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Introduction

2.L The Purpose of GRASP

The analysis and modeling of data from gravitational wave detectors requires specialized numerical

techniques. GRASP was developed in coliaboration with the Laser Interferometric Gravitational
Observatory (LIGO) project in the United States, and contains a collection of sofbware tools for
this purpose.

In order that this package be of the most use to the physics community, this package (including

all source code) is being released in the public domain. It may be freely used for any purpose with
only one condition: GRASP and its author must be acknowledged or referenced in any work or
publications to which GRASP made a contribution. This citation must specify the uers'i,on number
(for example, 1.0.0) of GRASP. In addition, if the code has been modified in any way this must also
be stated. While the GRASP package is available in the public domain, we do intend to regulate
its distribution. You may request a copy of GRASP for your personal use, or for use at your own
institution, but you must not distribute it outside that group. In addition? one person at each
institution must be designated as the "responsible party" in charge of the GRASP package.

GRASP is intended for a broad audience, including those users whose main interest is in run-
ning simulations and analyzing data, and those users whose main interest is in testing new data

analysis techniques or incorporating searches for new types of gravitational wave sources. The
GRASP package includes a "cookbook" of documented and tested low-level routines which may
be incorporated in user code, and simple example programs illustrating the use of these routines.

GRASP also includes a number of high level user applications built from these routines.
We are always interested in extending the capabilities of GRASP. Suggestions for changes or

additions, including reports of bugs or corrections, improvements, or extensions to the source code,
should be communicated directlv to the author.

2.2 Quick Start

If you hate to read manuals, and you just want to try something, here's a suggestion. This assumes
that the GRASP package has been installed by your local system administrator in a directory
accessible to you, such as /usr/1oca1/GRASP and that some 4G-meter data (old-format) has also

been installed, for example in /usr/1oca1,/GRASP /data.
If you want to try running a GRASP program, type

set env GRASP-DATAPATH /usr/ Io cal /GRA SP / data/ 19nov94 . 3
to set up a path to the data, then go to the GRASP directory:
cd / usr / ]-ocal /GRASP/src /examp1"s/ s)rarnp Ie s -4Ometer
and try running one of the executables:
.  / lock1ist
will print out a list of the locked data segments from run 3 on 19 November 1-994. A more interesting
prograrn to run (in the same directory) is
./aaimate I xngr -pipe

which will produce an animated display of the IFO output. Note that in order for this to work, you

will need to have the ruogr graphing program in your path. (Please see the comment about xngr

in Section 3.8).
If you only have data that has been distributed in the FRAME format, $pe

set env GRASPJRAMEPATH / usr / Io callcRAsP/data/ 1 9nov94 . 3f rame

to set up a path to the data, then go to the GRASP directory:
cd /usr/ 1 o c al /GRASP/ sr c./exampl esl exanpL e s J rarne
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and try running one of the executables:
.  / lockl istF
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./aainateF I xngr -pipe

which wili produce an animated display of the IFO output. Note that in order for this to work, you

will need to have the xngr graphing program in your path. (Please see the comment about :cngr
in Section 3.8).

If you want to try writing some GRASP code, a simple way to start is to copy one of the
example programs, and the Makefile, into your personal directory, and edit that:
nkdir -/GRASP

cp /usr /Lo calIGRASP/src/exanp1"s/gxarnFles-40roeter/gwoutput . g -/GRASP

cp / usr / Lo ca1 /GRASP,/sr c/exa.F 1 " "7sxamples -40net erlMakef i le -/GRASP

cd -/GRASP

Now make editing changes to the file gwoutput. c, and when you are done, edit the Makef ile that
you have copied into your home directory. Find the line that reads:
al l :  gwoutput . . .
and delete everything to the right of the colon except gvouput from that line (but leave a space
afber_the colon). Then type:
na-ke gwouput
to recompile this program. To run it, simply type:
gfioutput.
In general, if you want to modify GRASP progra.ms, this is the simplest way to start.

2.3 A few words about data formats

The GRASP package was originally written for analysis of data in the "old" format, which was used
in the Caltech 4Gmeter IFO laboratory prior to L996. Starting in L997, the LIGO project, and
a number of other gravity-wave detector groups, have adopted the VIRGO FRAME data format.
Almost every example in the GRASP package has equivalent proglams to read and analyze data in
either format. For example aninate and aaimateF are two versions of the same program. The first
reads data in the old format, the second reads data in the FRAME format. We have also included
with GRASP a transiation program that translates data from the old format to the new format
(see traaslate in Section 10.15).

After careful thought, the LIGO management has decided to only distribute the November 1994

data in the FRAME format, except to a small number of groups (belonging to the Data Tmnslation

Group) who are responsible for ensuring that the translated data set contains the same information
as the original! The initial distributions of GRASP will include both old-format and new-format
code. However after a reasonable period of time, the old-format data and code will be removed
from the package. So please be aware that the old-format material will be reaching the end of its
useful lifetime fairly soon; we do not recommend investing much effort in these.

If .you want to develop or work on data analysis algorithms, you will want to have access to

this data archive. Because many people contributed to taking this data, and because the LIGO
project wants to maintain control of its use and distribution, this data set is NOT i,n the publi.c

domai,n. However, you may request a copy for your use, or for use by your research group. Write to:

Director of the LIGO Laboratory, Mail Stop 51-33, California Institute of Technology, Pasadena,
CA 91125. The data set is available in tar format on two Exabl'te 8500c format tapes.

In order to use the data in the FRAME format. vou will need to have access to the FRAME



libraries. These are available from the \{IRGO project; they may be downloaded from the site
http: //lappnp.in2p3.fr/virgo/Framel. Contact Benoit Mours mours@lapp.in2p3.fr for fur-
ther information.

2.4 GRASP Hardware & Software Requirements

GRASP was developed under the Unix (tm) operating system, on a Sun wor}station network. The
package is written in POSX/ANSI C, so that GRASP can be compiied and used on any machine
with an ANSI C compiler. All operating system calls are POSlX-compliant, which is intended to
keep GRASP as portable to different platforms as possible. The main routines could also be linked
to user code written in other languages such as Fortran or Pascal; the details of this linking, and the
conventions by which Fortran and C (or Pascal and C) routines communicate are implementation
dependent, and not discussed here.

Several of the high-level applications in GRASP can be run on paraliel computer systems. These
can be either dedicated parallel computers (such as the Intel Paragon or IBM SP2 machines) or
a network of scientific workstations. The parallel programming in GRASP is implemented with
version 1.1 of the Message Passing Interface (MPI) library specification [2]. All major computer
system vendors currently support this standard, so GRASP can be easily compiled and used on
r,irtually any parallel machine. In addition, there is a public-domain implementation of MPI called
"mpich" 

[3] which wiil run MPl-based programs on networks of scientific workstations. This makes
it easy to do "super-computing at night" by running GRASP on a network of workstations. Further
information on MPI is available from the web site http://www.mcs.anl.gov /*pi/ . The mpich
implementation is available from http://www.mcs.anl.gov/mpilmpichl. By the way, if you don't
have access to parallel machines (or have no interest in parallel computing) don't worry! The only
parallel code in GRASP is found in "toplevel" applications; all of the functions in the GRASP
library, and most of the examples, can be used without any modifications on a single processor,
stand-alone computer.

GRASP makes use of a number of standard numerical techniques. In general, we use version 2.6
of the routines from "Numerical Recipes i,n C: the art of scientifi,c com.putin!' [1]. These routines
are widely used in the scientific community. The full source code, examples, and complete documen-
tation are provided in the book, and are also availabie (for about $50) in computer readable form.
Ordering information and further details are available from http:llcfata2.harvard.edu/numerical-
recipes/. These routines are extremely useful and beautifully-documented; if you don't already
have them available for your use, you should!

In general, output from GRASP is in the form of ASCII text files. We assume that the user has
graphing packages available to visualize and interpret this output. Our personal favorite is :rngr,
available in the public domain from the site http : / /pLasaa-gate. weizmenn . ac . il,/Xngr/ which
also Iists mirror sites in Europe and USA. (Please see the comment about xngr in Section 3.8). In
some cases we do output "complete graphs" for xngr. We do also output some data in the form of
PostScript (tm) files. Previewers for postscript files are widely available in the public domain (we
iike GhostView).

2.5 GRASP Installation

As we have just explained, GRASP requires access to Nurnerical Reci,pes fn Clibraries and to MPI
and MPE libraries. These packages must be installed, and then within GRASP a path to these
iibraries must be defined. This can be done by editing a single file, and then running a shell script.
This section expiains each of these steps in detail.
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All of the site-specific information is contained in a single file SiteSpecif ic in the toplevel
directory of GRASP. This file contains a number of variables whose purpose is explained in this
section. These variables must be correctly set before GRASP can be used; the definitions contained
in SiteSpecif ic (as distributed) are probably zol appropriate for your system, and will therefore
require modification.

2.5.L GRASP File Structure

The code for GRASP can be installed in a publicly-availabie directory, for exa.mple /usr/1oca1/CnASp.
(It can also be installed "privately'' in a single user's home directory, if desired.) The name of this
toplevel directory must be set in the file SiteSpecif ic which is contained in the toplevel GRASP
directory. To do this, edit the file SiteSpecific and set the variable GRASPJIOME to the appropriate
value, for example GRASPJI0ME=/usr/1ocaI/GRASP. Please note that the installation scripts are
not designed to "build" in one location and "install" in a separate location. You should go through
the installation procedure in the same directory where you eventually want the GRASP package

to reside.
Within this top level directory resides the entire GRASP package. The directories within this

top level are:

data/- Contains (both real and simulated) interferometer data, or symbolic links to this data. See
ihe comments in Section 3 to find out how to obtain this data.

parameters,/ Contains parameters such as site location information, and estimated power spec-
tra/whitening functions of future detectors.

docl Documentation (in TeX, PostScript, DVI, and PDF formats) including this users guide.

nan/ This may be used in the future for UNIX on-line manua,I pages.

testing/ This will eventually contain a suite of programs that test the GRASP installation.

include/ Header files used to define structures and other comrnon tlpes in the code. This also
include the ANSI C prototypes for all the GRASP functions.

src/ Source code for analyzing various aspects of the data stream, distributed among the following

directories:

 O-meter/ Reading data tapes produced on the Caltech 40 meter prototype prior to 1997.

inspiral/ Binary inspiral analysis (including optimal filtering and vetoing).

ringdown/ Biack hoie horizon ringdown (including optimal filtering). This can be used to

filter for a??y exponentially-decaying sinusoid

stochastic/ Stochastic background detection (including optimal filtering and simulated
signal production)

transient/ Supernovae and other transient sources.

periodic/ Searches for pulsars and other periodic and quasi-periodic sources.

utility/ General purpose utility routines.

examples/ The source code for all of the examples given in this manual (organized by

section).

r
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optinization/ Additional library routines for optimizing GRASP operation of specific plat-

forms (i.e., supercomputers).

