are defined by X’f and 17'1“, and e:b’ X(Q) are the
spin-two polarization tensors for the “plus” and “cross” polarizations, respectively. (A similar
expression can be written down for the second detector.) The normalization of y(f) is determined
by the following statement: For coincident and coaligned detectors (i.e., for two detectors located
at the same place, with both pairs of arms pointing in the same directions), v(f) = 1 for all
frequencies.
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.6 Example: overlap program

The following example program shows one way of combining the functions detector_site() and
overlap() to calculate the overlap reduction function (f) for a given pair of detectors. In partic-
ular, we calculate y(f) for the Hanford, WA and Livingston, LA LIGO detector sites. The resulting
overlap reduction function data is stored as two columns of double precision numbers (f; and ¥(f;))
in the file LIGO_overlap.dat. Here f; = iAf withi = 0,1,---, N — 1. The values of N and Af are
input parameters to the program, which the user can change if he/she desires. (See the #define
statements listed at the beginning of the program.) Also, by changing the site location identification
numbers and the output file name, the user can calculate and save the overlap reduction function
for any pair of detectors—e.g., the Hanford, WA LIGO detector and the GEO-600 detector; the
GEO0-600 and VIRGO detector; the Garching and Glasgow detectors; etc. The overlap reduction
function data that is stored in the file can then be displayed with xmgr, for example. (See Fig. 46.)

/* main program to illustrate the function overlap() */
#include "grasp.h"

#define DETECTORS_FILE "detectors.dat" / file containing detector info */

#define SITE1_CHOICE 1 /* 1=LIGO-Hanford site /
#define SITE2_CHOICE 2 /* 2=LIGO-Livingston site */
#define N 500 /* number of frequency points */
#define DELTA_F 1.0 /* frequency spacing (in Hz) */

#define OUT_FILE "LIGO_overlap.dat" /= output filename */

main()

{
int i;
double f;

float sitel_parameters[9],site2_parameters{9];
char sitel_name[100] ,noisel file[100] ,whitenl file[100];
char site2_name[100] ,noise2_file[100] ,whiten2 file[100];

double *gammal2;

FILE *fp;
fp=fopen(OUT_FILE,"w");

/* ALLOCATE MEMORY =*/
gammal2=(double *)malloc(Nxsizeof (double));

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION =/

detector_site (DETECTORS_FILE,SITE1_CHOICE,sitel_parameters,sitel_name,
noisel file,whitenl file);

detector_site (DETECTORS_FILE,SITE2_CHOICE,site2_parameters,site2 name,
noise2 file,whiten2 file);

/* CALL OVERLAP() AND WRITE DATA TO THE FILE =/
overlap(sitel_parameters,site2_parameters,N,DELTA_F,gammal2);

for (i=0;i<N;i++) {
f=i«DELTA_F;
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; fprintf (fp,"%e %e\n",f,gammal2[i]);

}

-~ fclose(fp);

return;

. }

Overlap reduction function
(for the LIGO detector pair)

0.0 100.0 200.0 300.0 400.0 500.0
f (Hz)

Figure 46: The overlap reduction function (f) for the Hanford, WA and Livingston, LA LIGO
| detector pair.
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7.7 Function: get_IF012()

get IFO12(FILE *fpl1, FILE xfp2, FILE *fpilock, FILE *fp2lock, int n, float *outl, float
*out2, float *sratel, float *srate2)
This function gets real interferometer output (IFO) data from two detector sites.

The arguments of get_IF012() are:

£pl: Input. A pointer to a file that contains the interferometer output (IFO) data produced by
the first detector.

fp2: Input. A pointer to a file that contains the interferometer output (IFO) data produced by
the second detector.

fpllock: Input. A pointer to a file that contains the TTL lock signal for the interferometer
output produced by the first detector.

fp2lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer
output produced by the second detector.

n: Input. The number N of data points to be retrieved.

outl: Output. out1[0..n-1] is an array of floating point variables containing the values of the
interferometer output produced by the first detector. These variables have units of ADC
counts. out1[i] contains the value of the whitened data stream o;(t) evaluted at the discrete
time #; = iAt;, where 1 =0,1,---, N — 1 and At; is the sampling period of the first detector,

defined below.

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of the
interferometer output produced by the second detector, in exactly the same format as the

previous argument.

sratel: Qutput. The sample rate Af; (in Hz) of the first detector. Aty := 1/Af; (in sec) is the
corresponding sampling period of the first detector.

srate2: Output. The sample rate Af, (in Hz) of the second detector. Aty := 1/Af, (in sec) is
the corresponding sampling period of the second detector.

get_IF012() consists effectively of two calls to get.data(), which is described in detail in
Sec. 3.6 It prints out a warning message if no data remains for one or both detectors. For that
case, both out1[] and out2[] are set to zero.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Currently, get_IF012() calls get_data() and get_data2(), where get.data2() is
simply a copy of the get_data() routine. get_data() should eventually be modified so that
it can handle simultaneous requests for data from more than one detector. After this change
is made, the function get_data2() should be removed.
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7.8 Function: simulate_noise()

void simulatenoise(int n, float delta_t, double *power, double *whiten.out, float *out,
int #*pseed)
This function simulates the generation of noise intrinsic to a detector. The output is a (not nec-
essarily continuous-in-time) whitened data stream o(t) representing the detector output when only
detector noise is present. '

The arguments of simulate noise() are: ] e

n: Input. The number N of data points corresponding to an observation time T := N At, where
At is the sampling period of the detector, defined below. N should equal an integer power of
2.

delta.t: Input. The sampling period At (in sec) of the detector.

power: Input. power[0..n/2-1] is an array of double precision variables containing the values
of the noise power spectrum P(f) of the detector. These variables have units of strain®/Hz
(or seconds). power[i] contains the value of P(f) evaluated at the discrete frequency f; =
i/(NAt), where 1 =0,1,--- ,N/2 - 1.

whiten_ out: Input. whiten out[0..n-1] is an array of double precision variables containing the

values of the real and imaginary parts of the spectrum W (f) of the whitening filter of the

detector. These variables have units rHz/strain (or sec~'/2), which are inverse to the units of

" the square root of the noise power spectrum P(f). whiten out [2*i] and whiten out [2*i+1]

contain, respectively, the values of the real and imaginary parts of W(f) evaluated at the
discrete frequency f; = i/(NAt), where i =0,1,---,N/2 — 1.

out: Output. out[0..n-1] is an array of floating point variables containing the values of the
whitened data stream o(t) representing the output of the detector when only detector noise is
present. o(t) is the convolution of detector whitening filter W (¢t) with the noise n(t) intrinsic
to the detector. The variables out[] have units of rHz (or sec™!/2), which follows from the
definition of n(t) as a strain and W(f) as the “inverse” of the square root of the noise power
spectrum P(f). out[i] contains the value of o(t) evaluated at the discrete time ¢; = iAt,
where i =0,1,---,N — 1.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulatenoise() simulates the generation of noise intrinsic to a detector in the following
series of steps:

(i) It first constructs random variables 7i(f;) in the frequency domain that have zero mean and
satisfy:
R 1
(A (RA) = 5 T 8 PSS | (781)

where ( ) denotes ensemble average. The above equation is just the discrete frequency version
of Eq. (7.3.1). This equation can be realized by setting

a(fi) = %\/T PY2(f;) (ui + ivy) (7.8.2)

where u; and v; are statistically independent (real) Gaussian random variables, each having
zero mean and unit variance. These Gaussian random variables are produced by calls to the
Numerical Recipes in C random number generator routine gasdev().
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(ii) simulate noise() then whitens the data in the frequency domain by multiplying 7(f;) by
the frequency components W (f;) of the whitening filter of the detector:

8(fi) =A(f;) W(fi) . (7.8.3)

This (complex) multiplication in the frequency domain corresponds to the convolution of n(t)
and W (t) in the time domain. By convention, the DC (i.e., zero frequency) and Nyquist
critical frequency components of 6(f;) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components 6(f;) into the time
domain to obtain the whitened data stream o(¢;). Here t; = iAt with i =0,1,---,N — L.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to
simulate the noise at two detectors simultaneously. Since the time-series data are real, the two
Fourier transforms that would need to be performed in step (iii) could be done simultaneously.
However, for modularity of design, and to simulate noise for “single-detector” gravity-wave
searches, we decided to write the above routine instead.
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7.9 Function: simulate_sb()

void simulate sb(int n, float deltat, float omega 0, float f_low, float f_high, double
*xgammal2, double *whitenl, double *whiten2, float *outl, float *out2, int *pseed)
This function simulates the generation of an isotropic and unpolarized stochastic background of
gravitational radiation having a constant frequency spectrum: Qg (f) = Qo for fiow < f < fhigh-
The outputs are (not necessarily continuous-in-time) whitened data stream 0;(t) and 02(t) repre-
_senting the detector outputs when only a stochastic background signal is present..

The arguments of simulate_sb() are:

n: Input. The number N of data points corresponding to an observation time T":= N At, where -
At is the sampling period of the detectors, defined below. N should equal an integer power

of 2.
delta_t: Input. The sampling period At (in sec) of the detectors.

omega.0: Input. The constant value £y (dimensionless) of the frequency spectrum Qgw (f) for the

stochastic background:
_ ) Q% fiow £ F < fhigh
Qgw(f) = { 0 otherwise.

Qo should be greater than or equal to zero.

f low: Input. The frequency fiow (in Hz) below which the spectrum Qg (f) of the stochastic
background is zero. fioy should lie in the range 0 < flow < fNyquists Where fNyquist is the
Nyquist critical frequency. (The Nyquist critical frequency is defined by fnyquist = 1/(2At),
where At is the sampling period of the detectors.) fiow should also be less than or equal to
Jhigh-

f high: Input. The frequency fnigh (in Hz) above which the spectrum Qgw(f) of the stochastic
background is zero. fhign should lie in the range 0 < fpigh < fNyquist- It should also be greater
than or equal t0 figw.

gammal2: Input. gammal2([0..n/2-1] is an array of double precision variables containing the
values of the overlap reduction function ~(f) for the two detector sites. These variables are
dimensionless. gammal2[i] contains the value of v(f) evaluated at the discrete frequency
fi=1/(NAt), where : =0,1,---,N/2 - 1.

whiten1: Input. whiten1[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W;(f) of the whitening filter of the first
detector. These variables have units rHz/strain (or sec™1/2), which are inverse to the units
of the square root of the noise power spectrum P;(f). whiten1[2*i] and whitenl[2*i+1]
contain, respectively, the values of the real and imaginary parts of Wi (f) evaluated at the
discrete frequency f; = i/(NAt), where i =0,1,---,N/2 - 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W(f) of the whitening filter of the second
detector, in exactly the same format as the previous argument.

outl: Output. out1[0..n-1] is an array of floating point variables containing the values of the
whitened data stream o1 (t) representing the output of the first detector when only a stochastic
background signal is present. 01(t) is the convolution of detector whitening filter W1(t) with

214



the gravitational strain hi(t). The variables out1[] have units of rHz (or sec™%/2), which
follows from the definition of h;(¢) as a strain and Wl( f) as the “inverse” of the square root
of the noise power spectrum Pj(f). outi[i] contains the value of 0;(t) evaluated at the
discrete time t; = i{At, where 1 =0,1,---,N — 1.

1

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of
the whitened data stream o0,(t) representing the output of the second detector when only a
stochastic background signal is present, in exactly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulate_sb() simulates the generation of an isotropic and unpolarized stochastic background
of gravitational radiation having a constant frequency spectrum Qgw(f) = Qo for fiow < f < fhigh
in the following series of steps:

(i) It first constructs random variables h(f;) and ho(f;) in the frequency domain that have zero
mean and satisfy:

3H2

(Ri(f)ha(fy)) = % T 6 35-3 5% (7.9.1)

1% 7 1 3Hg -3 '
(ha(f)ha(f5)) = 3 T by To.2 i Qo (7.9.2)

B 1 3HZ .,

(R1(fi)ha(fy)) = 5 T 05 102 7° Qo v(fi) , (7.9.3)

where () denotes ensemble average. Here k) (f;) and ho(f;) are the Fourier components of the
gravitational strains h;(t) and ho(t) at the two detectors. The above equations are the discrete
frequency versions of equation (3.17) of Ref. [20], with Qg (f) = Qo for fiow < f < fhigh-
They can be realized by setting

) 2\ 1/2
b = 3T (1%5) 772 05 (s + i) (7.9.4)
ha(f)) = ha(fi) v(fi) + (7.9.5)
1 3H} Y2 —3/2 A1/2 .
5\/7 (W) fi Q' A1 =~2(fi) (mas + ty2) , (7.9.6)

where z1;, y1:, T2;, and yo; are statistically independent (real) Gaussian random variables, each
having zero mean and unit variance. (Note: The z1;, y1;, Z2;, and yo; random variables are
statistically independent of the u; and v; random variables defined in Sec. 7.8.) These Gaus-
sian random variables are produced by calls to the Numerical Recipes tn C random number
generator routine gasdev (). Note also that the second term of ho(f;) (which is proportional

1 — ~2(f;)) is needed to obtain equation (7.9.2). Without this term, (h%(f;)h2(f;)) would
include an additional (unwanted) factor of v2(f;).