1ib/ Object libraries.

bin/ Executable applications and programs.

2.5.2 Accessing Numeri,cal Recipes in C libraries

GRASP makes use of marry of the functions and subroutines from Numerical Reci.pes in C lLl- These
functions and subroutines are available in Fortran, Pascal, Basic, Kernighan and Ritchie (K&R) C,
and ANSI-C versions; you will need the ANSI-C routines. The source code for these functions (both
*.c and *.U files) must be installed in a directory (for example, /usr/loca1lrecipes,/src) and
the compiled object modules (x . o files) must be archived into a single library file (* . a file). The
instructions for this are included in the distribution of the source code for Numerical Recipea In
the end, a file called librecipes-c. a must be put into a directory where it is available to the linker

for compilation. A good place to put this library is in /usr/local/recipes/1ib/librecipes-c. a.
When you run the command that installs GRASP, the linker needs to be able to find these libraries.
The file SiteSpecif ic must then contain the line RECIPESJIB = /usr/ 1oca1,/recipes/1ib near

the top of the file.
It is frequently useful, for debugging purposes, to be able to link with both "debug" and "profile"

versions of the libraries. For this reason, we recommend that users actually create three separate
Ii,braries of. Numeri,cal Recipes functions:

/tsr/Local/recipes/l1b/Ilbrecipes-c.a: a library compiled for fast execution, with opti-
mization options (for exa,mple, -O3 or -xO4) turned on during compilation.

/usr/Iocal /recipes/ lib/librecipes-cg. a: a iibrary compiled for debugging, with the debug

option (typically, -g) turned on during compilation. Note that in order to use a debugger with

this library, and to be able to step '\nrithin" the Numerical Reci,pes functions, the debugger
must be able to iocate the source code for Numerical Reci,pes. Thus, aft,er Numerical Recipes
is compiled and installed, its *.c and x.h source files must be left in their original locations
and not deleted or moved.

/usr/Local/recipes /Iib/Llbrecipes-cp.a: a library compiled for profiling, with the profiling

option (typically, -pg or -xpg for "gprof' or -p for "prof') turned on during compilation.

One can then easily compile GRASP code with the appropriate library by setting LRECIPES in

SiteSpecif ic. For example to run code as rapidly as possible one would set LRECIPES = recipes-c.

However to compile code for debugging it would be preferable to set LRECIPES = recipes-cg.
(Note that rather than recompiling the entire GRASP package in this way, one can simplify modify

the value of LRECIPES within the desired Makef iles and then recompile only the code of interest.)
We have encountered one minor problem with the Numerical Reci,pes in C routines. Unfor-

tunately the authors of these routines choose to name one of their routines selectO. This

name conflicts with a POSIX name for one of the standard operating system calls. In linking

with certain libraries (for example the MPI/MPE libraries) this can generate conflicts where the

linker attaches the select O call to the entry point from the v/rong library. We suggest that
you fix this as follows. Before building the Numerical Reci.pes libraries, edit the source files

recipes/rofunc. c, recipes/select. c, and recipes,/select. c. orig changing each occurence

of select( to NRselect(. You will have to do this in (respectively) three places. one place and

ts
:
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one place in these files. Then edit the file include/nr.h making the same change of select(
to NRselect( in one place. This will elminate the selecto routine from the Numerical Reci,pes
Iibrary, replacing it with a routine called NRselect O, and eliminating any possible naming conflict
from the library.

2.5.3 Accessing MPI and MPE libraries

To enable use of the parallel processing code included with GRASP, one needs to link the code
with an MPI function call library. (If you do not intend to use any of the multiprocessing code,
we'll tell you what to do.) For performance monitoring purposes, we also make calls to the Message
Passing Environment (MPE) library, which is included with npich [3]. If these funCtion libraries are
not currently available on your system, you should obtain the pubiic domain implementation mpich
from the URL given above, and follow the instructions required to build ihe MPI/MPE libraries for
your system. After the instaJlation process is complete, the necessary libraries will be contained in a
library archive, for exa,mple /rsr/Iocal/npi/l1b/ libmpi. a and /usr/local/npe/Lib/1ibnpe. a
The path to these libraries is set in the file SiteSpecif ic by mearls of the variable MPI-LIBS. A
typical line in SiteSpecif ic might then read:
MPI JIBS=-L / ttsr / Lo callnpi/Iib -lnpi -lnpe.

You must also set BUfLD-MPI= true in SiteSpecific. Finally, in order to include appropriate
header files in any MPI programs, you will need to include a path to these header fiies in the file
SiteSpecif ic. You can do this by setting MPIJNCLUDES in the file SiteSpecific. A typical
installation might have
MPIJNCLUDES = -Ilusr / loca]- /npi/include.
NOTE: If you don't want to use any of. the MPI code, just set:
BUILDIIPI= false
in SiteSpecif ic. AII the other MPl-specific defines are then ignored.

2.5.4 Accessing FRAME libraries

The LIGO and \ltRGO detector projects have recently decided to standardize the format which
their data will be recorded in (see Section 2.3). The standard is called the FRAME format, and
is still under development. It appears quite possible that a number of other gravitational-wave
detector groups will also adopt this same format. The GRASP package contains, for every example
program, both FRAME format and old format versions. It also contains an translation program
which converts data from the "old 1994" format into the new FRAME format.

Unless you are in one of the small number of groups with access to the old-format data, you
will need to obtain the FRAME libraries. These are available from the VIRGO project; they
may be downloaded from the site http : / /l.apptrp. in2p3 .fr/virgo/Franel. Contact Benoit Mours
rnours@lapp. in2p3. fr for further information. In the SiteSpecif ic file, if you need the FRAME
libraries, set a pointer to the directory containing them. NOTE: If you don't need the FRAME
libraries, just set:
BUILDJRAME = false
in SiteSpecif ic. AII the other FRAMBspecific defines are then ignored.

2.5.5 Real-time 40-meter analysis

The analysis tools in the GRASP package can be used to ana)yzedata in real-time, as it is recorded
by the DAQ system. This facility is primarily for the use of experimenters working in the Caltech
40-meter lab. and will probably not be of use to anyone outside of that group.

12



In order to use the GRASP tools in real time, one needs to link to a set of EPICS (Experimental
Physics and Industrial Control System) libraries, that are not otherwise needed. These permit the
GRASP code to interrogate the EPICS system to find out the names and locations of the most-
recently written FRAMES of data.

2.5.6 Making the GRASP binaries and libraries

To make the GRASP libraries and executables described in this manual, please follow these direc-
tions. It should only take a few minutes to do this.

Within the main GRASP directory is a file called SiteSpecif ic. Make a copy of SiteSpecif ic

called SiteSpecif ic. save. This way, if you mess up the instaliation, you can start over eas-

ilv.

Now edit SiteSpecif ic so that GRASPJIOME has the correct path, for example

GRASP JIOME=,/usr/1o c allGRASP.
This must be the name of the directory on your system in which GRASP resides. If you are

not the superuser and are installing GRASP only for your own use, you can set this path to

point somewhere in your own home directory, and install GRASP there.

3. Find out where Numerical Recipes in C is installed on your system. Within SiteSpecif ic

set RECIPESJIB to point to the directory containing these libraries. Fbr example

REC I PES J IB= /usr,/ I o c aI /nuner i c al -r e c ipe s / I ib.

If. Numerical Recipes in C is not installed on your system, you will have to obtain a copy,

and install it, following the directions to create the Iibrary fiie librecipes-c. a. Note that

as described above, you might also want to create debugging libraries librecipes-cg.a and

profiling iibraries librecipes-cp . a.

Within SiteSpecif ic set LRECIPES to the narne of the Numerical Recipes in C bbrny you

wish to use, for example
LRECIPES=recipes-c.

If you intend to use the MPI code, set BUILD-MPf= true, otherwise set it to false. In this

latter case, any MPl-specific defines are ignored, and no code that makes use of MPI/MPE

function calls is compiled. (This is a shame - these are some of the nicest programs in the

GRASP package. We urge you to reconsider building the mpich package on your system!)

Within SiteSpecific set MPIJIBS to point to the directory containing the MPI/MPE li-

braries, and to specify the names of the link archives, for example

MPIjIB=-Llusr/1oca1/npi./1ib -1npi -1npe.

Note that if you use the version of npicc which is distributed with npich you may not need

to have any of the MPI libraries referenced here; the compiler may find them automatically.

Within SiteSpecific set MPI-INCLUDES to point to the directory which contains the MPI

and MPE header (*.h) files, for example
MPI-INCLUDES = -flusr/1oca1/mpi/inc1ude.

8. Within SiteSpecific set MPICC to the name of your local MPI C compiler, for example:

MPICC = /ysy/Loca1lbin/npicc.
You can include any compilation flags (tuy, -g) on this line also.
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9. If you intend to use the FRAME code, set BUILD-FRAME = true, otherwise set it to false.
In this latter case, any FRAMBspecific defines are ignored, and no code that makes use of
FRAME function calls is compiled.

10. Within SiteSpecif ic set FRAME-DIR to point to the directory which contains the LIGO/VIRGO
format FRAME sofbware, for example
FRAME-DIR= / usr / lo call f rarne.
This directory should contain lib/libFrane.a and include/Franel.h. If you don't need
the FRAME libraries, just leave this entry blank.

Within SiteSpecif ic, if you want to use GRASP for real-time analysis in the Caltech 4G
meter lab, set EPICS-INCLUDES to point to the directory containing the EPICS *.h include
files, and set EPfCSIIBS to point to the directory containig the EPICS libraries. Finaily,
you need to uncomment the BUILD3EALTIME define statement. If you do not intend to use
your GRASP installation for real-time analysis in the 40-meter lab, simply leave these three

definitions commented out with a hash sign (#).

At the bottom of SiteSpecif ic are severa,l define statements, which are currently commented
out. These are primarily intended for production code; by undefining these lines you replace
a cube root function and some trig functions in the code with faster (but less accurate) in-
line approximations. We suggest that you leave these commented out. (You might want to
consider uncommenting them if you are burning thousands of node hours on a large parallel

machine - but you do so at your own risk!)

There are also lines that are currently commented out, which allow you to overload functions
defined in the libraries and reference libraries of optimized functions. Once again, leave

these commented out unless you want to replace standard Numerical Recipes functions with

optimized versions. Currently, we support three sets of optimized libraries:

o The CLASSPACK optimized FFT's for the Intel Paragon.

o The Sun Performance Library's optimized FFT for the Sun SPARC architecture.

o The FFTW (Fastest Fourier Tbansform in the West), which will run on any computer.
This is a public domain optimized FFT package, available from the web site:
http: / /theory .lcs . nit . edu/-f f tw
If you don't have an optimized FFT routine for your computer, we highly recommend
this - it is a factor of three (or more) faster than Numerical Recipes.