(i) simulatesb() then whitens the data in the frequency domain by multiplying 1 (f;) and
ha(f;) by the frequency components Wi(f;) and Wa(f;) of the whitening filters of the two

detectors:

o1(fs) = f:ll(fz') V:Vl(fi) (7.9.7)
oofi) = ha(fi) Walfi) . (7.9.8)
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This (complex) multiplication in the frequency domain corresponds to the convolution of
? h1(t) and Wy(t), and ha(t) and Ws(t) in the time domain. By convention, the DC (i.e., zero
frequency) and Nyquist critical frequency components of 6;(f;) and 62(J;) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components 61(f;) and 63(f;)

into the time domain to obtain the whitened data streams o1 (¢;) and o02(t;). Here t; = iAt
5 with ¢ =0,1,---,N — 1. Since 6}(f;) and 65(f;) are the Fourier transforms of real data sets,
i the two Fourier transforms can be performed simultaneously.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to simulate the
generation of a stochastic background and intrinsic detector noise simultaneously, we have
chosen—for the sake of modularity—to write separate functions to perform these two tasks
separately. (See also the comment at the end of Sec. 7.8.)
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7.10 Function: combine_data()

void combine.data(int which, int n, float *inl, float *in2, float *out)
This low-level function takes two arrays as input, shifts them by half their length, and combines
them with one another and with data stored in an internally-defined static buffer to produce output
data that is continuous from one call of combine_data() to the next.

The arguments of combine_data() are:

which: Input. An integer variable specifying which internally-defined static buffer should be used
when combining the input arrays with data saved from a previous call. The allowed values
are 1 < which < 16.

n: Input. The number N of data points contained in the input and output arrays. N is assumed
to be even. '

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the first
input array.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the
second input array.

out: Output. out[0..n-1] is an array of floating point variables containing the output data,
which is continuous from one call of combine data() to the next.

combine_data() produces continuous output data by modifying the appropriately chosen static
buffer buf [0. .3*n/2-1] as follows:

buf[i]+ = sin[i *M_PI/n]*in1[i] for 0<i<n/2-1

buf[i]+ = sin[i *M_PI/n] * in1[i] + sin[(i — n/2) *MPI/n] *in2[i —n/2] for n/2<i<n-1

buf[i]+ = sin[(i —n/2) * MPI/n] % in2[i —n/2] for n<i<3%n/2-1.

The values of the output array out [0..n-1] are taken from the first two-thirds of the buffer, while
the last one-third of the buffer is copied to the first third of the buffer in preparation for the next
call. When this is complete, the last two-thirds of the buffer is cleared.

One nice feature of combining the data with a sine function (rather than with a triangle func-
tion, for example) is that if the input data represent statistically independent, stationary random
processes having zero mean and the same variance, then the output data will also have zero mean
and the same variance. This is a consequence of the trigonometric identity

sin?[i * M_PI/n] + sin®[(i —n/2) *MPI/n] =1 . (7.10.1)

Thus, combine_data() preserves the first and second-order statistical properties of the input data
when constructing the output.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, the two input arrays would
represent two whitened data streams produced by a single detector, which are then time-
shifted and combined to simulate continuous-in-time detector output.
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7.11 Function: monte_carlo()

void monte_carlo(int fake_sb, int fake noisel, int fake noise2, int n, float delta_t,
float omega. 0, float f_low, float f high, double *gammal2, double *powerl, double *power2,
double *whitenl, double *whiten2, float *outl, float *out2, int *pseed)

This high-level function simulates (if desired) the generation of noise intrinsic to a pair of detec-

tors, and an isotropic and unpolarized stochastic background of gravitational radiation having a
constant frequency spectrum: Qgy(f) = Qo for fiow £ f < fnigh. The outputs are two continuous-

in-time whitened data streams 0;(¢) and oz(t) representing the detector outputs in the presence of

a stochastic background signal plus noise.

The arguments of monte_carlo() are:

fake_sb: Input. An integer variable that should be set equal to 1 if a simulated stochastic
background is desired.

fake noisel: Input. An integer variable that should be set equal to 1 if simulated detector noise
for the first detector is desired.

fake noise2: Input. An integer variable that should be set equal to 1 if simulated detector noise
for the second detector is desired.

n: Input. The number NV of data points corresponding to an observation time T := N At, where
At is the sampling period of the detector, defined below. N should equal an integer power of
2.

delta t: Input. The sampling period At (in sec) of the detector.

omega 0: Input. The constant value Qg (dimensionless) of the frequency spectrum Qgw(f) for the
stochastic background:
_} Q0 flow £ f < fnign
Qgw(f) = { 0 otherwise.

g should be greater than or equal to zero.

f.low: Input. The frequency fiow (in Hz) below which the spectrum gy (f) of the stochastic
background is zero. fion should lie in the range 0 < fiow < fNyquist, Where fuyquist is the
Nyquist critical frequency. (The Nyquist critical frequency is defined by fnyquist := 1/(2At),
where At is the sampling period of the detector.) fiow should also be less than or equal to
Fhigh-

f high: Input. The frequency fhign (in Hz) above which the spectrum Qg (f) of the stochastic
background is zero. fhign should lie in the range 0 < figh < fNyquist- It should also be greater
than or equal to fiow-

gammal2: Input. gammal2[0..n/2-1] is an array of double precision variables containing the
values of the overlap reduction function v(f) for the two detector sites. These variables are
dimensionless. gammal2[i] contains the value of v(f) evaluated at the discrete frequency
fi =1/(NAt), where 1 = 0,1,---,N/2 — 1.

powerl: Input. power1[0..n/2-1] is an array of double precision variables containing the val-
ues of the noise power spectrum Pj(f) of the first detector. These variables have units of
strain?/Hz (or seconds). power1[i] contains the value of P;(f) evaluated at the discrete
frequency f; = i/(NAt), wherei=0,1,---,N/2 —1.
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power2: Input. power2[0..n/2-1] is an array of double precision variables containing the values
of the noise power spectrum P(f) of the second detector, in exactly the same format as the
previous argument.

-1

whitenl: Input. whiten1[0..n-1] is an array of double precision variables containing the values

of the real and imaginary parts of the spectrum Wi( f) of the whitening filter of the first

detector. These variables have units rHz/strain (or sec=1/2), which are inverse to the units ‘

__of the square root of the noise power spectrum P;(f). whitenl[2*i] and whiten1[2%i+1]- . -

contain, respectively, the values of the real and imaginary parts of Wl( f) evaluated at the
discrete frequency f; = i/(INAt), where i =0,1,---,N/2 — 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W (f) of the whitening filter of the second
detector, in exactly the same format as the previous argument.

outl: Output. out1[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data stream o;(t) representing the output of the first detector.
01(t) is the convolution of detector whitening filter W;(¢) with the data stream s;(t) :=
hi(t) 4+ n1(t), where hy(t) is the gravitational strain and n;(t) is the noise intrinsic to the
detector. These variables have units of rHz (or sec™!/2), which follows from the definition of
s1(t) as a strain and W (f) as the “inverse” of the square root of the noise power spectrum
Pi(f). out1[i] contains the value of 0;(t) evaluated at the discrete time ¢; = iAt, where
i=0,1,---,N—1.

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data stream o0z(¢) representing the output of the second detector,
in exactly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

monte_carlo() is a very simple function, consisting of calls to simulate_sb(), simulate noise(),
and combine_data(). If fake_sb=1, monte_carlo() calls simulate_sb() twice, producing two sets
of data that are time-shifted and combined by combine_data() to simulate continuous-in-time
detector output. Similar statements apply when either fake noisel or fake noise2 equals 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.12 Example: monte_carlo program

The following example program is a simple demonstration of the function monte_carlo(), which
was defined in the previous section. It produces animated output representing time-series data for
simulated detector noise and for a simulated stochastic background having a constant frequency
spectrum: Qew(f) = Qo for fiow < f < fhigh- The output from this program must be piped into
xmgr. The parameters that were chosen for the example program shown below produce whitened
time-series data for a stochastic background having Qgw(f) = 1.0 x 1073 for 5 Hz < f < 5000 Hz.
For this particular example, the noise intrinsic to the detectors was set to zero. A sample “snapshot”
of the animation is shown in Fig. 47.

By modifying the parameters listed at the top of the example program, one can also simulate
an unwhitened stochastic background signal (Fig. 48), and whitened and unwhitened data streams
corresponding to the noise intrinsic to an initial LIGO detector (Figs. 49 and 50). Other combi-
nations of signal, noise, whitening, and unwhitening are of course also possible. To produce the
animated output, simply enter the command:

monte.carlo | xmgr -pipe &
after compilation.
/* main program to illustrate monte_carlo() */

#include "grasp.h"
void graphout(float,float,int);

#define DETECTORS_FILE "detectors.dat" /= file containing detector info */

#define SITE1_CHOICE 1 /* identification number for site 1 %/
#define SITE2_CHOICE 2 /* identification number for site 2 */
#define FAKE_SB 1 /* 1: simulate stochastic background */
/* 0: no stochastic background */
#define FAKE_NOISE1 0 /* 1: simulate detector noise at site 1 x/

#define

#define

#define

FAKE_NOISE2 0

WHITEN_OUT1 1

WHITEN_OUT2 1

/* 0: no detector noise at site 1 x/
/* 1: simulate detector noise at site 2 */
/* 0: no detector noise at site 2 */
/* 1: whiten output at site 1 */
/* 0: don’t whiten output at site 1 */
/* 1: whiten output at site 2 */
/* 0: don’t whiten output at site 2 */

#define N 65536 /* number of data points */
#define DELTA.T (5.0e-5) /* sampling period (in sec) */
#define OMEGA_O (1.0e-3) /* omega_0 */

#define F_LOW (5.0) /* minimum frequency (in Hz) */
#define F_HIGH (5.0e3) /* maximum frequency (in Hz) */
#define NUM_RUNS 5 /* number of runs */

main()

{

int i,j,last=0,seed= -17;

float delta_f,tstart=0.0,time_now;

float sitel_parameters[9],site2 parameters(S];
char sitel_name[100],noisel file[100],whitenl file[100];
char site2_name[100],noise2_file[100],whiten2 file[100];
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double *powerl,xpower2,*whitenl,*whiten2,*gammal?2;
float *xoutl,xout2;

/* ALLOCATE MEMORY x/

powerl=(double x)malloc((N/2)xsizeof (double));
power2=(double x)malloc((N/2)xsizeof (double));
whitenl=(double *)malloc(Nxsizeof (double));
whiten2=(double *)malloc(Nxsizeof (double));
gammal2=(double *)malloc{(N/2)xsizeof (double));
outl=(float *)malloc(N*sizeof(float));
out2=(float x)malloc(Nxsizeof(float));

/* IDENTITY WHITENING FILTERS (IF WHITEN_OUT1=WHITEN_QUT2=0) */
for (i=0;i<N/2;i++) {

whiteni [2+i]=whiten2[2%i]=1.0;

whitenl [2*xi+1]=vwhiten2[2xi+1]=0.0;

}

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION * /

detector_site (DETECTORS_FILE,SITE1_CHOICE,sitel parameters,sitel_name,
noisel_file,whitenl. file);

detector_site (DETECTORS_FILE,SITE2.CHOICE,site2_parameters,site2. name,
noise2_file,whiten2_file);

/* CONSTRUCT NOISE POWER SPECTRA, OVERLAP REDUCTION FUNCTION, AND x/
/* (NON-TRIVIAL) WHITENING FILTERS, IF DESIRED =/

delta f=(float) (1.0/(NxDELTA_T));

noise_power(noisel_file,N/2,delta.f,powerl);
noise_power(noise2_file,N/2,delta.f,power2);
overlap(sitel_parameters,site2_parameters,N/2,delta_f,gammal2);

if (WHITEN_OUT1==1) whiten(whitenl file,N/2,delta_f,whitenl);

if (WHITEN_OUT2==1) whiten(whiten2 file,N/2,delta_f,whiten2);