Further details may be found in the srcloptinization subdirectory of GRASP. If you

want to use these optimized library routines, first go into the appropriate subdirectory of

srcloptinization and build the optimized library routine using the naltef iles's that you

find there, then uncomment the appropriate lines in SiteSpecif ic and follow the instructions
given here.

14. Now, in the top level GRASP directory, execute the shell script InstallGRASP, by tlping the

commands:
chmod +x fnstallGRASP
. /InstallGRASP
From here on, the remainder of the installation shouid proceed automatically. The InstallGRASP

script takes information contained in the SiteSpecif ic file, uses it to create Makef ile's in

each src subdirectorv. and runs nake in each of those directories.

t2.

13.
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The Malcef ile in each directory is constructed by concatenating the fiie SiteSpecif ic with a file
called Makefile.tail in each individual directory. If you want to try changing the compilation
procedure, you can modify the Makef ile in a given directory. However this will be created each
time that you run InstallGRASP; for changes to become permanent they should either be made in
SiteSpecif ic or in the Makef i le.  tai l 's.

Note that this installation procedure and code has been tested on the following types of ma-
chines: Sun 4 (Solaris), DEC AXP (OSF), IBM SP2 (AiX), HP 700 (HPUX), Intel (Lim:x), Intel
Paragon. If you run into problems with our installation scripts, please let us know so that we can
fix them.

If you want to experiment with GRASP or to write code of your own, a good way to start is
to copy the Malef ile and the example (*. c) programs from the src,/exarnples directory into a
directory of your own. You can then edit one of the example progra.ms, and tlpe 'hake" within
your directory to compile a modified version of the progtam.

If you wish to modify the code and libraries distributed with GRASP (in other words, modify
the functions described in this manual!) the best idea is to use cp -r to recursively copy the
entire GRASP directory structure (and all associated files) into a private directory which you ovrn.
You can then install your personal copy of GRASP, by following the directions above. This will
permit you to modify source code within any of the src subdirectories; typing nake within that
directory will automatically re-build the GRASP libra"ries that you are using. By the way, if you
are modifying these functions to fix bugs or repair problems, or if you have a "better way" of doing
something, please let us know so that we can consider incorporating those changes in the general
GRASP distribution.

2.6 Conventions used in this manual

The conventions used in this manual are not strict ones. However we do observe a few general
rules:

Words or lines that you might type on a computer (commands, filenames, names of C-language
functions, and so are) are generally indicated in teletype font.

When a function is described, the arguments which are i,nputs and those which are outputs (or
those which are both) are indicated. Thus, for example the function
add(int a, int b,intx c) which sets *c = a*b is described by:

a: Input. One of the two integers that are added together.

b: Input. The second of these integers.

c: Output. Set to the sum of a and b.

Note that technically this is incorrect, because of course in C even the "output arguments"
are really just inputs; they are pointers to an address in memory that the routine is supposed
to modify. And technically, the statement that "c is set to..." is not correct, since in fact it
is the integer pointed to by c (denoted xc) that is set. Hoqrever we find that this convention
makes it much easier to read the function descriptions!

3. Most of the time, the example programs using GRASP functions are given explicitly in the
manual, so you can see the GRASP functions "in use". Because these exarnples are illustrative,
they are generally "pared dolyn" as much as possible (for example, default values of adjustable
parameters are hard-wired in, rather than prompted for).

1 .
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4. Routines and example programs in GRASP generaliy begin with the line:
#include "grasp.h"

which includes the prototypes for all GRASP functions as well as the library header flles
stdio.h, stdIib.h, nath.h, values.h, and tirae.b. The GRASP include file "grasp.h"

can be found in the include subdirectory of GRASP.
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3 GRASP Routines: Reading/using Caltech 40-meter prototype

data

There is a good archive of data from the Caltech 4O-meter prototype interferometer. Aithough

the interferometer is only sensitive enough to detect events like binary inspiral within = 1,0kpc

(the distance to the galactic center) its output is nevertheless very useful in studying data analysis

algorithms on real-world interferometer noise. This data was taken during the period from 1993 to

1996; for our purposes here we will concentrate on data taken during a one-week long observation

run from November I+2L,1994. The original data is contained on 11 exabyte tapes with about 46

total hours of data; the instrument was in lock about 88% of, the time. The detaiis of this run, the

status of the instrument, and the properties of this data are well-described in theses by Gillespe

[18] and Lyons [19].
The GRASP package includes routines for reading this data. The data is not read directly from

the tapes themselves; the data instead must be read off the tapes and put onto disk (or into pipes)

using a program called extract. The GRASP routines can then be used to read the resulting files.

While the GRASP routines can be used without any further understanding of the data format, it

is very helpful to understand this in more detail. Note that these data formats and the associated

structures were defined years before GRASP was written; we did not choose this data format and

should not be held accountable for its shortcomings. We have included a preliminary translator

that translates the data from this old 1994 format into the new LIGO/VIRGO frame format. The

program tra:rslate may be found in the GRASP srclexamples/examFles-utility directory, and

is documented in the Section on GRASP general purpose utilities.

If you want to develop or work on data a.nalysis algorithms, you will want to have access to this

data archive. Because many people contributed to taking this data, and because the LIGO project

wants to maintain control of its use and distribution, thi,s d,ata set i's NOT in the public domain.

However, you may request a copy for your use, or for use by your research group. Write to: Director

of the LIGO Laboratory, Mail Stop 51.-33, California Institute of Technology, Pasadena, CA 91125.

The data set is available in tar format on two Exabyte 8500c format tapes. Each directory (for a

different run on a different day) occupies the following amount of space (in mbytes):

14nov94. L 647
I4nov94.2 913
18nov94.1 L04t
18nov94.2  L t21
19nov94.1 L554
19nov94.2 1074
L9nov94.3 1250
19nov94.4 L206
2Onov94.L LL46
20nov94.2 LL73
20nov94.3 1543

Each of these directories contains the g[:nns].* files and the swept-sine.ascii swept-sine cali-

bration files. In this manual, we assume that these directories (or iinks to them) have been placed

where you can access them. The GRASP programs that use this data determine its location by

mearls of the environment variable GRASP-DATAPATH. You can set this by typing (for example)

setenv GRASP-DATAPATH /usr / lo caL / data/ L9tov94 . 3

to access the data from run 3 on November 19th. System administrators: after installing these

directories in a convenient place on your machine, 'we recommend that you instali a set of links to
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them in the directory data within the GRASP home directory. This way your users ca,n find them
without asking you for the location!

WARNING: this data was written on a "big-endian" machine (the sun-4 workstation is an
example of such a machine). The floats are in IEEE 754 floating-point format. Attempts to read
the data in its distributed form on a "little-endian" machine (such as Intel 80x86 computers) will
yield ga^rbage unless the bfies are properly swapped. The routines used to read data (in particular,

the function read-block O ) test the byte order of the machine being used, and swaps the b1'te order
if the machine is "littleendian". This introduces some inefficiency if you are running on a "little'

endian" machine, but is preferrable to having two copies of the data, one for each architecture. If
you are doing all of your work on a "little'endian" machine and you want to avoid this inefficiency,
write a program which properly swaps ihe byte orders of the header blocks (which are in 4-b1te
units) and then als6 plepslly swaps the byte order of the data blocks (which are 2-byte units) and
reformat the raw data files. Then modify the read-blocko data so that it no longer swaps the
bytes on your machine.

3.1 The data format

Data is written onto the exabyte tapes in blocks about Il2 megabyte in size. The format of the
data on the tapes is as shown in Table 1. The tape begins with a main header (denoted "mh" in

mh 0's 0's mh 0's 0's mh rtho-- 0's data mh gh | 0's data

r024 1024 r024 1024 1024 7024 x n 1024 7024 x n

Table 1: Format of Exabyte data tapes (first row: content, second row: iength in bytes).

the table). This is followed by a set of zeros, padding the length of the header block to 1024 b1'tes.
There is then an empty block of 1024 b1'tes containing zeros. This pattern is repeated until the
first block containing actual data. This is signaled by the appeararrce of a main header, foilowed

by a gravity header (denoted "gh" in the figure above). These two headers are padded with zeros
to a length of. L024 bytes. This is then followed by a set of data (the length of this set is a multiple

of.1024 bytes). Information about the length of the data sets is contained in the headers. The data

sets themselves consist of data from a total of l-6 channels, each of which comes from a 12-bit A
to D converter. Four of the 16 channels are fast (sample rates a bit slower than 10kHz) and the

remaining 12 channels are slow (sample rates a bit slower than lkHz). The ratio of sample rates is

exactly 10 : 1. Within the blocks iabeled "data", these samples are interleaved. The information
content of the different channels is detailed on page 136 of Lyon's thesis [19], and is summarized in

Table 3.
The program extract reads data off the tapes and writes them into files. One file is produced

for each channel; typically these files are named sfuanng].0 ---+ channel. 15. The complete set of

these files for the November 1994 run fits onto two Exabyte tapes (in the 8500c compressed format).

The information in these files begins only at the moment when the useful data (starting with the
gravity header blocks) begins to arrive. The format of the data in these cha:anel. * files is shown

in Table 2. Here the main headers are the sarne as before, however the headers that follow them

are called binaryheaders (denoted by "bh' in the tabie). The length of the data stream (in bytes)

is called the "chunksize" and is denoted by "cs" in Table 2. We frequently reference the data in
these files by "block number" and "offset". The block number is an integer ) 0 and is shown in

Table 2. The offset is an integer which, within a given block, defines the offset of a data element

from the first data element in the block. In a block containing 5000 samples, these offsets would

be numbered from 0 to 4999.
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block 0 block 1 block 2 block 3
mh bh 0's data mh bh 0's data mh bh | 0's data mh bh 0's data

t024 cs L024 CS 1024 CS 7024 CS

Table 2: Fbrmat of a cbanne1.9-+15 file (first row: block number, second row: content, third row:
length in bytes).

The structure of the binary headers is
struct ld-binheader {

float elapsed-tine: This is the total elapsed time in seconds, typically starting from the first

vaiid block of data, from the beginning of the run.

f loat datarate: This is the samole rate of the channel. in Hz.

I

) 1

The structure of the main headers is
struct ld-nainheader {

int chuaksize: The size of the data segment that follows, in bytes.

int f iletype: Undocumented; often 1 or 2.

int epoch-time-sec: The number of seconds after January L,797A, Coordinated Universai Time
(UTC) for the first sample. This is the quantity returned by the function time O in the
standard C library.

int epoch-time-msec: The number of millseconds which should be added to the previous quan-

tity.

int tod-second: Seconds after minute, G61 for leap second.

int tod-ninute: Minutes after hour G59.

int todhour: Hour since midnight 0-23.

int date-day: Day of the month, L-31.

int date-month: Month of the year, 0-11 is January-December.

j.nt date-year: Years since 1900.

int date-dow: Days since Sunday, 0-6.

int sub-hdrJlag: Undocumented.