/* SIMULATE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE =/

for (j=0;j<NUM_RUNS;j++) {
monte_carlo(FAKE_SB,FAKE_NOISE1l,FAKE_NOISE2,N,DELTA_T,0OMEGA_O,F_LOW,F_HIGH,
gammal2,powerl,power2,vwhitenl,whiten2,outl,out2,&seed);

/* DISPLAY OUTPUT USING XMGR x*/
for (i=0;i<N;i++) {
time_now=tstart+ixDELTA_T;
printf ("%e\t}e\n",time_now,out1[il);

t
if (j==NUM_RUNS-1) last=1;
graphout (tstart,tstart+N«DELTA_T,last);

/* UPDATE TSTART =/
tstart+=N*DELTA_T;

} /* end for (j=0;j<NUM_RUNS;j++) */

return;
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; }
void graphout(float xmin,float xmax,int last)

static int first=1;
printf("&\n");

if (first) {

/* first time we draw plot */
: printf ("@doublebuffer true\n"); /* keep display from flashing */
printf("@focus off\n");
printf("@world xmin %e\n",xmin);
printf ("@world xmax %e\n",xmax);
printf ("Qautoscale yaxes\n");
printf("@xaxis label \"t (sec)\"\n");
printf("@title \"Simulated Detector Ouput\"\n");
printf("@subtitle \"(stochastic background--whitened)\"\n");
printf ("@redraw \n");
if (!'last) printf("@kill sO\n"); /= kill set; ready to read again */

first=0;

}

else {

/= other timeOAs we draw plot */

printf("@uorld xmin %e\n",xmin);

printf ("@world xmax %e\n",xmax) ;

printf ("@autoscale yaxes\n");

if (!last) printf("@kill sO\n"); /x kill set; ready to read again */

}

return;

}
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Figure 47: Time-series data (whitened) for a stochastic background having a constant frequency
spectrum: Qgw(f) = 1.0 x 1073 for 5 Hz < f < 5000 Hz.
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Figure 48: Time-series data (unwhitened) for a stochastic background having a constant frequency
spectrum: Qg (f) = 1.0 x 1073 for 5 Hz < f < 5000 Hz.
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data (whitened) for the noise intrinsic to an initial LIGO detector.

Simulated Detector Ouput

(initiat LIGO detector noise—unwhitened)

1.00e-11

0.00e+00

T T T T T —T

-1.00e-11
15.1

15.6 16.1 16.6 171 17.6 18.1
t (sec)

Figure 50: Time-series data (unwhitened) for the noise intrinsic to an initial LIGO detector.
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7.13 Function: test_datal2()

int test_datal2(int n, float *datal, float *data2)
This function tests two data sets to see if they have probability distributions consistent with a
Gaussian normal distribution.

The arguments of test_datal2() are:

n: Input. The number N of data points contained in each of the input arrays.

datal: Input. datai[0..n-1] is an array of floating point variables containing the values of the
first array to be tested.

data2: Input. data2[0..n-1] is an array of floating point variables containing the values of the
second array to be tested.

test_datal2() is a simple function that makes use of the is_gaussian() utility routine. (See
Sec. 10.4 for more details.) test.datal2() prints a warning message if either of the data sets
contain a value too large to be stored in 16 bits. (The actual maximum value was chosen to be
32765.) It returns 1 if both data sets pass the is_gaussian() test. It returns O if either data set
fails, and prints a message indicating the bad set.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romanoQcsd.uwm.edu

Comments: In the context of stochastic background simulations, datal[] and data2[] contain
the values of the whitened data streams o0;(t) and o02(t) that are output by the two detectors.
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7.14 Function: extract_noise()

void extract.noise(int average, int which, float *in, int n, float delta.t, double *whiten ou

double *power)
This function calculates the real-time noise power spectrum P(f) of a detector, using a Hann
window and averaging the spectrum for two overlapped data sets, if desired.

The arguments of extract_noise() are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time
noise power spectra corresponding to two overlapped data sets are to be averaged.

which: Input. An integer variable specifying which internally-defined static buffer should be used
when overlapping the new input data set with data saved from a previous call. The allowed
values are 1 < which < 16.

in: Input. in[0..n-1] is an array of floating point variables containing the values of the as-
sumed continuous-in-time whitened data stream o(t) produced by the detector. o(t) is the
convolution of detector whitening filter W (t) with the data stream s(t) := h(t) + n(t), where
h(t) is the gravitational strain and n(t) is the noise intrinsic to the detector. The variables
in[] have units of rHz (or sec™1/2), which follows from the definition of s(t) as a strain and
W (f) as the “inverse” of the square root of the noise power spectrum P(f). in[i] contains
the value of o(t) evaluated at the discrete time t; = iAt, where ¢ =0,1,---,N — 1.

n: Input. The number N of data points corresponding to an observation time T := N At, where
At is the sampling period of the detector, defined below. N should equal an integer power of
2.

delta t: Input. The sampling period At (in sec) of the detector.

whiten_out: Input. whiten_out[0..n-1] is an array of double precision variables containing the
values of the real and imaginary parts of the spectrum W(f) of the whitening filter of the
detector. These variables have units rHz/strain (or sec~/2), which are inverse to the units of
the square root of the noise power spectrum P(f). whiten out [2*i] and whiten_out [2*i+1]
contain, respectively, the values of the real and imaginary parts of W( f) evaluated at the
discrete frequency f; = i/(NAt), where 1 =0,1,---,N/2 - 1.

power: Output. power [0..n/2-1] is an array of double precision variables containing the values
of the real-time noise power spectrum P(f) of the detector. Explicitly,

P(f) = 2 5 (DE() (7.14.1)

where 3(f) is the Fourier transform of the unwhitened data stream s(t) produced by the
detector. These variables have units of strain?/Hz (or seconds). power [i] contains the value
of P(f) evaluated at the discrete frequency f; = i/(NAt), where i =0,1,---,N/2 - 1.

extract noise() calculates the real-time noise power spectrum P(f) as follows:

(i) It first stores the input data stream o(t) in the last two-thirds of an appropriately chosen
static buffer buf [0..3*n/2-1]. The first one-third of this buffer contains the input data left

over from the previous call.
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(i) It then multiplies the first two-thirds of this buffer by the Hann window function:

w(t) = \/g % [1 — cos (2—;£>] . (7.14.2)

The factor 1/8/3 is the “window squared-and-summed” factor described in Numerical Recipes
in C, p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fourier transformed into the frequency domain, where it is un-
whitened by dividing by the (complex) spectrum W (f) of the whitening filter of the detector.
The resulting unwhitened frequency components are denoted by (V3(f); the superscript (1)
indicates that we are analyzing the first of two overlapped data sets.

(iv) The real-time noise power spectrum is then calculated according to:
WP(f) = = O5(f) W5(5) (7143)

(v) The data contained in the last two-thirds of the buffer is then copied to the first two-thirds of
the buffer, and steps (ii)-(iv) are repeated, yielding a second real-time noise power spectrum
@P(f).

(vi) If average=1, P(f) is given by:

[ Wp(f)+ AP(F) ] . (7.14.4)

N =

P(f) =

Otherwise, P(f) = @ P(f).

(vii) Finally, the data contained in the last two-thirds of the buffer is again copied to the first
two-thirds, in preparation for the next call to extractnoise(). The data saved in the first
one-third of this buffer will match onto the next input data stream if the input data from one
call of extract_noise() to the next is continuous.

Note: One should call extract noise() with average # 1, when one suspects that the current
input data is not continuous with the data that was saved from the previous call. This is because
a discontinuity between the “old” and “new” data sets has a tendency to introduce spurious large
frequency components into the real-time noise power spectrum, which should not be present. Since
a single input data stream by itself is continuous, the noise power spectrum ?)P(f) (which is
calculated on the second pass through the data) will be free of these spurious large frequency
components. This is why we set P(f) equal to (%) P(f)—and not equal to (1) P(f)—when average #
1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to
extract the real-time noise power spectra at two detectors simultaneously. However, for
modularity of design, and to allow this function to be used possibly for “single-detector”
gravity-wave searches, we decided to write the above routine instead.
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7.15 Function: extract_signal()

void extractsignal(int average, float *inl, float *in2, int n, float delta_t, double

xwhitenl, double *whiten2, double *signall2)

@ This function calculates the real-time cross-correlation spectrum §;2(f) of the unwhitened data
streams s, (t) and sy(t), using a Hann window and averaging the spectrum for two overlapped data
sets, if desired.

~ The arguments of extract.signal () are:

N

average: Input. An integer variable that should be set equal to 1 if the values of the real-time
cross-correlation spectra corresponding to two overlapped data sets are to be averaged.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the

assumed continuous-in-time whitened data stream o5 (¢) produced by the first detector. o01(t)

is the convolution of detector whitening filter W1 (t) with the data stream s1(t) := hi(t) +

n1(t), where hy(t) is the gravitational strain and n(t) is the noise intrinsic to the detector.

] The variables in1[] have units of tHz (or sec™!/?), which follows from the definition of
i s1(t) as a strain and Wl( f) as the “inverse” of the square root of the noise power spectrum
Py(f). in1[i] contains the value of 01(t) evaluated at the discrete time t; = 1At, where

i=0,1,---,N—1.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the
: assumed continuous-in-time whitened data stream o02(t) produced by the second detector, in
exactly the same format as the previous argument.

n: Input. The number N of data points corresponding to an observation time T':= N At, where
At is the sampling period of the detectors, defined below. N should equal an integer power

of 2.
delta-t: Input. The sampling period At (in sec) of the detectors.

whitenl: Input. whiten1[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W1(f) of the whitening filter of the first
detector. These variables have units tHz/strain (or sec™'/2), which are inverse to the units
‘ of the square root of the noise power spectrum Pj(f). whiten1[2*i] and whiten1[2*i+1]
contain, respectively, the values of the real and 1mag1nary parts of Wl( f) evaluated at the
discrete frequency f; = i/(NAt), where i =0,1,---,N/2 ~ 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
; of the real and imaginary parts of the spectrum Wz( f) of the whitening filter of the second
f detector, in exactly the same format as the previous argument.

signal12: Output. signal12[0..n/2-1] is an array of double precision variables containing the
values of the real-time cross-correlation spectrum

S12(f) := (51(f) 82(f) +cc) (7.15.1)

where 31(f) and 52(f) are the Fourier transforms of the unwhitened data streams s)(t) and

s9(t) produced by the two detectors. These variables have units of strain?-sec? (or simply sec?).
signal12[i] contains the value of §12(f) evaluated at the discrete frequency f; = ¢ /(NAt),
where : =0,1,---,N/2 - 1.
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extract_signal() calculates the real-time cross-correlation spectrum 8;2(f) as follows:
(i) It first stores the input data streams 01(¢) and 02(¢) in the last two-thirds of internally-defined
static buffers buf1[0. .3%n/2-1] and buf2[0. .3*n/2-1]. The first one-third of these buffers
contains the input data left over from the previous call.

(i1) It then multiplies the first two-thirds of these buffers by the Hann window function:

w(t) = \/g % [1 — cos (%)] . (7.15.2)

The factor 1/8/3 is the “window squared-and-summed” factor described in Numerical Recipes
wn C, p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(ili) The windowed data is then Fourier transformed into the frequency domain, where it is un-
whitened by dividing by the (complex) spectra Wi (f) and Wa(f), which represent the whiten-
ing filters of the two detectors. The resulting unwhitened frequency components are denoted
by M5(f) and V5(f); the superscript (1) indicates that we are analyzing the first of two

overlapped data sets.

(iv) The real-time cross-correlation spectrum is then calculated according to:
Wg15(f) = [ V51(F) Dsalf) + e | - (7.15.3)

(v) The data contained in the last two-thirds of the buffers is then copied to the first two-thirds
of the buffers, and steps (ii)-(iv) are repeated, yielding a second real-time cross-correlation

spectrum @ 3535(f).

(vi) If average=1, 312(f) is given by:
S12(f) =

Otherwise, 512(f) = @312(f).

(vii} Finally, the data contained in the last two-thirds of the buffers is again copied to the first
two-thirds, in preparation for the next call to extract_sb(). The data saved in the first
one-third of these buffers will match onto the next input data streams if the input data from
one call of extract_sb() to the next is continuous.

Note: One should call extract_sb() with average # 1, when one suspects that the current
input data is not continuous with the data that was saved from the previous call. This is because
a discontinuity between the “old” and “new” data sets has a tendency to introduce spurious large
frequency components into the real-time cross-correlation spectrum, which should not be present.
Since a single input data stream by itself is continuous, the cross-correlation spectrum (?315(f)
(which is calculated on the second pass through the data) will be free of these spurious large
frequency components. This is why we set 512(f) equal to P3;5(f)—and not equal to M 315(f)—
when average # 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

[ Wana(f)+ @sna(f) ] - (7.15.4)

[NCRRE)

Comments: Although it is possible and more efficient to write a single function to extract the
real-time detector noise power and cross-correlation signal spectra simultaneously, we have
chosen—for the sake of modularity—to write separate functions to perform these two tasks
separately. (See also the comment at the end of Sec. 7.14.)
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r 7.16 Function: optimal filter()

void optimal filter(int n, float delta f, float f_low, float f.high, double *gammal2,
double *powerl, double *power2, double *filteri2)

| | This function calculates the values of the spectrum Q(f) of the optimal filter function, which

{ “‘ maximizes the cross-correlation signal-to-noise ratio for an isotropic and unpolarized stochastic
background of gravitational radiation having a constant frequency spectrum: gy (f) = o for

flow,.<. f < fhigh- )
The arguments of optimal _filter() are:

N

n: Input. The number N of discrete frequency values at which the spectrum Q( f) of the optimal
filter is to be evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fir1— fi.
f_low: Input. The frequency fiow (in Hz) below which the spectrum gy (f) of the stochas-
’ tic background—and hence the optimal filter Q(f)—is zero. fiow should lie in the range
\ 0 < fiow < fNyquist, Where fyquist is the Nyquist critical frequency. (The Nyquist critical
frequency is defined by fyquist := 1/(2At), where At is the sampling period of the detectors.)
fiow should also be less than or equal to fhigh-

f high: Input. The frequency fuigh (in Hz) above which the spectrum Qg (f) of the stochastic
background—and hence the optimal filter Q(f)—is zero. fhign should lie in the range 0 <
fhigh < fNyquist- It should also be greater than or equal to fiow.

;  gemmal2: Input. gammal2[0..n-1] is an array of double precision variables containing the values
of the overlap reduction function ~y(f) for the two detector sites. These variables are dimen-
sionless. gamma12[i] contains the value of v(f) evaluated at the discrete frequency f; = iAf,
where i =0,1,---, N — 1.

| ‘ poweri: Input. power1[0..n-1] is an array of double precision variables containing the values of
the noise power spectrum P (f) of the first detector. These variables have units of strain®/Hz
(or seconds). poweri[i] contains the value of Pi(f) evaluated at the discrete frequency
fi=1Af, where i1 =0,1,---,N — 1.

power2: Input. power2(0..n-1] is an array of double precision variables containing the values
of the noise power spectrum P»(f) of the second detector, in exactly the same format as the
previous argument.

filter12: Output. filter12[0..n-1] is an array of double precision variables containing the
values of the spectrum Q(f) of the optimal filter function for the two detectors. These
variables are dimensionless for our choice of normalization (S) = Qo T. (See the discussion
below.) filter12[i] contains the value of Q( f) evaluated at the discrete frequency f; = 1A f,
where i =0,1,---,N — 1.

The values of Q(f) calculated by optimal.filter() are defined by equation (3.32) of Ref. [20]:

2 Y ’Y(f)ng(f)

)= A BRABF (7.16.)
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Such a filter maximizes the cross-correlation signal-to-noise ratio SNR := p /0, where

2 oo ~
b= () =T 38 [ df AN 7DE) (7162
o = ()= (87 =T [ df BRGNP (7.163)

(T corresponds to the observation time of the measurement.) We are working here under the
assumption that the magnitude of the noise intrinsic to the detectors is much larger than the
magnitude of the signal due to the stochastic background. If this assumption does not hold,
Eq. 7.16.3 for o2 needs to be modified, as discussed in Sec. 7.18.

Note that we have explicitly included a normalization constant A in the definition of Q( f). The
choice of A does not affect the value of the signal-to-noise ratio, since 4 and ¢ are both multiplied
by the same factor of A. For a stochastic background having a constant frequency spectrum

_ Qo flow < f < fhigh
Qew(f) = { 0 otherwise,

it is convenient to choose A so that
u=T. (7.16.4)

From equations (7.16.1) and (7.16.2), it follows that

Fhigh Y2(f) -1 (716.5)

_ | 3H _r)
A‘[mﬂ o ¥ R GA

will do the job. With this choice of A, Q(f) is dimensionless and independent of the value of €.
This is why ¢ does not have to be passed as a parameter to optimal filter().

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.17 Example: optimal_filter program

The following example program shows one way of combining the functions detector_site(),
noise_power (), overlap(), and optimal filter() to calculate the spectrum Q(f) of the op-
timal filter function for a given pair of detectors. Below we explictly calculate Q( f) for the initial
Hanford, WA and Livingston, LA LIGO detectors. (We also choose to normalize the magnitude
of the spectrum Q(f) to 1, for later convenience when making plots of the output data.) Noise
power information for these two detectors is read from the input data file noise_init.dat. This
file is specified by the information contained in detectors.dat. (See Sec. 7.1 for more details. ) '
The resulting optimal filter function data is stored as two columns of double precision numbers (f;
and Q(f;)) in the file LIGO.filter.dat, where f; = iéAf and i = 0,1,---,N —1. A plot of this
data is shown in Fig. 51.

As usual, the user can modify the parameters in the #define statements listed at the beginning
of the program to change the number of frequency points, the frequency spacing, etc. used when
calculating Q(f). Also, by changing the site location identification numbers and the output file
name, the user can calculate and save the spectrum of the optimal filter function for any pair of
detectors. For example, Fig. 52 is a plot of the optimal filter function for the advanced LIGO

detectors.
/* main program to illustrate the function optimal_filter() =/

#include "grasp.h"

#define DETECTORS_FILE "detectors.dat" /x file containing detector info */

#define SITE1.CHOICE 1 /+ 1=LIGO-Hanford site */
#define SITE2_CHOICE 2 /* 2=LIGO-Livingston site */
#define N 500 /* number of frequency points */
#define DELTAF 1.0 /* frequency spacing (in Hz) */
#define F_LOW 0.0 /* minimum frequency (in Hz) */
#define F_HIGH 500.0 /* maximum frequency (in Hz) */

#define OUT_FILE "LIGO_filter.dat" /x output filename %/

main()

{
int i;
double £;

double abs.value,max;

float sitel_parameters([9],site2_parameters([9];
char sitel_name[100],noisel file[100],whitenl £i1e[100];
char site2_name[100] ,noise2_file[100] ,whiten2 file[100];

double xpowerl,xpower2;
double xgammal2;
double xfilteril?;

FILE *fp;
fp=fopen(OUT_FILE, "w");

/* ALLOCATE MEMORY x/
poweri=(double *)malloc(Nxsizeof (double));
power2=(double *)malloc(N*sizeof (double));
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gammal2=(double x)malloc(Nxsizeof (double));
filter12=(double *x)malloc(N*sizeof (double));

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION * /

detector.site(DETECTORS_FILE,SITEL_CHOICE,sitel_parameters,sitel_name,
noisel_file,whitenl _file);

detector_site (DETECTORS_FILE,SITE2_CHOICE,site2_parameters,site2_name,
noise2_file,whiten2_file);

/* CALL NOISE_POWER() AND OVERLAP() =/

noise_power (noisel _file ,N,DELTA_F,powerl);
noise_power(noise2 file,N,DELTA_F,power2) ;
overlap(sitel_parameters,site2_parameters ,N,DELTA.F,gammal?2) ;

/* CALL OPTIMAL_FILTER() AND DETERMINE MAXIMUM ABSOLUTE VALUE x /
optimal _filter(N,DELTA_F,F_LOW,F_HIGH,gammal2,powerl,power2,filter12);

max=0.0;

for (i=0;i<N;i++) {
abs_value=fabs(filter12[i]);
if (abs_value>max) max=abs_value;

}

/* WRITE FILTER FUNCTION (NORMALIZED TO 1) TO FILE */
for (i=0;i<N;i++) {

f=ixDELTA_F;

fprintf (fp,"%e %e\n",f,filter12[i] /max);

}

fclose(fp);

return;
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Figure 51: Optimal filter function Q(f) (normalized to 1) for the initial LIGO detectors.
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Figure 52: Optimal filter function Q(f) (normalized to 1) for the advanced LIGO detectors.
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7.18 Discussion: Theoretical signal-to-noise ratio for the stochastic background

In order to reliably detect a stochastic background of gravitational radiation, we will need to be
able to say (with a certain level of confidence) that an observed positive mean value for the cross-
correlation signal measurements is not the result of detector noise alone, but rather is the result
of an incident stochastic background. This leads us natually to consider the signal-to-noise ratio,
since the larger its value, the more confident we will be in saying that the observed mean value of
our measurements is a valid estimate of the true mean value of the stochastic background signal.
Thus, an interesting question to ask in regard to stochastic background searches is: “What is the
theroretically predicted signal-to-noise ratio after a total observation time 7', for a given pair of
detectors, and for a given strength of the stochastic background?” In this section, we derive the
mathematical equations that we need to answer this question. Numerical results will be calculated
by example programs in Secs. 7.20 and 7.21.
To answer the above question, we will need to evaluate both the mean value

= (S) (7.18.1)

and the variance
o2 := (5% - (S)? (7.18.2)
of the stochastic background cross-correlation signal S. The signal-to-noise ratio SNR is then given
by
SNR := g . (7.18.3)

As described in Sec. 7.16, if the magnitude of the noise intrinsic to the detectors is much larger
than the magnitude of the signal due to the stochastic background, then

o ~
b= T DA e 5DG) (718.0
o~ 7 [ d RADRINIGUIPE, (7.18.5)
where Q(f ) is an arbitrary filter function. The choice
A o ’y(f)ng(f)
Q) = 2B () Bo(f) (7.18.6)

maximizes the signal-to-noise ratio (7.18.3). It is the optimal filter for stochastic background
searches. As also described in Sec. 7.16, if the stochastic background has a constant frequency
spectrum

_J Q0  fiow S f < Fhigh
Qew(f) _{ 0 otherwise,

it is convenient to choose the normalization constant A so that

u=0T. (7.18.7)
For such a A, , X
2, T (10w rhian o 2

i (3H§) Uf Y wEROBED| (7.188)
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which leads to the squared signal-to-noise ratio

2 _ o 9HG [Tuien 2(f)
(SNR)? =T 0F == /f " SRR (7.18.9)

This is equation (3.33) in Ref. [20].

But suppose that we do not assume that the noise intrinsic to the detectors is much larger in
magnitude than that of the stochastic background. Then Eq. (7.18.5) for o2 needs to be modified to
take into account the non-negligible contributions to the variance brought in by the stochastic back-
ground signal. (Equation (7.18.4) for u is unaffected.) This change in o implies that Eq. (7.18.6)
for Q(f) is no longer optimal. But to simplify matters, we will leave Q(f) as is. Although such
a Q(f) no longer maximizes the signal-to-noise ratio, it at least has the nice property that, for a
stochastic background having a constant frequency spectrum, the normalization constant A can be
chosen so that Q(f) is independent of Q. The expression for the actual optimal filter function, on
the other hand, would depend on .

So keeping Eq. (7.18.6) for Q(f), let us consider a stochastic background having a constant
frequency spectrum as described above. Then we can still choose A so that

u=0T, (7.18.10)

(the same A as before works), but now

o _T[ e 20 17 (1022 fhe ()
=3 [/f 9 fepl(f)Pz(f)} {(3H§) L. SRgiET)

ow

1072 ) - fHoien 7(f) 1072\ piisn v2(f)
+Q°(3H3)/f ¥ f9Pf<f>Pz(f>+Q°<3H3)/fm ¥ TR

low

Jhigh Z(f)
mg/ﬁw i ?ﬁl%m(lﬂz(f))}- (7.18.11)

The new squared signal-to-noise ratio is Q2 T2 divided by the above expression for .

Note the three additional terms that contribute to the variance o2. Roughly speaking, they
can be thought of as two “signal+noise” cross-terms and one “pure signal” variance term. These
are the terms proportional to {2y and Q%, respectively. When ( is small, the above expression
for o2 reduces to the pure noise variance term (7.18.8). This is what we expect to be the case in
practice. But for the question that we posed at the beginning of the section, where no assumption is
made about the relative strength of the stochastic background and detector noise signals, the more
complicated expression (7.18.11) for o2 should be used. The function calculate.var (), which is
defined in the following section, calculates the variance using this equation.
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7.19 Function: calculate_var()

double calculate.var(int n, float delta f, float omega O, float f_low, float f high,
float t, double *gammal2, double *powerl, double *power2)
This function calculates the theoretical variance o of the stochastic background cross-correlation
signal S.