); Note: in the originai headers, these int were declared as 1ong. They are in fact Lbyte objects,

and on some modern machines, if they are declared as long they will be incorrectly interpreted as

&byte objects. For this reason, we have changed the header definitions to what is show above.

For several years, the extract prograrn contained several bugs. One of these caused the

channel. * to have no valid header information apart from the elapsed tine and datarate entries

in the binary header, and the chunksize entry in the main header. All the remaining entries in the

main header were either incorrect or nonsensical. This bug was corrected by Allen on 14 November

1996: data files oroduced from the tapes after that time should have valid header information.
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There was also a more serious bug in the original versions of extract. The typical chunksize
of most slow channels is L0,000 bytes (5,000 samples) and the chunksize of most fast channels
is 100,000 bpes (50,000 samples) but until it was corrected by Allen on L4 November 1996, the
extract program would in apparently unpredictable (though actually quite deterministic) fashion
"skip" the last data point from the slow channels or the last ten data points from the fast channels,
giving rise to sequences of 4,999 sampies from the slow channels, and correspondingly 49,990 so.mples
from the fast channels. Not surprisingly, these missing data points gave rise to strange "gremlins"

in the early data analysis work; these are described in Lyon's thesis [fS] on pages 15G151. These
missing points were simply cut out of the data stream as shown in Figure 1; rather like cutting out
1 millisecond of a symphony orchestra every 5.1 seconds; this gives rise to "clicks" which excited
the optimal filters. This problem is shown below; data taken off the tapes after 14 November 1996
should be free of these problems.

There are a couple of caveats regarding use of these 'taw data" flles. First, in the gfuannsf . *
files, there can be, with no warning, Iarge segments of missing data. In other words, a block of
data with time stamp 13,000 sec, lasting 5 sec, can be followed by another data block with a time
stamp of L4,000 sec (i.e., 995 sec of missing data). Also, the time stamps are stored in single
precision floats, so that after about 10,000 sec they no longer have a resolution better than a
single sample interval. When we read the data, we f,ypically use the time-sta,mp on the first data
segment to establish the time at which the first sample was taken. Starting from that time, we then
determine the time of a data segment by using elapsed-tine, since the millisecond time resolution
of epoch-titneirsec is not good enough. (See the comments in Section ss:timestamp).

For our purposes, the most useful channels s,1s slanngl .0 and 6[anng] - 10. Channel 0 contains
the actual voltage output of the IFO. This is typically in the range of *100. Later, we will discuss
how to calibrate this signal. Channel 10 contains a TTL locked level signal, indicating if the
interferometer was in lock. This is typically in the range from L to 10 when locked, and exceeds
several hundred when the interferometer is out of lock. Note: afber coming into lock you will notice
that the IFO output is often zero (with a bit of DC offset) for periods ranging from a few seconds
to a minute. This is because the instrument output amplifiers are typically overloaded (saturated)
when the instrument is out-of-lock. Because they are AC coupled, this leads to zero output. Afber
the instrument comes into lock, the charge on these amplifiers gradually bleeds off (or one of the
operators remembers to hit the reset button) and then the output "comes alive". So don't be
puzzled if the instrument drops into lock and the output is zero for 40 seconds afterwards!

The contents of the 6[anns] - * files was not the same for all of the runs. Lyon's thesis [19] gives
a chart on page 136 with some "typical" channel assignments. The channel assignrnents during
these November 1994 data runs are listed in a log book; they were initially chosen on November
L4, then changed on November 15th and again on November 1.8th; these assignments are shown in
Table 3. (Note that the chart on page 136 of Lyon's thesis describes the channel assignments on
15 November 94, a day when no data was taken.)
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ion ( L4 November 94
IFO output

unused
unused

microphone
dc strain

mode cleaner pzt
seismometer

unused
unused
unused

TTL locked
arm 1 visibility
arm 2 visibility

mode cleaner visibility
slovr pzt

arm L coil driver

Channel Number ) 18 November 94
IFO output

magnetometer
microphone

unused
dc strain

mode cleaner pzt
seismometer

slow pzt
pov/er stabilizer

unused
TTL locked

arm 1 visibility
arm 2 visibility

mode cleaner visibility
unused

arm 1 coil driver

Table 3: Channel assignments for the November 1994 data runs. Channels 0-3 are the "fast"

channels, sampled at about 10 kHz; the remaining tvuelve a,re the "slovr''" channels, sarnpled at
about 1KHz.
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Data Dropouts
19 November94 tape 3

Missing data
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-100.0 '
50.660 50.665 50.670

elapsed time (sec)
50.675

Figure 1: This shows the appearance of channel.O before and after the extract progmm was

repaired (on 14 November 1996) to correctly extract data from the Exabyte data tapes. The old

version of extract dropped the ten data points directly above the words "missing data"l in effect

these were interpolated by the diagonal line (but with ten times the slope shown since everything
in between was missing).
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3.2 Function: read-blocko

int  read-block(FI lE *fp,short  **here, int  *n,f loat * tstart , f loat *srate, int  al locate, int
*nalloc,int seek, struct ld-binheader* bh,struct Id-nainheader* nh)
This function efficiently reads one block of data from one of the cfuannsf . * data files, operating in
sequential (not random) access. On first entry, it detects the byte.ordering of the machine that it
is running on, and swaps the byte order if the machine is "litt1e.endian" (the data was originally
written in "big-endian" format, and is distributed that way). It will also print a comment (on first
entry) if the machine is not big-endian.

The arguments are:

fp: Input. A pointer to the s[anngl.* file being read.

here: Input/Output. A pointer to an array of shorts, which is where the data will be found when
read-blockO returns. If allocate:0, then this pointer is input. If allocate is non-zero,
then this pointer is output.

n: Output. A pointer to an integer, which is the number of data items read from the block,
and written to *here. These data items are tlpically short integers, so the number of bytes
output is twice *n.

tstart: Output. The time stamp (elapsed time since beginning of the run) at the sta"rt of the
data block. Taken from the binary header.

srate: Output. The sample rate, in Hz, taken from the binary header.

allocate: Input. The read-blockO function will place the data that it has read in a user
defined array if allocate is zero. If allocate is set, it will use mal-loc O to ailocate a block
of memory, and set *here to point to that block of memory. Further calls to read-block o
will then use calls to realloc O if necessary to re-allocate the size of the block of memory, to
accommodate additional data points. Note that in either case, read-blockO puts into the

array only the data from the next block; it over-writes any existing data in memory.

nalloc: Input/Output. If allocate is zero, then this is used to tell read-blockO the size (in

shorts) of the array *[srs. An error message will be generated by read-block O if this array
is too small to accommodate the data. If allocate is nonzero, then this integer is set (and

reset, if needed) to the number of array entries allocated by nallocO/reallocO. In this

case, be sure that +naIIoc is zero before the first call to read-blockO, or the function will

think that it has aiready allocated memory!

seek: Input. If seek is set to zero, then the function reads data. If seek is set nonzero, then

read-blockO does not copy any data into *here. Instead it simply skips over the actual

data.

bh: Output. A pointer to the binary header structure defined above.

nh: Output. A pointer to the main header structure defined above.

This is a low-level function, which reads a block of data. It is designed to either write the data

into a user-defined array or block of memory, if allocate is off, or to allocate the memory itself. In

the latter mode, the function uses nal1oc to track the amount of memory allocated, and reallocates
if necessary. It is often useful to be able to quickly skip over sections of data (for example, just

f3
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a.fter the interferometer locks, a few minutes is needed for the violin modes to damp down). Or if

the IFO is out of lock, one needs to quickly read ahead to the next locked section. If seek is set,

then this routine behaves exactly as it would in normal (read) mode but does not copy any data.

The function read-blockO returns the number of data items that will be returned onthe nert

call to read-block O . It returns -1 if it has just read the final block of data (implying that the

next call will return 0). It returns 0 if it can not read any further data, because none remains.

Note that if the user has set alIocate, then the read-blocko will allocate memory using

nallocO/rea1locO. It is the users responsibility to free this block of memory when it is no

longer needed, using freeO.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable.length blocks. It might be possibie to simplify

it for fixed-length block sizes.

I
i
I
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3.3 Example: reader program

This example uses the function read-blockO described in the previous section to read the first 20

blocks out of the file channel.O. It prints the header information for each block of data, and the F
100th data item from each block, along with the time associated with that data item.

The data is located with the utility function grasp-openO, which is documented in Section 10.L.

In order for this example program to work, you must set the environment variable GRASP-DATAPATH

to point to a directory containing 40-meter data. You can do this with a command such as

setenv GRASP-DATAPATH /usr / Io cal / data/ 19nov94 . 3
to access the data from run 3 on November l,9th. 

f

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

int  nainO{
FILE xfp;
short xdata;
f loat  tb lock, t ine,srate;
iut code , nu.m, size=O, count=O, uhich=100 ;
struct ld-binheader bheader;
struct lzi mainheader nheader;

/x open the IFO channel for reading *,/
fp=grasp-open ( " GRASP-DATAPATH" , " cbaanel . 0 " ) ;

f* read the first 20 blocks of lock data xf
while (couat <20) {

f x read a block of. data *f
code= read-bl-ock(fp,&data,&num,&tbl.ock,&srate,L,&.s!2e,0,&bheader,&mheader);

/x if there is no data left, then break x/
if (code==g) brea_k;

/* print some information about the data.x/
pr ia t f ( "Data b lock 7.d f ron f i le  cbannel .0 s tar ts  at  t  = %f sec. \n" ,count , tb lock) ;
printf("This block sampled af T,f Hz and contains 7.d shorts.\n",srate,num);

/x print out some inforrnation about a single data point from block x/

tine=tblock+ (which-1 .0) /srate;
printf ("Data iten %d at t ine 7.f is 7.d.\n",which,time,data[whj-ch-1] );
pri.ntf("Ihe next block of data contains 7.d shorts.\n\n",code);

/x increment count of # of blocks read.x/
count++;

)

/x print information about the largest memory block allocated,r/
printf("Tbe largest trenory block a]located by read blockO was 7.d sborts long\a",size);

f* free the array allocated by read-blockQ */
free (data) ;
return 0;

)
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3.4 tr\rnction: find-lockedo

int  f ind-Locked(Fl lE *fp, int  *s-offset, int  *s-block, int  *e-offset,  int  *e-block,f loat
*tstart , f loat * tend,f loat *srate)

This mid-level function looks in a TTLlocked signal channel (typically, sfuanngf . 10) and finds the
regions of time when the interferometer is locked. The first time it is called, it returns information
identifying the start and end times of the first locked region. The second time it is cailed it returns
the start and end times of the second locked region, and so on.