The arguments of calculate_var() are:

n: Input. The number N of discrete frequency values at which the spectra are to be evaluated.

delta f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fir1— fi-
omega 0: Input. The constant value £}y (dimensionless) of the frequency spectrum Qg (f) for the

stochastic background:
_J Q  fiow £ F < fhigh
Ogw(f) = { 0 otherwise.

Qo should be greater than or equal to zero.

f low: Input. The frequency fiow (in Hz) below which the spectrum gy (f) of the stochastic
background is zero. fioy should lie in the range 0 < fiow < fNyquist; Where fNyquist is the
Nyquist critical frequency. (The Nyquist critical frequency is defined by fnyquist == 1/(24t),
where At is the sampling period of the detector.) fiow should also be less than or equal to
JShigh-

f.high: Input. The frequency fyign (in Hz) above which the spectrum Qg (f) of the stochastic
background is zero. fhin should lie in the range 0 < fhigh < fNyquist- It should also be greater
than or equal t0 fiow-

t: Input. The observation time T (in sec) of the measurement.

gammal2: Input. gammal2[0..n-1] is an array of double precision variables containing the values
of the overlap reduction function «(f) for the two detector sites. These variables are dimen-
sionless. gammal12[i] contains the value of v{f) evaluated at the discrete frequency f; =iAf,
wheret=0,1,---,N — 1.

powerl: Input. power1(0..n-1] is an array of double precision variables containing the values of
the noise power spectrum P; (f) of the first detector. These variables have units of strain?/Hz
(or seconds). power1[i] contains the value of P;(f) evaluated at the discrete frequency
fi =iAf, wherei=0,1,---,N — 1.

power2: Input. power2[0..n~1] is an array of double precision variables containing the values
of the noise power spectrum P»(f) of the second detector, in exactly the same format as the
previous argument.

The double precision value returned by calculate_var () is the theoretical variance o2 given by
Eq. (7.18.11) of Sec. 7.18. As discussed in that section, Eq. (7.18.11) for 0 makes no assumption
about the relative strengths of the stochastic background and detector noise signal, but it does use
Eq. (7.18.6) for the filter function Q(f), which is optimal only for the large detector noise case. For
stochastic background simulations, € is usually chosen to equal some known non-zero value. This
is the value that should be passed as a parameter to calculate_var (). For stochastic background
searches (where Qg is not known a priori) the value of of the parameter Qg should be set to zero.
The variance for this case is given by Eq. (7.18.8).
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.20 Example: snr program

As mentioned in Sec. 7.18, an interesting question to ask in regard to stochastic background searches
is: “What is the theroretically predicted signal-to-noise ratio after a total observation time T, for
a given pair of detectors, and for a given strength of the stochastic background?” The following
example program show how one can combine the functions detector_site(), noise_power(),
overlap(), and calculate_var() to answer this question for the case of a stochastic background
having a constant frequency spectrum: Qgw(f) = Qo for fiow < f < fhigh- Specifically, we calculate
and display the theoretical SNR after approximately 4 months of observation time (7" = 1.0 x 107
seconds), for the initial Hanford, WA and Livingston, LA LIGO detectors, and for g = 3.0 x 10~
for 5 Hz < f < 5000 Hz. (The answer is SNR = 1.73, which means that we could say, with
greater than 95% confidence, that a stochastic background has been detected.) By changing the
parameters in the #define statements listed at the beginning of the program, one can calculate
and display the signal-to-noise ratios for different observation times T, for different detector pairs,
and for different strengths Qg of the stochastic background.

Note: Values of N and A f should be chosen so that the whole frequency range (from DC to the
Nyquist critical frequency) is included, and that there are a reasonably large number of discrete
frequency values for approximating integrals by sums. The final answer, however, is independent
of the choice of N and Af, for N sufficiently large and A f sufficiently small.

/* main program to calculate the theoretical snr x/
#include "grasp.h"

#define DETECTORS_FILE "detectors.dat" /« file containing detector info */

#define SITE1_CHOICE 1 /* 1=LIGO-Hanford site x/

#define SITE2_CHOICE 2 /* 2=LIGO-Livingston site */
#define OMEGA O (3.0e—6) /* Omega_0 (for initial detectors) */
#define F_LOW 5.0 /* minimum frequency (in Hz) =/
#define F_HIGH (5.0e+3) /* maximum frequency (in Hz) */
#define T (1.0e+7) /* total observation time (in sec) */
#define N 40000 /* number of frequency points */
#define DELTA_F 0.25 /* frequency spacing (in Hz) =/
main()

{

double mean,variance,stddev,snr;

float sitel_parameters[9],site2_parameters[9];
char sitel_name[100] ,noisel file([100] ,whitenl _file[100];
char site2_name[100] ,noise2_file[100] ,whiten2_£ile[100];

double xpowerl,s*power2;
double *gammal2;

/* ALLOCATE MEMORY x/

powerl=(double *)malloc(Nxsizeof (double));
power2=(double *)malloc(Nx*sizeof(double));
gammal2=(double *)malloc(Nxsizeof (double));

/* CALL DETECTOR._SITE() TO GET SITE PARAMETER INFORMATION =/
detector._site (DETECTORS_FILE,SITE1_CHOICE,sitel_parameters,sitel name,
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noisel_file,whitenl_file);

detector_site(DETECTORS._FILE,SITE2_CHUOICE,site2_parameters,site2_name,

noise2_file,whiten2 file);

/* CALL NOISE_POWER() AND OVERLAP() */
noise_power(noisel_file,N,DELTA_F,powerl);
noise_power(noise2_file,N,DELTA_F,power2);

overlap(sitel_parameters,site2_parameters,N,DELTA_F,gammal?);

/* CALCULATE MEAN, VARIANCE, STDDEV, AND SNR =/

mean=0MEGA_OxT; .

variance=calculate_var (N,DELTA_F ,OMEGA_O,F_LOW,F_HIGH,T,gammal2,
powerl,power2);

stddev=sqrt(variance);

snr=mean/stddev;

/= DISPLAY RESULTS =/

printf ("\n");

printf ("Detector site 1 = ¥s\n",sitel_name);
printf("Detector site 2 = ¥%s\n",site2_name);
printf("Omega_0 = %e\n",OMEGA_0);
printf("f_low = %e Hz\n",F_LOW);
printf("f_high = %e Hz\n",F_HIGH);

printf ("Observation time T = %e sec\n",T);
printf ("Theoretical S/N = %e\n",snr);
printf ("\n");

return;
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7.21 Example: omega min program

The example program described in the previous section calculates the theoretical signal-to-noise
ratio after a total observation time T, for a given pair of detectors, and for a given strength g
of the stochastic background. A related—and equally important—question is the ¢nverse: “What
is the minimum value of Qg required to produce a given SNR after a given observation time 7'?”
For example, if SNR = 1.65, then the answer to the above question is the minimum value of {1y for
a stochastic background that is detectable with 95% confidence after an observation time T'. The
following example program calculates and displays this 95% confidence value of g for the inital
Hanford, WA and Livingston, LA LIGO detectors, for approximately 4 months (T = 1.0 x 107
seconds) of observation time. (The answer is )y = 2.87 x 1078.) Again, we are assuming in this
example program that the stochastic background has a constant frequency spectrum: Qgw(f) = o
for 5 Hz < f < 5000 Hz. By modifying the parameters in the #define statements listed at the
beginning of the program, one can calculate and display the minimum required €g’s for different
detector pairs, for different signal-to-noise ratios, and for different observation times 7.

Note: As shown in Sec. 7.18, the squared signal-to-noise ratio can be written in the following
form: .

2 0
(SNR)“ = ATBE W+ C®’ (7.21.1)

where A, B, and C are complicated expressions involving integrals of the the overlap reduction
function and the noise power spectra of the detectors, but are independent of 7" and §p. Thus,
given SNR and T, Eq. (7.21.1) becomes a quadratic for €2q:

a2 +bQy+c=0, (7.21.2)
which we can easily solve. It is this procedure that we implement in the following program.
/* main program to calculate the minimum detectable omega._0 x/

#include "grasp.h"

#define DETECTORS_FILE "detectors.dat" /* file containing detector info */

#define SITE1_CHOICE 1 /* 1=LIGO-Hanford site */
#define SITE2_CHOICE 2 /* 2=LIGO-Livingston site */
#define SNR 1.65 /* 1.65=SNR for 95% confidence x/
#define F_LOW 5.0 /* minimum frequency {(in Hz) =/
#define F.HIGH (5.0e+3) /* maximum frequency (in Hz) */
#define T (1.0e+7) /* total observation time (in sec) */
#define N 40000 /* number of frequency points */
#define DELTA_F 0.25 /= frequency spacing (in Hz) =/
main()
{

int i;

float f£;

double factor,£3,£6,f9,f12,p1,p2,g2;
double intl,int2,int3,int4;
double a,b,c,omega_0;

float sitel.parameters[9],site2 parameters[9];
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char sitel_name[100],noisel file[100],whitenl file[100];
char  site2_name[100],noise2_file[100],whiten2 file[100];

double xpowerl,*power2;
double *gammal2;

/* ALLOCATE MEMORY =/

powerl=(double *)malloc(Nssizeof (double));
power2=(double *)malloc(Nxsizeof (double));
gamma12=(double x)malloc(N+sizeof (double));

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION x/

detector_site (DETECTORS_FILE,SITE1_CHOICE,sitel_parameters,sitel name,
noisel_file,whitenl_file);

detector_site(DETECTORS FILE,SITE2_CHOICE,site2 parameters,site2_name,
noise2_file,whiten2 file);

/* CALL NOISE_.POWER() AND OVERLAP() */

noise_power (noisel._file,N,DELTA_F,powerl);

noise.power (noise2_file,N,DELTA_F,power2);
overlap(sitel_parameters,site2_parameters,N,DELTA F,gammal2);

/* CALCULATE INTEGRALS FOR VARIANCE */

intl=int2=int3=int4=0.0;

for (i=0;i<N;i++) {

f=ixDELTA_F;

if (F_LOW<=f && f<=F_HIGH) {
£3=fxfxf;
£6=£3%£3;
£9=16x£3;
£12=£f9x£3;
g2=gammal2[i]*gamma12[i] ;
pl=power1[il;
p2=power2[i];

int1+=DELTA Fxg2/(£6«plxp2) ;
int2+=DELTA Fxg2/(£9+plxplxp2) ;
int3+=DELTA.Fxg2/ (£9*plxp2+p2) ;
int4+=DELTA_Fxg2*(1.0+g2) / (£12xplxplxp2+p2) ;
}
}

/¥ CALCULATE COEFFICIENTS OF QUADRATIC EQUATION */
factor=10.0«M_PIxM_PI/(3.0+HUBBLE+HUBBLE) ;

a=(int4/int1—2.0xT*int1/(SNR=SNR)) /(factorxfactor);
b=(int2+int3)/(int1xfactor);
c=1.0;

/* SOLVE THE QUADRATIC */
omega_0=0.5x(—b—~sqrt (bsxb—4xaxc))/a;

/* DISPLAY RESULTS x/

242



printf("\n");

printf ("Detector site 1 = %s\n",sitel_name);
printf ("Detector site 2 = %s\n",site2_name);
printf("S/N ratio = %e\n",SNR);
printf("f_low = %e Hz\n",F_LOW);
printf("f_high = %e Hz\n",F_HIGH);
printf("Observation time T = %e sec\n",T);
printf ("Minumum Omega_0 = %e\n",omega_0);
printf ("\n");

return;

243




7.22 Function: analyze()

void analyze(int average, float *inl, float *in2, int n, float delta_t, float f.low,
float f.high, double *gammal2, double xwhitenl, double *whiten2, int real_time noisel,
int real_time noise2, double *powerl, double *power2, double *signal, double *variance)
This high-level function performs the optimal data processing for the detection of an isotropic and
unpolarized stochastic background of gravitational radiation having a constant frequency spectrum:
Qew(f) = Qo for fiow £ f < fhigh- It calculates the cross-correlation signal value S and theoretical
variance o2, taking as input the continuous-in-time whitened data streams o1 (t) and 02(t) produced
by two detectors.