The arguments are:

fp: Input. A pointer to the file containing the TTL lock signal. A typical file name might be
ttcha.nnel . 10"-

s-block: Output. The number of the data block where the IFO locks. This ranges from 0 to n-1
where the total number of data blocks in the file is n.

s-off set: Output. The offset (number of shorts) into the block where the IFO locks. This ranges
from 0 to n-1 where the number of data items in block s-block is n. This offset points to the
first locked point.

e-bIock: Output. The number of the data block where the lFO loses lock. This ranges from
s-block to n-l where the total number of data blocks in the file is n.

e-offset: Output. The offset (number of shorts) into the block where the IFO loses locks. This
ranges from 0 to n-L where the number of data items in the block e-bIock. This offset points

to the last locked point (not to the first unlocked point).

tstart: Output. The elapsed time in seconds, since the beginning of the run, of the data block
in which the first iocked point was found. Note: This is not the time of lock acquisition!

tend: Output. The elapsed time in seconds, since the beginning of the run, of the data block in
which the last locked point was found. Note: this is not the time at which lock was lost!

srate: Output. The sample rate of the TTLlocked channel, in Hz.

This routine uses read-blockO to examine successive sections of the s[anns].10 data file.

It looks for continuous sequences of data points where the value lies between limits (inclusive)

LOCKL=1 and L0CKH=10. It returns the start and end points of each successive such sequence. The

upper and lower limits can be changed in the code, if desired, however these values appear to be

reliable ones.
The integer returned by f ind-lockedO is the actual number of data points in the Josl channels,

during the locked period. It returns 0 if there are no remaining locked segments.
If there is a gap in the data stream, arising not because the instrurnent went out of lock, but

rather because the tape-writing program was interrupted and then later restarted, find-lockedo
will print out a warning message, but will otherwise treat this simply as a loss of lock during the
period of the missing data.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comrnents: This function was designed for variable.length blocks. It might be possible to simplify

it for fixed-length block sizes.
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3.5 Example: locklist program

This example uses the function f ind-locked described in the previous section to print out location
information and times for all the locked sections in the filg g[anngl. 10. Note that this examole

only prints out information for locked sections longer than 30 sec.

/x GRASP: Copyright 1997, Bruce Allen +/
#include "grasp.h[

1ut nainO {
fLoat  ts tar t , tend,srate, tota l t ine,begin,endl
int start-off set,start-block, end-offset, end-block,points ;
FILE xfp lock;

/x Open the file for reading x/
f plo ck=grasp-open ( " GRASP_DATAPATH", " cha!.Del . 1 0 " ) ;

while (1) {

/x find the next locked section of the data */
points=f ind-locked (fplock, &start-of f set,

&start-bl ock, &end-of f s et, &end-blo ck, &tstart, &tead, &srate) ;

f * if no data remains, then exjt ,rf
if (points==O)

break;

/,r. calculate start and end of lock times */
begin=tstart+start-of f set/srate ;
end=tend+end-of f s et/srate ;
totalt iDe=end-begin;

/x print out info for lock intervals ) 30 seconds x/
i f  ( to ta l t ine>30.0)  {

pr in t f  ( "Locked f roro t  = ' / , f  to ' / , f  tor  7. f  sec\n" ,begi .a,end, tota l t ine) ;
n r i n f  f  l l l l T r r n h a r  a f  i r + r  n a i n + e  i  e  ' / ' l \ n t t  n n i n + c ' l  .. -umbe! of data points is %d\n",points),
printf ("Start block: 7.d End block: 7nd\n",start-block,end-block) ;
printf ("Start offset : %d End offset 7.d\n\a",start-offset,eDd-offset) ;

I)
)
return 0;
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3.6 tr\rnction: get-datao

int  get-data(FI lE *fp,FILE *fplock,f loat * tstart , int  npoint,short  * locat ion, int  *rem,f loat

*srate, int  seek)
This high-level function is an easy way to get the IFO output ($avity wave signal) during periods

when the IFO is locked. When called, it returns the next locked data section of a user-specified

length. It also specifi€s if the section of data is part of a continuous locked stream, or the beginning

of a new locked section.
The arguments are:

fp: Input. Pointer to a file (typicatly channel,O) containing the channel 0 data.

fplock: Input. Pointer to a file (typically "chamel. 10") containing the TTL lock signal.

tstart: Output. The time of the zeroth point in the returned data.

npoint: Input. The number of data points requested by the user.

location: Input. Pointer to the location where the data should be put.

ren: Output. The number of points of data remaining in this locked segment of data.

srate: Output. The sample rate of the fast data channel, in Hz.

seek: Input. If this is zero, then the data is returned in the array location[ ]- However

if this input is non-zero, then get-data performs exactly as described, except that it does

not actually read any data from the file or write to locationl ]. This is useful to quickly

skip over un-interesting regions of the data, for example the first several minutes after the

interferometer acquires lock.

This function returns 0 if there is no remaining locked data stream of the requested length- It

returns 1 if it is just starting on a new locked section of the data strearn, and it returns 2 if the

data is part of an on-going locked sequence.

Author : Bruce Allen, bailen@dirac.phys.uwm.edu

Comments: This function was designed for variable-.length blocks. It is possible to simplify it

for fixed-length block sizes. It should also be modified to return a complete set of different

channels, by adding additional arguments to specify which channels are desired and where

the data should be placed. This could also be used to eliminate the seek argument.

I
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3.7 Example: garoutput prograrn

This example uses the function get-datao described in the previous section to print out a two-
column file containing the IFO output for the first locked section containing 100 sample points. In
the output, the lefb column is time values, and the right column is the actual IFO output (note
that because this comes from a 12 bit A-D converter, the output is an integer value from -2047 to
2048). The program works by acquiring data 100 points at a time, then printing out the values,
then acquiring 100 more points, and so on. Whenever a nev/ locked section begins, the program
prints a banner message to alert the user. Note that typical locked sections contain = 107 points
of data, so this program should not be used for real work - it's just a demonstration!

/x GRASP: Copyright 1997, Bruce Allen */
#iaclude "grasp.h"

nainO {
f loat tstart , t ime,srate I
int remain, i,npoint, code;
FILE *.fp,xfplock;
short xdata;

/x open the IFO output file and lock file */
fp=grasp-open ( "GMSP_DATAPATH" , " cha.nnel . 0" ) ;
f plo ck=grasp-open ( " GRASP-DATAPATH ", " cha!.DeL . 1 0 " ) ;

/* specify the number of points of output & allocate array *f
npoint=100;
data= (short x)nafloc (sizeof (shs1tr) xnpoint) ;

whi le (1)  {
/x fill ihe array with npoint points of. data xf
s6dg=get-data (f p, f p1o ck, &tstart, npoint, data, &remaia, &srate, 0) ;

/* if no data remains, exit loop x/
if (code==O) break;

/x if starting a new locked segment, print banner x/
i f  (code==1) {

printf(u------------ NEW L0CKED SEGMENT --\n\u");' 
pr j.trtf ( r' Tine (sec) \t fFO output\n" ) ;

i
/x now output the data x/
f a r  ( i = f l ' i  < - n n n i n i . i + + )  1\ -  v r *  t

t ime=tstart+i/srate;
printf ( "7.f \t7.d\n'r ,t ine , data [i] ) ;

)
)
/x close the data files, and return */
f c l ose ( fp ) ;
f c l ose ( fp lock ) ;
r a t r r  r n  O  .

I
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3.8 Example: animate program

This example uses the function get-dataO described in the previous section to produce an an-
imated display showing the time series output of the IFO in a lower window, and a simulta-
neously calculated FFT power spectrum in the upper window. This output from this program
must be piped into a public domain graphing program called xngr. This may be obtained from
http: //plasna-gate.weizmarur.ac.ll/Y;rrgr/. (This lists mirror sites in the USA and Europe
also). Some sample output of aninate is shown in Figure 2.

Spectrum

0 L
0.0 5000.0

f (Hz)

200.0

't00.0

0.0

-100.0

-200.0 L
22.O0 22.10

Figure 2: Snapshot of output from aninate.
seconds after acquiring lock, before the violin

22.20 22.30 22.40
t (sec)

This shows the (whitened) CIT 40-meter IFO a few
modes have damped down

After compilation, to run the program type:
aninate I xmgr -pipe &

to get an auimated display showing the data flowing by and the power spectrum changing, starting
from the first locked data. You can also use this program with commaud-line arguments, for
example

aninate lOO 4 500 7 900 1.5 | xmgr -pipe &
will show the data from time t : 100 to time t:104 seconds, then from t : 500 to f : 507, then
from t : 900 to t : 901.5. Notice that the sequence of start times must be increasing.

Note: The xmgr program as commonly distributed has a simple bug that needs to be repaired,

IFO output 4
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case 0 :
delt= (x [ i Ien-r]  -x [0]  )  /  ( i Iea-1 .  0) ;
1 = ( 1 [ i 1 e n - 1 ] - x [ 0 ]  ) ;
set length (cg, specset ,Llen/2) ;
xx=getx(cg, specset) ;

c a s e  1 :
delt= (x [ilen-t] -x [0] ) / (ilen-1 . 0) ;
T = ( x [ i 1 e n - 1 ] - x [ 0 ]  ) ;

Figure 3: The corrections to a bug
bug is in the routine doJouriero

in the
in the

nngr program are
file computil-s. c.

indicated by the arrolrrs above. This

in order for the frequency scale of the Fourier transform to be correct. The corrected version of
xngr is shown in Figure 3.