The arguments of analyze() are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time
cross-correlation and/or noise power spectra corresponding to two overlapped data sets are

to be averaged.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data stream o0;(t) produced by the first detector. o1(t) is the
convolution of detector whitening filter Wi(t) with the data stream s1(t) := h1(t) + n1(t),
where hi1(t) is the gravitational strain and ny(t) is the noise intrinsic to the detector. These
variables have units of rHz (or sec/2), which follows from the definition of s1(t) as a strain
and Wi(f) as the “inverse” of the square root of the noise power spectrum Py(f). in1[i]
contains the value of 01(t) evaluated at the discrete time ¢; = iAt, where i =0,1,--- ,N — 1.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data stream oo(t) produced by the second detector, in exactly
the same format as the previous argument.

n: Input. The number N of data points corresponding to an observation time T := N At, where
At is the sampling period of the detectors, defined below. N should equal an integer power
of 2.

delta_t: Input. The sampling period At (in sec) of the detectors.

f_low: Input. The frequency fiow (in Hz) below which the spectrum Qgw(f) of the stochas-
tic background is assumed to be zero. fiow should lie in the range 0 < fiow < fNyquists
where fNyquist is the Nyquist critical frequency. (The Nyquist critical frequency is defined by
FNyquist = 1/(2At), where At is the sampling period of the detectors.) fiow should also be
less than or equal to fhigh-

f high: Input. The frequency fnigh (in Hz) above which the spectrum Qgw(f) of the stochastic
background is assumed to be zero. fnigh should lie in the range 0 < fhigh < fNyquist- It should
also be greater than or equal to flow-

gammal2: Input. gammal2[0..n/2-1] is an array of double precision variables containing the
values of the overlap reduction function (f) for the two detector sites. These variables are
dimensionless. gamma12[i] contains the value of (f) evaluated at the discrete frequency
fi = i/(NAt), where i =0,1,--- ,N/2 — 1.

whitenl: Input. whiten1[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum Wj(f) of the whitening filter of the first
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detector. These variables have units rHz/strain (or sec™/2), which are inverse to the units
of the square root of the noise power spectrum P;{f). whiten1[2+i] and whitenl[2*i+1]
contain, respectively, the values of the real and imaginary parts of Wh (f) evaluated at the
discrete frequency f; = i/(NAt), where : =0,1,---,N/2 — 1.

I

whiten2: Input. whiten2[0..n~1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum Ws(f) of the whitening filter of the second
detector, in exactly the same format as the previous argument.

real_timenoisel: Input. An integer variable that should be set equal to 1 if the real-time noise
power spectrum Py (f) of the first detector should be calculated and used when performing

the data analysis.

real_time noise2: Input. An integer variable that should be set equal to 1 if the real-time noise
power spectrum P»(f) for the second detector should be calculated and used when performing

the data analysis.

powerl: Input/Output. power1[0..n/2-1] is an array of double precision variables containing
the values of the noise power spectrum P;(f) of the first detector. These variables have units
of strain?/Hz (or seconds). power1[i] contains the value of Pj(f) evaluated at the discrete
frequency f; = i/(NAt), where i =0,1,---,N/2 ~ 1. If real_time noisel = 1, the values of
power1[0..n/2-1] are changed to

Pi(f) =2 S(N& ) (722.)

where 3, (f) is the Fourier transform of the unwhitened data stream s,(t) at the first detector
site. If real_time noisel # 1, the values of power1[0..n/2-1] are unchanged.

power2: Input/Output. power2[0..n/2-1] is an array of double precision variables containing
the values of the noise power spectrum P»(f) of the second detector, in exactly the same
format as the previous argument.

signal: Output. A pointer to a double precision variable containing the value of the cross-
correlation signal

Thigh -
s:= [ df 51205 QUF) (7.22.2)
flow

where 312(f) is the real-time cross-correlation spectrum and Q(f) is the spectrum of the
optimal filter function. S has units of seconds.

variance: Output. A pointer to a double precision variable containing the value of the theoretical
variance o2 of the cross-correlation signal S. o2 has units of sec?.

analyze() is very simple function, consisting primarily of calls to other more basic functions.
If real_time noisel or real_time noise2 = 1, analyze() calls extract noise() to obtain the
desired real-time noise power spectra. It then calls extract_signal() and optimal filter() to
obtain the values of 312(f) and Q( f), which are needed to calculate the cross-correlation signal
S, according to Eq. (7.22.2). Finally, analyze() calls calculate_var() to obtain the theoretical
variance o associated with S.

Note: One should call analyze() with average # 1, when one suspects that the current input

data in1[] and in2[] are not continuous with the data from the previous call to analyze (). Thisis

245



B

because a discontinuity between the “old” and “new” data sets has a tendency to introduce spurious
large frequency components into the real-time cross-correlation and/or noise power spectra, which
should not be present. (See the discussion at the end of Secs. 7.14 and 7.15 for more details.)

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.23 Function: prelim_stats()

prelim stats(float omega 0,float t,double signal,double variance)
This function calculates and displays the theoretical and experimental mean value, standard devi-
ation, and signal-to-noise ratio for a set of stochastic background cross-correlation signal measure-
ments, weighting each measurement by the inverse of the theoretical variance associated with that
measurement.

The arguments of prelim_stats() are:

omega 0: Input. The constant value Qy (dimensionless) of the frequency spectrum Qg (f) for the
stochastic background:

) Q2  fiow £ F £ Fhigh
Lew(f) _{ 0 otherwise.

Qp should be greater than or equal to zero.
float t: Input. The observation time T (in sec) of an individual measurement.

double signal: Input. The value S of the current cross-correlation signal measurement. This
variable has units of seconds.

double variance: Input. The value o2 of the theoretical variance associated with the current
cross-correlation signal measurement. This variable has units of sec?.

prelim stats() calculates the theoretical and experimental mean value, standard deviation,
and signal-to-noise ratio, weighting each measurement S; by the inverse of the theoretical variance
o? associated with that measurement. This choice of weighting maximizes the theoretical signal-to-
noise, allowing for possible drifts in the detector noise power spectra over the course of time. More
precisely, if we let S; (i =1,2,---,n) denote a set of n statistically independent random variables,
each having the same mean value

p= (S, (7.23.1)
but different variances
of = (S}) - (5i)?, (7.23.2)
then one can show that the weighted-average
= ZT‘=1 AiS;
S === (7.23.3)
Z?:l Aj

has maximum signal-to-noise ratio when A; = o, 2. Roughly speaking, the above averaging scheme
assigns more weight to signal values that are measured when the detectors are “quiet,” than to
signal values that are measured when the detectors are “noisy.”

The values calculated and displayed by prelim stats() are determined as follows:

(i) The total observation time is
Tiot =0T, (7.23.4)

where n is the total number of measurements, and T is the observation time of an individual
measurement.
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(ii) The theoretical mean is given by the product
Ptheory = 20 T . (7.23.5)

This follows from our choice of normalization constant for the optimal filter function. (See
Sec. 7.16 for more details.)

(ili) The theoretical variance is given by

2
Otheory = = -2 -
i=19;

Note that when the detector noise power spectra are constant, O’iz =olfori=12---,n-
and Ufheory = ¢2. This case arises, for example, if we do not calculate real-time noise power
spectra, but use noise power information contained in data files instead.

(iv) The theoretical signal-to-noise ratio (for n measurements) is given by

SNRtheory = V7 %‘ﬂ . (7.23.7)
eory

The factor of /n comes from our assumption that the n individual measurements are statis-
tically independent.

(v) The experimental mean is the weighted-average

2i=10; 28; o
Hexpt *= /=3 - (7.23.8)
(vi) The experimental variance is given by
n —-2q2
2 . 2i=10i 9 2
TS T T e (7.23.9)

When the weights o; 2 are constant, the above formula reduces to the usual expression

2
1 n n
Toxpr = = 257 — (Z Si> (7.23.10)
i=1 i=1
for the variance of n measurements Sj.

(vii) The experimental signal-to-noise ratio is given by

SNRexpt = v/ 2225 (7.23.11)

Oexpt
(viii) The relative error in the signal-to-noise ratios is
SNR¢heory — SNRexpt
SNRheory
The value of this quantity should be on the order of (1/SNRyheory) - 100%.

Note: prelim _stats() has internally-defined static variables which keep track of the number
of times that it has been called, the sum of the weights, the sum of weights times the signal values,
and the sum of the weights times the signal values squared.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

-100% . (7.23.12)

relative error :=

Comments: None.
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7.24 Function: statistics()

void statistics(float *input, int n, int num_bins)
| This function calculates and displays the mean value, standard deviation, signal-to-noise ratio,

and confidence intervals for an input array of (assumed) statistically independent measurements

z; of a random variable z. This function also write output data to two files: histogram.dat and

gaussian.dat. The first file contains a histogram of the input data z;; the second file contains

the Gaussian probability distribution that best matches this histogram. (See Sec. 7.22 for more

details.)

The arguments of statistics() are:

input: Input. input[0..n-1] is an array of floating point variables containing the values of a
set of (assumed) statistically independent measurements z; of a random variable z.

n: Input. The length N of the input data array. If N < 2, statistics() prints out an error
message and aborts execution.

| num_bins: Input. The number of bins to be used when constructing a histogram of the input
| data z;.

statistics() calculates and displays the mean value and standard deviation of the input data
z;. It also calculates and displays the signal-to-noise ratio and 68%, 90%, and 95% confidence
intervals for the input data, assuming that the z; are statistically independent measurements of a
random variable z. statistics() also writes output data to two files:

(i) histogram.dat is a two-column file of floating point numbers containing a histogram of the
input data z;. The length of each column of data is equal to num_bins, and the histogram is
normalized so that it has unit area.

| (ii) gaussian.dat is a two-column file of floating point numbers containing the Gaussian prob-

1 ability distribution function that best matches the histogram of the input data z;. Each
column of gaussian.dat has a length equal to 8192. There are also three markers included
in the Gaussian probability distribution data: One marker for the mean, and two for the +
one standard deviation values of z.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of the stochastic background routines, statistics() is used to per-
form a statistical analysis of the cross-correlation signal values S; calculated by the function

analyze().
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7.25 Example: simulation program

By combining all of the functions defined in the previous sections, one can write a program to
simulate the generation and detection of a stochastic background of gravitational radiation having
a constant frequency spectrum: Qgw(f) = Qo for fiow < f < fhigh- The following example program
is a simulation for the initial Hanford, WA and Livingston, LA LIGO detectors. The parameters
chosen for this particular simulation are contained in the #define statements listed at the beginning

__of the program. By changing these parameters, one can simulate the generation and detection

of a stochastic background for different stochastic backgrounds (i.e., for different values of (o,
flow, and fuien) and for different detector pairs. The number of data points, the sampling period
of the detectors, and the total observation time for the simulation, etc. can also be modified.
Preliminary statistics are displayed during the simulation. In addition, a histogram and the best-
fit Gaussian probability distribution for the output data are stored in two files: histogram.dat
and gaussian.dat. Sample output produced by the simulation and a plot of the histogram and
best-fit Gaussian data are given in Sec. 7.26.