/x GRASP: Copyright 1997, Bruce Allen x/
*include "grasp.h"

int nain(int argc,char *,*argv) {
void graphout (f loat, f loat, int) ;
f loat  ts tar t= l .  e35,srate=1.  e-30, tn iD, tnax,dt  ;
double time;
int remain, i,seg=O, code,npoint=4096,seek;
FILE xfp,xfp lock;
sbort xdata;

/x open the IFO output file and lock file x/
fp=grasp-open ( "GRASP-DATAPATII' , " cl:nne1 .0" ) ;
f plo ck=grasp-open ( " GRASP-DATAPATH", " cha.nael . 10 " ) ;

/x allocate storage space for data xf
4a1a= (short x)nalloc (sizeof (short) xnpoint) ;

/x handle case where user has supplied t or dt arguments x/
if (argc==1) {

tnin=- 1 . e30;
d t=2 .  e30 ;
argc=-1;

)
/ *  now loop . . .  x /
seq=argc;
whi le  (argc!=1)  {

lx get the next start time and dt x/
i f  ( a rgc t= -1 )  {

sscenf (argv [ssq-argc+1] , "7of " , &tmin) ;
ssca.nf (argv [seq-argc+2] , "7of " , &dt) ;

- 
argc-=2;

l
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/* calculate the end of the observation interval, and get data *l

tnax=tni.n+dt;
rhite (1) {

if (tstart(troin-(nPoiDt+2O.)/srate; seek=1; else seek=O;

seds=get-data(fP, fPlock, &tstart ,npoint , data, &remain, &srate, seek) ;

fx if no data left, return */
if (code==0) returu 0;

/x we need to be outputting now.. . x/

1f (tnin<=tstart){

f or (i-=O; i(npoint; i++) {
t ime=tstart+i/srate;
printf ( "7.f\t7.d\n" , time , aata [1] ) ;

'f 
x pttt out information for the graphing program x/

graphout (tstart,tstart+npoiDt/srate, (argc==1 && tine>=tmax)) ;

J
/x if we are done with this interval, try next one x/

if (tine>=tnax) break;

)
1
)
/x close files and return x/
f c l ose ( fp ) ;
return 0;

)
/x This routine is pipes output into the xmgr graphing program 'r'/

void graphout(float x1,fIoat x2,iut tast) {
static iDt count--O;
pr int f  ( "&\n") ;

/x first time we draw the plot x/
/x end of set marker x/

if (cor:at==O) {
printf("@doublebuffer true\n") ; /', keeps display from flashing x/

prlDtf("@s0 color 3\n"); lx lFO graph is green x/

pr ln t f  ( "@view 0.1,  0.1,  0.9,  0.45\n") ;  /x  set  the v iewport  for  IFO x/

printf("@lrith g1\n") ; lx reset the current graph to FFT x/

pr in t f ( "@view 0.1,  0.6,  0.9,  0.95\n") ; fx  set  the v iewport  FFT x/

printf("@vith g0\n") ; lx reset the current graph to IFO */

priatf ("@porld r<min 7.f \n",x1); /x set min x */

prlntf ("@world xmax 7,f\4",x2) ; lx set max x x/

printf("@autoscale\n"); /x autoscale first t ime through x/

printf("@focus off\n"); /* turn off the focus markers x/

printf("@xaxis label \"1 (sec)\"\n"); /x iFO acis label x/

printf("@fft(s0, 1)\n") ; lx compute the spectrum x/

pr int f ( "@s1 color  2\u") ;  /x  FFT is  red x/

printf("@nove g0.s1 to g1.sO\n") ; lx move FFT to graph 1 x/

printf("@with g1\a") ; lx set the focus on FFT x/

printf ("@g1 type logy\n") ; lx set FFT to log freq axis x/

printf ( ' f@autoscale\u") ; lx autoscale FFT x/

printf ("@subtit le \"Spectrumlu\n") | l ' ,  set the subtit le x/

printf("@xaxi.s label \"f (Hz)\"\n"); /x FFT axis label x/

prJ.ntf ("@nlth g0\n") ; lx reset the current graph IFO i'/

priDtf("@subtit le \ ' IFO outPut 7d\u\nu,couat++);/x set IFO subtit le xl

it (tfast) printf("@ki11 s0\4") t l* ki l l  IFO; ready to read again x/

)
else {
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/x other times we redraw the plot x/
printf ("@s0 color 3\n") ; /* set IFO green x/
pr in t f  ( "@ff t (so,  1) \a") ;  l *  FFT i t  * , /
pr in t f ( "@s1 color  2\n") ;  / *  set  FFT red * f
pr in t f ( "@nove g0.s1 to g1.s0\n") ;  /x  move FFT to graph 1 x/
printf ( ' t@subtit le \"IFO output 7.d\"\n',,cou"Dt++);/x set IFO subtit le x/
printf ("@!rorld )rtnin 7.f\n",x1); /x set min x x/
pri.ntf ("@world xnax %f \n" ,x2) ; lx set max x xl
printf ("@autoscale yaxes\n") ; l,r. autoscale IFO x/
printf("@c1ear stack\n") ; lx clear the stack */
if ( l last) printf( '@ki11 sO\n") t /* kil l  IFO data *f
printf ("@with g1\n") i lx switch to FFT x/
printf("@g1 type logy\n") ; lx set FFT to log freq axis */
printf ("@clear stack\u") ; I 'r. clear stack */
i f  ( !1ast)  pr in t f ( '@ki l l  s0\n") ;  / *  k i l l  FFT x/
printf("@with gO\n") ; lx ready to read IFO again x/

)
retu_rn;
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3.9 F\rnction: read-sweptsineo

void read-sweptsine(FILE *fpss, int  *n,f1oat **freq,f loat **real, f1oat ** inag)
This is a lovr-level routine which reads in a 3-column ASCII file of swept sine calibration data used
to calibrate the IFO.

The arguments are:

fpss: Input. Pointer to a file in which the swept sine data can be found. The format of this data
is described below.

:r: Output. One greater than the number of entries (lines) in the swept sine calibration file.
This is because the read-sweptsine returns, in addition to this data, one additiona"l entry at
frequency "f : 0.

freq: Output. The array *freq[1..xa-l] contains the frequency lalues from the swept sine
caJibration file. The routine adds an additional entry at DC, *fagq[O]=0. Note: the routine
allocates memory for the array.

real: Output. The array *real [1. . +n-1] contains the real part of the response function of the
IFO. The routine adds *real [O] =0. Note: the routine allocates memory for the array.

irnag: Output. The array *inag [1 . . *n-1] contains the imaginary part of the response function
of the IFO. The routine adds *inag[O] =0. Note: the routine aliocates memory for the array.

The swept sine calibration files are &column ASCII files, of the form:

where the /3' are frequencies, in Hz, and ri artd ii are dimensionless ratios of voltages. There are
typically rn : 801 lines in these files. Each line gives the ratio of the IFO output voltage to a
calibration coil driving voltage, at a different frequency. The ri are the "real part" of the response,
i.e. the ratio of the IFO output in phase with the coil driving voltage, to the coil driving voltage.
Tbe ii are the "imaginary part" of the response, 90 degrees out of phase with the coil driving
voltage. The sign of the phase (or equivalently, the sign of the imaginary part of the response) is
determined by the following convention. Suppose that the driving voltage (in volts) is

%oil : locos(rut) : losetut (3.9.1)

where a :2r x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of
the interferometer output to this is (again, in volts)

f ' -  I

I

l
t . .

ft 11 i1

fz 12 i2

inJ M

Vrr,o : 6.93 cos(c..,t) + 4 sin(r,,'t)
: 6.93 cos(u.,'t) - 4 cos(r,.,t + r l2)
: g Y7"i(ut-t/6) (3.e.2)

This is shown in Figure 4. An electrical engineer would describe this situation by sa)'rng that the
phase of the response Vrpo is lagging the phase of the driving signal %ol by 30o. The corresponding
Iine in the swept sine calibration file would read:
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Figure 4: This shows a driving voltage %oil (solid curve) and the response voltage Trro (dotted
curve) as functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of
the in-phase and out-of-phase components of tr/rro are contained in the swept-sine calibration files.

60.000 0.6930 -0.40000

Hence, in this exa,mple, the real part is positive and the imaginary part is negative. 
'We 

will denote
this entry in the swept sine calibration file by 5(60) : 0.8 "-it/6 : 0.693 - 0.400t. Because the
interferometer output is real, there is also a value implied at negative frequencies which is the
complex conjugate of the positive frequency value: 5(-60) : ,S.(60) :0.8 ein/6:0.693 + 0.400i.

Because the interferometer has no DC response, it is convenient for us to add one additional
point at frequency f : 0 into the output data arrays, with both the real and imaginary parts of
the response set to zero. Hence the output arrays contain one element more than the number of
Iines in the input files. Note that both of these arrays are arranged in order of increasing frequency;
after adding our one additional point they typically contain 802 points at frequencies from 0 Hz to
5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine cali-
bration curve was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in
the channel.O files to reconstruct the differential motion Al(t) (in meters) of the interferometer
arms? Here we address the closely related question: grven Epg, how do we reconstruct I/"o1? We
choose the sign convention for the Fourier transform which agrees with that of. Numerical Reci,pes:
equation (12.1.6) of [1]. The Fourier transform of a function of time I/(t) is

v(f): 
| 

"r"utrv1t1at. (3.e.3)

(3.e.4)

Fourier compG.

The inverse Fourier transform is

v(t): I e-z"ittv171a1.

With these conventions, the signals (3.9.1) und (r.n.r) shown in in Figure 4 have
nents:

%"1(Oo) : s and
Yrro(60) - 4"ir/6 and

%ol ( -60 ;  :5 ,

Yrro(-60) - 4.-i:r/6

(3.e.5)
(3.e.6)
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At frequencY fo:60 Hz the swept sine file contains

s(60) : g.g "-i'tr16 + s(-60) : ,5.(60) : 0.8 eiol6 (3.e.7)

since .9(-/) : S.(/).
With these choices for our conventions, one can see immediately from our example (and gener-

alize to all frequencies) that

(3.e.8)

In other words, with the Numeri.cal Reci,pes [1] conventions for forward and reverse Fourier Tlans-
forms, the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by
the complex conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain
a "glitch" in the vicinity of 1 kllz; this may be due to drift of the unity-gain servo point.

f- ;, / t\ VffO
Ycoil("IJ : €fr '

I  t ,  t
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3.L0 Function: calibrateo

void cal ibrate(FILE *fpss, int  num,f loat *complex,f loat srate, int  method, int  order)
This is a intermediate-level routine which reads in a 3-column ASCII file of swept sine calibration
data used to calibrate the IFO, and outputs an array of interpolated points suitable for calibration
of FFT's of the interferometer output.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine data can be found. The format of this
data is described below.

srate: Input. The sample rate F".-p1s (in Hz) of the data that we are going to be calibrating.

num: Input. The number of points lf in the FFT that we will be calibrating. This is typically
N :2k where ,b is an integer. In this case, the number of distinct frequency values at which a
calibration is needed is 2e-1* 1 : N/2+ 1., corresponding to the number of distinct frequency
values from 0 (DC) to the Nyquist frequency "fNyquist. See for example equation (12.1.5) of
reference [1]. The frequencies arc f;: fr4r-pr" for i : 0,-- . , Nfz.

complex: Input. Pointer to an array complex [0. . s] where s : 2k * 1. The routine calibrate o
fills in this array with interpolated values of the swept sine calibration data, described in the
previous section. The real part of the DC response is in conplex [0J , and the imaginary part
is in conplex [1] . The real/imaginary parts of the response at frequency .fi are in conplex [21
and conplex [g] and so on. The last two elements of conplex [ ] contain the real/imaginary
parts of the response at the Nyquist frequency F". pt"f 2-

nethod: Input. This integer sets the type of interpolation used to determine the real and imag-
inary part of the response, at frequencies that lie in between those given in the swept sine
calibration files. Rational function interpolation is used if nethod:0. Polynomial interpola-
tion is used if nethod:l. Spline interpolation with natural boundary conditions (vanishing
second derivatives at DC and the Nyquist frequency) is used if nethod:2.

order: Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then
order is the order of the interpolating polynomial. If rational function interpolation is used,
then the numerator and denominator are both polynomials of order order f 2 if order is
evenl otherwise the degree of the denominator is (order+\)/2 and that of the numerator is
(orde*L)/2.