/* main program for stochastic background simulation */
#include "grasp.h"

#define DETECTORS.FILE "detectors.dat" /x file containing detector info x/

#define SITE1_CHOICE 1 /* identification number for site 1 */
#define SITE2_CHOICE 2 /* identification number for site 2 */
#define FAKE_SB 1 /* 1: simulate stochastic background */
/* 0: stochastic background from real data */
#define FAKE_NOISE1 1 /* 1: simulate detector noise at site 1 */
‘ /* 0: detector noise from real data at site 1 */
#define FAKE_NOISE2 1 /* 1: simulate detector noise at site 2 */
/% 0: detector noise from real data at site 2 */
#define N 65536 /* number of data points */
#define DELTA_T (5.0e—5) /x sampling period (in sec) */
#define OMEGA-O (1.0e—3) /* omega 0 */
#define F_LOW (5.0) /* minimum frequency (in Hz) */
#define F_HIGH (5.0e3) /* maximum frequency (in Hz) x/

#define REAL_TIME_NOISE1 O  /x 1: use real-time noise at site 1 */
/* 0: use noise information from data file */

#define REAL_TIME_NOISE2 0 /* 1: use real-time noise at site 2 */
/* 0: use noise information from data file x/

#define NUM_RUNS 1600 /* number of runs (for simulation) */
#define NUM_BINS 200 /* number of bins (for statistics) */
main()
{

int i,pass_test=0,previous_test,runs_completed=0, seed= —17;

float delta_f;
double signal,variance;

float sitel_parameters[9],site2_parameters[9];
char sitel name[100] ,noisel £ile[100] ,whitenl file[100];
char site2_name[100],noise2 file[100],whiten2_file[100];

double *generation_powerl,xgeneration_power2;
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double *analysis_powerl,*analysis_power2;
double *whitenl,*whiten2;

double *gammal?2;

float =*outl,xout2;

float xstats;

a

/* ALLOCATE MEMORY */

generation_powerl=(double *)malloc((N/2)xsizeof (double));
generation_power2=(double x)malloc((N/2)xsizeof(double));
analysis_powerl=(double *)malloc((N/2)x*sizeof (double));
analysis_power2=(double *)malloc((N/2)=*sizeof (double));
whitenl=(double *)malloc(Nxsizeof (double));
whiten?2=(double *)malloc(Nxsizeof (double));
gammal2=(double *)malloc((N/2)*sizeof (double));
outl=(float *)malloc(Nxsizeof(float));

out2=(float x)malloc(Nxsizeof(float));

stats=(float *)malloc(NUM_RUNSxsizeof (float));

/* INITIALIZE OUTPUT ARRAYS TO ZERO =/
for (i=0;i<N;i++) outi[i]=out2[i]=0.0;

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION = /

detector.site(DETECTORS_FILE,SITE1_CHOICE,sitel_parameters,sitel._name,
noisel_file,whitenl_file);

detector_site(DETECTORS_FILE,SITE2_CHOICE,site2_parameters,site2.name,
noise2_file,whiten2 file);

/* DISPLAY STOCHASTIC BACKGROUND SIMULATION PARAMETERS */ ;
printf("\n");

printf ("STOCHASTIC GRAVITATIONAL WAVE BACKGROUND SIMULATION\n");
printf("\n");

printf ("PARAMETERS:\n") ;

printf("Simulated stochastic background (0O=no,l=yes): %d\n",FAKE_SB);
printf("Simulated detector noise at site 1 (0=no,l=yes): %d\n",FAKE NOISE1);
printf ("Simulated detector noise at site 2 (0=no,l=yes): %d\n",FAKE_NOISE2);
printf("Real-time noise at site 1 (O=nmo,l=yes): %d\n", REAL_TIME_NOISE1);
printf("Real-time noise at site 2 (0=no,i=yes): %d\n", REAL_TIME_NOISE2);
printf ("Detector site 1 = ¥s\n",sitel name);

printf("Detector site 2 = ¥%s\n",site2_name);

printf("Sampling period = %e seconds\n",DELTA_T);

printf ("Number of data points = %d\n",N);

printf ("Omega_0 = %e\n",OMEGA_0);

printf("f_low = %e Hz\n",F_LOW);

printf("f_high = e Hz\n",F_HIGH);

printf ("Number of rums (for simulation) = %d\n",NUM_RUNS);

printf ("Number of bimns (for statistics) = %d\n",NUM_BINS);

printf("\n");

/* CONSTRUCT NOISE POWER (FOR SIGNAL GENERATION), WHITENING FILTER %/
/* AND THE OVERLAP REDUCTION FUNCTION =/

delta_f=(float) (1.0/(N«DELTA.T));
noise_power(noisel_file,N/2,delta_f,generation_poweri); '
noise_power(noise2_file,N/2,delta_f,generation power2);
vhiten(whitenl_file,N/2,delta_f,whitenl);
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vhiten(whiten2 file,N/2,delta f,whiten2);
overlap(sitel_parameters,site2 parameters,N/2,delta f,gammal2);

i /* CONSTRUCT NOISE_POWER (FOR SIGNAL ANALYSIS) IF REAL-TIME NOISE #/
/* IS NOT DESIRED =/

if (REAL_TIME_NOISE1!=1) {

; for (i=0;i<N/2;i++) analysis_powerl[il=generation_powerl [il;

}

£ © 77 if (REAL_TIME_NOISE2!=1) {
for (i=0;i<N/2;i++) analysis_power2[i]=generation power2[i];

}

/* PERFORM THE SIMULATION x/
for (i=1;i<=NUM_RUNS;i++) {

/* SIMULATE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE, IF DESIRED */
if (FAKE_SB==1 || FAKE_NOISEl==1 || FAKE_NOISE2==1) {
3 monte._carlo(FAKE_SB,FAKE_NOISE1,FAKE_NOISE2,N,DELTA._T,OMEGA-O,
i F_LOW,F_HIGH,gammal2,
’ generation_powerl,generation_power2,
whiten1,whiten2,outl,out2,&seed);

}

/* TEST DATA TO SEE IF GAUSSIAN =/
previous_test=pass_test;
pass_test=test_datal2(N,outl,out2);

if (pass_test==1) {

/* ANALYZE DATA */ ;
analyze(previous_test,outl,out2,N,DELTA_T,OMEGA_O,F_LOW,F_HIGH,

gammal?,whitenl,whiten2,
: REAL_TIME_NOISE1,REAL_TIME_NOISE2,
analysis_powerl,analysis_power2,&signal,&variance);

/* DISPLAY PRELIMINARY STATISTICS */
prelim_stats(OMEGA_O,N+DELTA_T,signal, variance);

/% UPDATE RUNS COMPLETED AND STATS ARRAY FOR FINAL STATISTICS %/
runs_completed++;
stats[runs_completed—1]=signal;

}

} /% end for (i=1;i<+NUM_RUNS;i++) =/

/* FINAL STATISTICS =/

printf("\n");
statistics(stats,runs_completed, NUM_BINS) ;

return;
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7.26 Some output from the simulation program

Below is a sample of the output that is produced during the execution of the stochastic back-
ground simulation program described in Sec. 7.25. Also shown, in Fig. 53, is a plot of the his-
togram and best-fit Gaussian probability distribution that were stored in data files by the function
statistics(). For this particular simulation, the total number of runs was equal to 1271 and the
number of bins for the histogram was equal to 200.

total number of runs completed=815

total observation time =2.670592e+03 seconds
signal value=2.659629e—03

experimental mean=3.360988e—03

experimental stddev=1.214569e—02
experimental SNR=7.899961e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.405551e+00

relative error in SNR=6 percent
experimental omega_0=1.025685e-03
theoretical omega_0=1.000000e—03

theoretical omega_0 for detection with 95 percent confidence=1.962989e—04

total number of runs completed=816

total observation time =2.673869e+03 seconds
signal value=-—-3.592409e—03

experimental mean=3.352476e-03

experimental stddev=1.214068e—02
experimental SNR=7.888017e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.410706e+00

relative error in SNR=6 percent
experimental omega_0=1.023095e—03
theoretical omega_0=1.000000e—03

theoretical omega_0 for detection with 95 percent confidence=1.961785e—04

total number of rums completed=817

total observation time =2.677146e+03 seconds
signal value=-—7.967954e—-03

experimental mean=3.338620e—03

experimental stddev=1.213970e—02
experimental SNR=7.860860e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.415858e+00

relative error in SNR=6 percent
experimental omega_0=1.018866e—03
theoretical omega_0=1.000000e—03

theoretical omega.0 for detection with 95 percent confidence=1.960585e—04

Data segment 1 failed Gaussian test!
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total number of rums completed=818

total observation time =2.680422e+03 seconds
signal value=1.447747e--02

experimental mean=3.352238e—03

experimental stddev=1.213852e—02
experimental SNR=7.898519e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.421007e+00

relative error in SNR=6 percent
experimental omega_0=1.023022e~-03
theoretical omega.0=1.000000e—03
theoretical omega.0 for detection with 95 percent confidence=1.859386e—-04

total number of runs completed=819

total observation time =2.683699e+03 seconds
signal value=3.647211e-03

experimental mean=3.352598e-03

experimental stddev=1.213111e-02
experimental SNR=7.909022e+00

theoretical mean=3.276800e-03

theoretical stddev=1.112916e-02

theoretical SNR=8.426153e+00

relative error in SNR=6 percent
experimental omega_0=1.023132e—03
theoretical omega_0=1.000000e—03
theoretical omega O for detection with 95 percent confidence=1.95818%e—04

total number of runs completed=820

total observation time =2.686976e+03 seconds
signal value=—5.958459e~03

experimental mean=3.341243e—03

experimental stddev=1.212807e-02
experimental SNR=7.889026e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.431295e+00

relative error in SNR=6 percent
experimental omega_0=1.019666e—03
theoretical omega_0=1.000000e—03
theoretical omega_O for detection with 95 percent confidence=1.956995e-04

total number of runs completed=821
total observation time =2.690253e+03 seconds
signal value=1.057661e—02
experimental mean=3.350056e—03
experimental stddev=1.212331e—-02
experimental SNR=7.917764e+00
theoretical mean=3.276800e—03
theoretical stddev=1.112916e—02
theoretical SNR=8.436435e+00
relative exror in SNR=6 percent
experimental omega_0=1.022356e—03
theoretical omega_0=1.000000e—03
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theoretical omega O for detection with 95 percent confidence=1.955803e—04
Data segment 2 failed Gaussian test!

total number of runs completed=822

total observation time =2.693530e+03 seconds
signal value=6.683305e—03

experimental mean=3.354111e-03

experimental stddev=1.211649e¢—02
experimental SNR=7.936639e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.441571e+00

relative error in SNR=5 percent

experimental omega-0=1.023593e-03
theoretical omega_0=1.000000e—03

theoretical omega O for detection with 95 percent confidence=1.954613e—04

Histogram and Gaussian Probability Distribution

(for the initial LIGO detectors simulation)

-0.06 -0.04 -0.02 0.00 0.06

Figure 53: Histogram of the measured cross-correlation signal vaues, and the corresponding best-fit
Gaussian probability distribution for the stochastic background simulation.
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8 GRASP Routines: Supernovae and other transient sources
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9 GRASP Routines: Periodic and quasi-periodic sources

0
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10 GRASP Routines: General purpose utilities

This section includes general purpose utility functions for a variety of purposes. For example, these
include functions to calculate time-averaged power spectra, and functions to graph data, listen to

data, etc.

o
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10.1 Function: grasp_open()

FILE* grasp-open(const char *enviromment._variable,char *shortpath)

This routine provides a simple mechanism for obtaining the pointer to a data or parameter file.
It is called with two character strings. One of these is the name of an environment variable, for
example GRASP DATAPATH or GRASP_PARAMETERS. The second argument is the “tail end” of a path
name. The routine then constructs a path name whose leading component is determined by the
environment variable and whose tail end is determined by the short path name. grasp_open()
opens the file (printing useful error messages if this is problematic) and returns a pointer to the
file.

The arguments are:

environment variable: Input. Pointer to a character string containing the name of the envi-
ronment variable.

shortpath: Input. Pointer to a character string containing the remainder of the path to the file.

As a simple example, if the environment variable GRASP_PARAMETERS is set to
/usr/local/data/14nov94.2 and one calls
grasp-open ("GRASP_PARAMETERS", "channel.0"), then the routine opens the file
/usr/local/data/14nov94.2/channel. 0 and returns a pointer to it.
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10.2 Function: avg.spec()

void avg.spec(float *data,float *average,int npoint,int *reset ,float srate,float decaytime,il
e windowtype)
This routine calculates the power spectrum of the (time-domain) input stream datal 3, aver-
aged over time with a user-set exponential decay, and several possible choices of windowing.
The arguments are:

data: Input. The time domain input samples are contained in data[0..N-1], with the data
sample at time t = nAt contained in data[n].

b average: Output. The one sided power spectrum is returned in average [0,..N-1]. The value
of average [m] is the average power spectrum at frequency

m X srate
f= T (10.2.1)
| This is twice the number of distinct frequency values which appear in the FFT of N samples;
this is because of the overlapping technique described below. We do not output the value
of the average at the Nyquist frequency, which would be the (non-existent) array element
average [N]. The units of averagel ] are data[]’/Hz. Note: the elements of averagel[ ]
i must not be changed in between successive calls to avg.spec().

- npoint: Input. The number of points npoint = N input. This must be an integer power of two.

reset: Input. If set to zero, then any past contribution to the average power spectrum is
initialized to zero, and a new average is begun with the current input data.

R M-em\vv«;\s

srate: Input. The sample rate 1/At of the input data, in Hz.

decaytime: Input. The characteristic (positive) decay time 7 in seconds, to use for the moving
(exponentially-decaying) average described below. If no averaging over time is wanted, simply
set decaytime to be small compared to NAt.

windowtype: Input. Sets the type of window used in power spectrum estimation. Rectangular
'\ windowing (i.e., no windowing) is windowtype=0, Hann windowing is windowtype=1, Welch
windowing is windowtype=2 and Bartlett windowing is windowtype=3. See [1] for a discussion
of windowing and the definitions of these window types.

The methods used in this routine are quite similar to those used in the overlap=1 version of
the Numerical Recipes {1] routine spctrm(), and the reader interested in the details of this routine
should first read the corresponding section of [1]. A continuous sample of the input data of twice
the length of the array datal ] is maintained by avg._spec(). Thus, each element of the array
datal ] utilized twice; once with the first point data[0] right in the middle of the time-domain
window function, and once more with that same point right at the beginning of the window function.
Note that to reproduce (exactly) the procedure described in Numerical Recipes [1] one must have
npoint=M where M is the variable used in the procedure spctrm(), and the decay time must be
very large (so that the two successive spectra are equally weighted). For example, if you are doing
analysis with 2048 samples, using that as the number of samples which you FFT and correlate,
then you should make two calls to avg-spec(). in each of which npoint=1024; this will give you
one spectral bin per FFT bin.
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One frequently wants to do a moving-time average of power spectra, for example to see how
the noise spectral properties of an interferometer are changing with time. This is accomplished in
avg_spec() by averaging the spectrum with an exponentially-decaying average. Let A;(f) denote
the average power spectrum as a function of frequency f, at time ¢. Then the exponentially-decaying
average (A(f)), at time ¢ is defined by

[l dt! Ap(fem 00T
- ffoo dt' e—t=t)/T

(A()) (10.2.2)

where 7 is the characteristic decay time over which an impulse in the power spectrum would decay.
In our case, we wish to average the power spectra obtained in the nth pass through the averaging
routine. The discrete analog of the previous equation (10.2.2) is

N
Z An(f)e—a(N—n)

(Afy =25 : (10.23)
Z e—-a(N—n)
n=0
Here, )
o= npoint (10.2.4)

srate X decaytime

is determined by the averaging time desired. The average defined by (10.2.3) can be easily deter-
mined by a recursion relation. We denote the the normalization factor by

N
Ny =Y eoV=n), (10.2.5)
n=0

It obeys the (stable) recursion relation Ny = 1 + e *Ay_; together with the initial condition
N_1 =0. The exponentially-decaying average then satisfies the (stable) recursion relation

_ _QNN 1

A
(AN + j\vf(f) for N=0,1,2,-- (10.2.6)
(no initial condition is needed). The routine avg spec() computes the exponentially decaying

average by implementing these recursion relations for (A(f))y and NMy.
The units of the output array average[ ] are the square of the units of the input array datal

] per Hz, i.e.

(AN =

units (average[]) = (units (data[]))? /Hz. (10.2.7)

The example program calibrate described earlier makes use of the routine avg_spec().
Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for calibrate().
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10.3 Function: binshort()

void binshort(short *input,int ninput,double *bins,int offset)
This function performs the “binning” which is needed to study the statistics of an array of short
integers, such as the output of a 12 or 16 bit analog-to-digitial converter. Its output is a histogram
showing the number of times that a particular value occurred in an input array. Note that this
routine increments the output histogram, so that you can use it for accumulating statistics of a
particular variable.

The arguments are:

input: Input. This routine makes a histogram of the values input [0..ninput-1].
ninput: Input. The number of elements in the previous array.

bins: OQOutput. Upon return from the function, this array contains a histogram showing the
probability distribution of the values input [0. .ninput-1]. The array element bins[offset]
is incremented by the number of elements z of input[] that had value z = 0. The array
element bins[offset+i] is incremented by the number of elements z of input[] that had
value z = i. If the output of your 16 bit ADC ranges from -32,768 to +32,767 and nbins
has value 21 = 65,536 then you would want offset = 32,768. For a 12-bit ADC you
would probably want nbins = 22 = 4096, and depending upon the sign conventions either
offset = 2047 or offset = 2048.

offset: Input. The offset defined above.

Note that in the interests of speed and efficiency this routine does not check that your values
lie within range. So if you try to bin a value that lies outside of the range —offset, —offset +
1,---,0ffset — 1 you may end up over-writing another array! You’ll then spend unhappy hours
trying to locate the source of bizzare unpredictable behavior in your code, when you could be doing
better things, like seeing if your ADC has dynamic range problem (reaches the end-point values too
often) or has a mean value of zero (even with AC-coupled inputs the ADC may have substantial
DC offset).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.4 Function: is_gaussian()

int is_gaussian(short *array,int n,int min,int max,int print)
This is a quick and robust test to see if a collection of values has a probability distribution that
is consistent with a Gaussian normal distribution (“normal IFO operation”), or if the collection
of values contains “outlier” points, indicating that the set of values contains “pulses”, “blips”
and other “obvious” exceptional events that “stick out above the noise” (caused by bad cabling,
alignment problems, or other short-lived transient events).

The arguments are:

array: Input. The values whose probability distribution is examined are array[0..n-1].
n: Input. The length of the previous array.

min: Input. The minimum value that the input values might assume. For example, if array[]
contains the output of a 12-bit analog-to-digital converter, one might set min=-2048. Of
course the minimum value in the input array might be considerably larger than this (i.e.,
closer to zero!) as it should be if the ADC is being operated well within its dynamic range
limits. If you’re not sure of the smallest value produced in array(], set min smaller (i.e.,
more negative) than needed; the only cost is storage, not computing time. -

max: Input. The maximum value that the input values might assume. For example, if array[]
contains the output of a 12-bit analog-to-digital converter, one might set max=2047. The '
previous comments apply here as well: set max larger than needed, if you are not sure about s
the largest value contained in array[].

print: Input. If this is non-zero, then the routine will print some statistical information about
the distribution of the points.

The value returned by is_gaussian() is 1 if the distribution of points is consistent with a
Gaussian normal distribution with no outliers, and 0 if the distribution contains outliers.
The way this is determined is as follows (we use z; to denote the array element array([i]):

e First, the mean value Z of the distribution is determined using the standard estimator:

1 n—1
z=- Z z;. (104.1)

i=0

e Next, the points are binned into a histogram N[v]. Here N[v] is the number of points in the
array that have value v. The sum over the entire histogram is the total number of points:

S Nli]=n.

e Then the standard deviation s is estimated in the following robust way. It is the smallest
integer s for which

i N[i+Z] > nerf(1/V2) = n\/—lzzw /_ 11 e~/ 2dz. (10.4.2)

i=-5

This value of s is a robust estimator of the standard deviation; the range of £s about the
mean includes 68% of the samples. (Note that since the values of z; are integers, we replace
T by the closest integer to it, in the previous equation).
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o Next, the number of values in the range from one standard deviation to three standard devi-
ations is found, and the number of values in the range from three to five standard deviations
is found. This is compared to the expected number:

n(erfc(3/v/2) — erfe(5/v2)). (10.4.3)

e If there are points more than five standard deviations away from the mean, or significantly
more points in the 3 to 5-standard-deviation range than would be expected for a Gaussian
normal distribution, then is_gaussian() returns 0. If the numbers of points in each range
is consistent with a Gaussian normal distribution, then is_gaussian() returns 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function should be generalized in the obvious way, to look at one sigma wide bins
in a more systematic way. It can eventually be replaced by a more rigorously characterized
test to see if the distribution of sample values is consistent with the normal IFO operation.




10.5 Function: clear()

void clear(float *array,int n,int spacing)
This routine clears (sets to zero) entries in an array.
The arguments are:

array: Ouput. This routine clears elements array[0], array [spacing], - - -, array [ (n-1)*spacing].
n: Input. The number of array elements that are set to zero.

spacing: Input. The spacing in the array between succesive elements that are set to zero.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.6 Function: product()

void product(float *c,float *a, float *b,int ncomplex) This routine takes as input a pair
of arrays a and b containing complex numbers. It multiplies a with b, placing the result in ¢, so
that ¢ = a x b. The arguments are:

a: Input. An array of N complex numbers a[0..2N-1] with a[2j] and a[2j+1] respectively
containing the real and imaginary parts.

b: Input. An array of N complex numbers b[0..2N-1] with b[2j] and b[2j+1] respectively
containing the real and imaginary parts.

c: Output. The array of N complex numbers c[0..2N-1] with c[2j] and c[2j+1] respectively
containing the real and imaginary parts of a x b.

ncomplex: Input. The number N of complex numbers in the arrays.

Note that the two input arrays al ] and b[ ] can be the same array; or the output array c[ ]
can be the same as either or both of the inputs. For example, the following are all valid:
product(c,a,a,n), which performs the operation a?
product(a,a,b,n), which performs the operation a x b — a.
product(a,b,a,n), which performs the operation a x b — a.
product(a,a,a,n), which performs the operation a?
Note also that this routine does not allocate any memory itself - your input and output arrays must
be allocated before calling product ().

— C.

— Q.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

266




10.9 Function: graph()

void graph(float *array,int n,int spacing)
This is a useful function for debugging. It pops up a graph on the computer screen (using the

graphing program xmgr) showing a graph of some array which you happen to want to look at.
The arguments are:

array: Input. The array that you want a graph of.
n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed
are array[0], array[spacing], array[2*spacing],...,array[(n-1)*spacing].

This function is a handy way to get a quick look at the contents of some array. It writes the
output to a temporary file and then starts up xmgr, reading the input from the file. The z values
are evenly spaced integers from 0 to n-1. The y values are the (subset of) points in array[ ]. If
your array contains real data, you might want to use spacing=1. If your array contains complex
data (with real and imaginary parts interleaved) you will use spacing=2, and make separate calls
to see the real and imaginary parts. For example if complex[0..2047] contains 1024 complex
numbers, then:
graph (complex,1024,2) (view 1024 real values)
graph (complex+1,1024,2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages
from xmgr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

269

3




10.10 Function: graph double()

void graph double(double *array,int n,int spacing)

This is a useful function for debugging, and exactly like the function graph(), except that it’s
intended for double precision floating point numbers. It pops up a graph on the computer screen
(using the graphing program xmgr) showing a graph of some array which you happen to want to
look at.

The arguments are:

array: Input. The array that you want a graph of.
n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed
are array [0], array [spacing]l, array [2*spacing],...,array [ (n-1)*spacing].

This function is a handy way to get a quick look at the contents of some array. It writes the
output to a temporary file and then starts up xmgr, reading the input from the file. The z values
are evenly spaced integers from 0 to n-1. The y values are the (subset of) points in array[ J. If
your array contains real data, you might want to use spacing=1. If your array contains complex
data (with real and imaginary parts interleaved) you will use spacing=2, and make separate calls
to see the real and imaginary parts. For example if complex[0..2047] contains 1024 complex
numbers, then:
graph(complex,1024,2) (view 1024 real values)
graph (complex+1,1024,2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages
from xmgr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.11 Function: graph_short()

void graph _short(short *array,int n)

This is a useful function for debugging, and exactly like the function graph(), except that it’s
intended for short integer values. It pops up a graph on the computer screen (using the graphing
program xmgr) showing a graph of some array which you happen to want to look at.

The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph. The elements graphed are
array[0..n-1].

This function is a handy way to get a quick look at the contents of some array. It writes the
output to a temporary file and then starts up xmgr, reading the input from the file. The z values
are evenly spaced integers from 0 to n-1. The y values are the points in array[ J.

Note that in order not to produce too much garbage on the screen, any output or error messages
from xmgr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.12 Function: sgraph()

sgraph(short *array,int n,char *name,int filenumber)
This routine writes the elements of a short array into a file so that they may be viewed later
with a graphing program like xmgr.
The arguments are:
array: Input. The array that you want to graph.

n: Input. The number of array elements that you want to graph. The elements used are
array[0..n-1].

name: Input. Used to construct the output file name.
filenumber: Input. The value of y used to construct the output file name.

This function produces an output file with two columns, containing:

0 array [0]
1 array[1]
n-1 array [n-1]

The name of this file is: name.y where y is the integer specified by filenumber. Note that if
y < 1000 then y is “expanded” or “padded” to three digits. For example, calling

sgraph(array, 1024, "curious",9)

will produce the file

curious.009

containing 1024 lines.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.13 Function: audio()

void audio(short *array,int n)
Makes a Sun workstation play music!
The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used are
array[0..n-1].

It doesn’t take much experience before you find out that an interferometer can do funny things
that you can’t see in the data stream, if you just graph the numbers. However in many cases
you can hear the peculiar events. This function works only on Sun workstations with a CD-sound
quality chipset, that can handle 16 bit linear PCM audio. It creates a temporary file, then pipes it
though the Sun utility audioplay. The sample rate is assumed to be 9600 Hz.

Note that audio () adjusts the volume so that the loudest event (largest absolute value) in the
data stream has a (previously fixed, by us!) maximum amplitude. So the “background level” of
the sound will depend upon the amplitude of the most obnoxious pings, blips, bumps, scrapes or
howlers in the data set.

On a machine not equiped with the correct sound chip (for example a SparcStation 2) you can
listen to the file, if you first convert it to a format that the chipset can handle. This can be done by
taking the output of audio(), which is a file called temp.au and converting it to “