The basic problem solved by this routine is that the swept sine ca,libration files typically contain
data at a few hundred distinct frequency values. However to properly calibrate the IFO output,
one usually needs this caiibration information at a large number of frequencies corresponding to
the distinct frequencies associated with the FFT of a data set. This routine allows you to choose
different possible interpolation methods. If in doubt, we recommend spline interpolation as the
fi.rst choice. The interpolation methods are described in detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: It might be better to interpolate values of /2 times the swept-sine response function,
as this is the quantity needed to compute the IFO response function.
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3.11 Example: print-ss program

This example uses the function calibrateO to read in a swept sine calibration file, and then prints

out a list of frequencies, real, and imaginary parts interpolated from this data. The frequencies are

appropriate for the FFT of a 4096 point data set with sample rate srate. The technique used is

spline interpolation.

/x GRASP: Copyright 1997, Bruce Allen x/

# inc lude' rgrasP.h"
#define NPOINT 4096

int nainO {
float cplx [NPoINT+2] , srate , freq;
in t  npoint , i ;
FILE xfP;

/* open the swept-sine calibration file x/

fp=grasp-open( "GMSP-DATAPATH" , " swept-sine . ascii " ) ;

/x number of points of (imagined) FFT x/

npoint=NP0INT;

/x a sample rate ofben used for fast channels r'/

srat e=9868 . 420898437 5 ;

/x swept sine calibration filename is first argument */

calibrate (fp, npoint , cplx, srate ,2,0) i

- /x print out frequency, real, imaginary interpolated values x/

printf ( "Freq (Hz) \tReal\t\tInag\n" ) ;
for  ( i=0;  i<=NP0INT/2;1++) {

freq=ixsrate/NP'INT;
pri.ntf 1"7.s\tr/.e\t7.e\n" , freq, cplx [2xi] , cplx [2xi+1J ) ;

I)
return 0;

r

r
i

f '
i
t . .

a -
I
{
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3.L2 F\rnction: nornalize-gwo

void nornal ize€w(FILE *fpss, int  npoint, f loat srate,f loat *response)

This routine generates an array of complex numbers R(/) from the information in the swept
sine file and an overall calibration constant. Multiplying this array of complex numbers by (the
FFT of) 6[anne1.0 yields the (FFT of the) differential displacement of the interferometer arms
Al, in meters: Al(f): R(f)CoU). The units of ft(/) are meters/ADC-count.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine normalization data can be found.

npoint: Input. The number of points lf 6f sfuannel.0 which will be used to calcu]ate an FFT
for norrnalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of. channel.0.

response: Output. Pointer to an array response [0. . s] with s : N * 1 in which R(/) will be
returned. By convention, r?(0) : 0 so that response [0] =response [1] =0. Array elements
response L2i1 and, response lzi+Il contain the real and imaginary parts of R(f) at frequency

.f : israte/l/. The response at the Nyquist frequency response [t't] =O and response [N+1] =0

by convention.

The absolute normalization of the interferometer can be obtained from the information in the
swept sine file, and one other normalization constant which we denote by Q. It is easy to understand
how this works. In the calibration process, one of the interferometer end mirrors of mass nz is driven
by a magnetic coil. The equation of motion of the driven end mass is

(3.12.1)

where F(t) is the driving force and Al is the differential length of the two interferometer arms, in
meters. Since the driving force d(t) is proportionai to the coil current and thus to the coil voltage,
in frequency space this equation becomes

t)

*2a l :  F( t )
dtl

(-nrlfl2&t: consta,nt x %o1 : constant >< 
#ffi

(3.r2.2)

We have substituted in equation (3.9.8) which relates Trro and Vs61. The IFO voltage is directly
proportional to the quantity recorded in channe1.O: 7rr,o: ADC x C6, with the constant ADC
being the ratio of the analog-to'digital converters input voltage to output count.

Putting together these factors, the properly normalized value of Al, in meters, may be obtained
from the information in cbannel.0, the swept sine file, and the quantities given in Table 4 by

N: RU) x do with R(f) : Q x A D C (3.12.3)-4712 f2S*( l) '

where the-denotes Fourier transform, and / denotes frequency in Hz. (Note that, apart from the
complex conjugate on ,S, the conventions used in the Fburier transform drop out of this equation,
provided that identical conventions (3.9.3,3.9.4) are applied to both Al and to Ce). The constant
quantity Q indicated in the above equations has been calculated and documented in a series of
calibration experiments carried out by Robert Spero. In these calibration experiments, the in-
terferometer's servo was left open-loop, and the end mass was driven at a single frequency, hard
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Table 4: Quantities entering into normalization of the IFO output.

Descriotion Name Value Units
Gravity-wave signal (cban4el . 0

A--D converter sensitivity Vmo (ADC counts

Swept sine calibration Vrro (V"ol)-

Calibration constant L.428 x l0- meter Hz'(V""1)-

enough to move the end mass one.half wavelength and shift the interferences fringes pattern over

by one fringe. In this way, the coil voltage required to bring about a given length motion at a

particular frequency was established, and from this information, the value of. Q may be inferred-

During the November 1994 runs the value of Q was grven by

a : JnTfr : r.428. to-'*"i:';l' where r : z13ee ,, Ig-u '- k

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrateO.

(3.12.4)
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3.L3 Example: power-spectrum program

This example uses the function nornalize€wO to produce a normalized, properly calibrated power
spectrum of the interferometer noise, using the gravity-wave signal from channel.0, the TTL-lock
signal from channel.10 and a Swept-sine calibration curve.

The output of this program is a 2-column file; the first column is frequency and the second
coiumn is the noise in units of. meters/JEfz.

A couple of comments are in order here:

1. Even though we only need the trodulus, for p_edagogic reasons, we explicitlv calculate both the
real and imaginary parts of A'.t(f) : R(f)Caff).

2. The fast Fourier transform of Al, which we denote FFT[44, has the same units (meters!) as Al.
As can be immediately seen from Numerical Recipes equation (12.1.6) the Fourier transform
& has units of meters-sec and is given by N: LTFFTIAI], whge Af is the sample interval.

The (one-sided) power spectrum of Al in metercf ffi is P: tl|lNt where ?: l[At is the
total length of the observation interval, in seconds. Hence one has

D -
l - (3.13.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed
(see the example program calibrate and the function avg-specO to see how this works).

A sample of the output from this program is shown in Figure 5.

Displacement Spectrum
19 Nov 94 run 3

1o-to

1o-t t

1o-t '

1 0""

|  1o- 'o

,E to''
I ro-'u

1o - t t

1 0t"

1o- le

,  ^-20
I U

100
Frequency (Hz)

Figure 5: An example of a power spectrum curve produced with power-spectrun. The spectrum
produced off a data tape (with 100 point smoothing) is compared to that produced by the HP
spectrum analyzer in the lab.



!

!
l{

r ' "
b

!
[ -

r
t .

/i GRASP: Copyright 1997, Bruce Allen x/

#include "grasp.h"

#define NP0INT 65536

int rnai.nO {
void realft(f loatx,uasigned i-ong,int) ;
ffoat response [NP0INT+2],dataINPoINT],tstart,freq;
float res-rea1, res-imag, dl-real, dl-inag, cO-real, cO-inag, spectrum, srate , factor;

FILE xfplfo, xfplock, xfPss ;
int i,npoint,reroain;
short datasINPoINT];

/* open the IFO output file, lock file, and swept-sine file xl

fpif o=grasp-open ( " GMSP-DATAPATHTT , rrchannel ' 0'r ) ;
fp1-ock=grasp-open ( "GRASP-DATAPATH" , " cha.nDel. 10" ) ;
f pss=grasp-open ( " GRASP-DATAPATII rt,' swept-s ine . asc ii " ) ;

/x number of points to sample and fft (power of.2) */

npoint=NP0INT;

/x skip 200 seconds into locked region (seek:l) x/

while (tstart<2OO.0)

get-data(fpifo, fplock, &tstart, npoiut, datas , &remain, &srate, 1) ;

/x and get next stretch of data from TTL locked file (seek:O) x/

get-data (fpifo, fplock, &tstart, npoint , datas, &renain, &srate ,0) ;

/* convert gw signal (ADC counts) from shorts to floats x/

for  ( i=0;  i (NpoINT; i++)  data[ i ]=datas[ i ]  ;

/* FFT the data x/

realft (data-1,npoi-nt, 1) ;

f x get normalization R(f) using swept sine file x/

normali.ze-gw (fpss, npoiut , srate, response) ;

/i. one-sided power-spectrum normalizat'ion, to get meterslrHz xl

factor=sqrt (2.0/ (sratexnpoi-nt) ) ;

/* compute dl. Leave off DC (i:0) or Nyquist (i:npoint/2) freq x/

f or (i=1; i(npoint/2; i.++) {
/x frequency x/
freq=ixsrate/nPoint;

f x real and imaginary parts of tilde c0 x/

c0-real=data [2*i] ;
c0-irnag=@a1a [2xi+1] ;

f x real and imaginary parts of R x/

res -real=respoase [2xi] ;
res-ima5response [2xi+1] ;

f ,r real and imaginary parts of tilde dl */

dl-real=c0-realxres-real - c0-inagxre s -iroag ;
dl- i.nag=c0-realxres-inag+c0-inagxre s-real ;

/x lt i lde dll x/
spectrun=f actorxsqrt (dl--real*d}-rea1+dl-inagxdl-inag) ;

/x output freq in Hz, noise power in meters/rHz x/

printf ("%e\t7.e\nrr ,fr€Qr spectrun) i

)
return 0;

A '



Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of
the 60 Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) super-
posed on a continuum background (electronics noise, laser shot noise, etc) In such situations,
there are better ways of finding the noise power spectrum (for example, see the multi-taper
methods of David J. Thompson [23], or the textbook by Percival and Walden [Za]). Using
methods such as the F-test to remove line features from the time'domain data stream might
reduce the sideiobe contamination (bias) from nearby frequency bins, and thus permit an
effective reduction of instrument noise near these spectral iine features. Further details of
these methods, and some routines that implemen them, may be found in Section 10.16.
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i' 3.14 Example: calibrate program

This example uses the function normalize-gwO and avg-specO to produce an animated displav,
showing the properly normalized power spectrum of the interferometer, with a 3O-second charac-
teristic time moving average. After compilation, to run the program type:

calibrate | *gr -pipe &
to get an animated display shorving the calibrated power spectrum changing. An example of the
output from calibrate is shown in Figure 6. Note that most of the execution time here is spent
passing data down the pipe to xngr and displaying it. The display can be speeded up by a factor of
ten by binning the output values to reduce their number to a few hundred lines (the example pro-
gram calibrate}inned. c implements this technique; it can be run by typing calibrate-binned
I xmgr -pipe).

Calibrated IFO Soectrum
80.521896 sec since last lock. t = 80.521896 sec.

1o*

10-to

lo-tt

t (Hz't

Figure 6: This shows a snapshot of the output from the program calibrate which displays an
animated average power spectrum (Welch windowed, 3O-second decay time).

/* GRASP: Copyright 1997, Bruce Allen x/
#include "grasp.h"

#define NPOINT 4096

int nain(int argc,char i.*argv) {
void graphout (int, f loat,f loat) ;
void reaLft(f loat*,unsigned long,int) ;
float data INPOINT] , average INPOINT] ,response [2*I[P0INT+4] ;
f loat spec,decaytime;
fl-oat srate , tstart=O, freq, t lock;
FILE * fp i fo ,* fpss,* fp lock;
in t  i ,  j ,code,npoint , renain, i r , i i , reset=O,pass=O;
short datas[NP0INT];
double mod;

/* open the IFO output file, lock file, and swept-sine file */

1o-t'

t  to'"
E rn-t '
o  ' -

E 1o-tu

1o-tu

1 0 '

1o-t"

1 o-tn

A A



f pif o=grasp-open ( " GRASP-DATAPATH", " cha.nnel . 0 " ) ;
f plock=grasp-open( "GRASP-DATAPATTI" , " cha:rnel . 10" ) ;
fpss=grasp-opeu( "GRASP-DATAPATH" , " swept-sine. ascii " ) ;

/* number of points to sample and fft (power of 2) *l
npoint=NP0INT;

/* set the decay time (sec) x/
decayt ine=3O.0;

f+ get data ',f

while I 1 "o6g=get-data (f pif o, f plock, &tstart, npoint, datas, &remain, &srate, 0 ) ) )

/* put data into floats 'r/

for  ( i=0; i (npoiat ; i++)  data[ i ]=datas[ i ]  ;

f x get the normalization x/
i f  (  !pass++)

normalize-gw ( f ps s, 2xnpo int, srate, response) ;

/*. Reset if just locked */
i f  (code==1) {

reset=0;
tlock=tstart;

t

/* track average power spectrum, with Welch windowing. x/
avg-spec (data, average, npoint , &reset, srate, decaytine,2) ;

/x loop over all frequencies except DC ft:0) & Nyquist (i:npointl2) xl

for  (3=1i j (npoint ; j++)  {
/x subscripts of real, imaginary parts x/
11= 1ip; +j ) +1 ;
/x frequency of the point x/
freq=0. Sxsratexj /npoiat ;
/x determine power spectrum in (meters/rHz) e. print it x/

uod=respoose [ir] *response [irJ +response [i i ] *response Ii i1 ;
spec=sqrt (average [j J *nod) ;
printf ( " %e\t7.e\n" , freq, spec) ;

)
/x print out useful things for xmgr program ... x/
graphout (0, tstart , t lock) ;

)
return 0;

'I

J

void graphout(int last,f loat t ine,float t lock) {
static int count=o;
printf ( "&\n" ) ; lx end of set marker x/

/* first time we draw the plot x/
if (count++==O) {

printf ( "@doublebuf f er true\a" ) ;
printf ( "@f ocus off \n") ;
pr in t f  ( "@s0 color  2\n")  ;
printf ("@g0 type logxy\n") ;
pr in t f  ( "@autoscale \n")  ;
printf ("@world xmin 7oe\n", 10. 0) ;
priatf ("@wor1d xmax 7.e\n",5000. 0) ;
printf ( " @r^rorld ynin 7.e\n" , 1 . e- 19) ;

/x keeps display from flashing x/

/x turn off the focus markers x/

/x FFT is red */

/x set graph type to log-log x/

/x autoscale FFT x/

/x set min x x/

/x set max x x/

/x set min y x/

A t r
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printf ( "@world yr.ax %e\n" , 1 . e-9) i /* set max y x/
printf("@yaxis tick niaor on\n") i /* turn ou tick marks x/
pri.ntf ("@yaxis tick roajor on\n") ; l* turn on tick marks x/
printf("@yaxis tick ninor 2\n"); /x turn on tick marks */
printf("@yaxis tick najor 1\n"); /x turn on tick marks x/
printf("@redraw \n"); /* redraw graph x/
printf("@xaxis label- \"f (Hz)\"\n"); /x FFT horizontal axis label x/
prlutf("@yaxis label \"meters/rHz\"\n"); /x FFT vertical axis label x/
printf("@title \uCaLibrated IFO Spectrum\"\n") ; f* set t it le xf

/* set subtitle x/

i
l

f '
I
I

t

pr int f ( "@subt i t le  \ "%.2f  sec s ince
l f  ( ! l as t )  p r i n t f ( "@k i11  s0 \n " ) ;

.t

else {
/* other times we redraw the plot x/

/x set subtitle x/
printf ("@subtit le \o7..2f sec since
printf ("@s0 color 2\n") ;
printf ("@g0 type J-ogxy\n") ;
printf ( "@world :<miu 7oe\n" , 10.0) ;
printf ( "@world :max %e\n" ,5000.0) ;
printf ("@world ymin 7.e\n", 1. e-19) ;
printf ("@world lmax 7.e\n", 1. e-9) ;
pr in t f ( "@yaxis t ick n inor  ou\n") ;
printf("@yaxis tick najor on\n");
pr in t f ( "@yaxis t ick minor  2\n") ;
pr in t f ( "@yaxis t ick najor  1\n") ;
printf ( " @redraw\n" ) ;
i f  f  l ' l e < t )  n r i n f f / t ' f d l . i ' l ' l  e n \ h r r ) .

9 v  \ 4  /  '

)
J
return;

las t  lock .  t  =  o /o .2 f  sec . \ " \n " , t ime- t lock , t ine) ;

/* kill graph; ready to read agai x/

last  lock.  t  = 1, .2f  sec.  \ " \n" , t ine- tLock, t ine)  ;

/x FFT is red x/

/* set graph type to logJog x/

/x set min x 'r,/

/*. set mar< x 'r/

/x set min y */

/* set max y x/

/*. turn on tick marks x/

/,r. turn on tick marks x/

/x turn on tick marks */

/* turn on tick marks */

/*. redraw the graph x/

/x kill graph, ready to read again x/

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for polrer-spectrum example program.



3.15 Example: diag program

This program is a frequency-domain "novelty detector" and provides a simple example of a time-.
frequency diagnostic method. The actual code is not printed here, but may be found in the GRASP
directory srclexanples/examples-40neter in the fiie diag. c.

The method used by diag is as follows:

1. A bufier is loaded with a short stretch of data samples (2048 in this example, about Ll| of. a
second).

2. A (Welch-windowed) pov/er spectrum is calculated from the data in the buffer. In each
frequency bin, this provides a value S(/).

3. Using the same auto-regressive averaging technique described in avg-spec O the mean value of
S(/) is maintained in a time-averaged spectrum (S(/)). The exponential-decay time constant
for this average is AVG-TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average 4.9(/) = l^9(/) -

(S(/))l is determined. Note that the absolute value used here provides a more robust first-
order statistic than would be provided by a standard variance (AS(/))'�.

5. Using the same auto-regressive averaging technique described in avg-specO the value of
AS(/) is maintained in a time-averaged absolute difference (AS(/)). The exponential-decay
time constant for this average is aiso set by AVG-TIME.

6. In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) > TIIRESHOTo x (AS(/))
then a point is plotted for that frequency bin; otherwise no point is plotted for that frequency
bin. In this example, THRESH0LD is set to 6.

7. In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) < rllcruoe x (AS(/)) then
the values of .9(/) and AS(/) are used to "lefine" or "revise" the auto'regressive means
described previously. In this example, INCTUDE is set to 10.

8. Another set of points (1024 inthis example) is loaded into the end of the buffer, pushing out
the oldest 1024 points from the start of the buffer, and the whole loop is restarted at step 2
above.

The diag program can be used to analyze any of the different channels of fast-sampled data, by
setting CHANNEL appropriately. It creates one output file for each locked segment of data. For
exampie if CHANNEL is set to 0 (the IFO channel) and there a,re four locked sections of data, one
obtains a set of files:
chOdiag. 000, chOdiag.001, chOdiag. 002, and ch0diag. 003.
In similar fashion, if CHANNET is set to 1 (the magnetometer) one obtains files:
chldiag. 000, chldiag.001, chldiag. 002, and chldiag. 003.
These files may be used as input to the xngr graphing program, by typing:
xngr chOdiag.000 chldiag.000
(one may specify as many channels as desired on the input line). A typical pair of outputs is shown
in Figures 7 and 8. By specifying several different channels on the command line for starting xrngr,
you can overlay the different channels output with one another. This provides a visual tool for
identifying correlations between the channels (the graphs shown below may be overlaid in different
colors).
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Figure 7: A time-frequency diagnostic graph produced by diag. The vertical line pointed to by
the arrow is a non-stationary noise event in the IFO output,325 seconds into the locked section.
It sounds like a "drip" and might be due to ofi-axis modes in the interferometer optical cavities.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool.
It might be possible to improve its high-frequency time resolution by being clever about using
intermediate information during the recursive calculation of the FFT. One should probably
also experiment with using other statistical measures to assess the behavior of the different
frequency bins. It would be nice to modify this program to also examine the slow sampied
channels (see comment for get-datao).
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19 November 1994 run 1
Time/Frequency statistics for channel I
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Figure 8: A time-frequency diagnostic graph produced by diag.
as the previous graph, but for the magnetometer output. Notice
caused by magnetic field fluctuations.

380.0

This shows the identical period
that the spurious event was not
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4 GRASP Routines: Reading/using FRAME format data

The LIGO and VIRGO projects have recently adopted a data format standard called the FRAME
format for time..domain data. The 4O-meter laboratory at Caltech implemented this data for-
mat in Spring 1997; data taken after that time is in the FRAME format. The FRAME li-
braries are publicly available from the VIRGO project; they may be domloaded from the site
http: / /Iappbp. in2p3 .fr/virgo/Frarnel. Contact Benoit Mours nours@l-app. in2p3. fr for fur-
ther information.

The GRASP package includes routines for reading a.nd using data in the FRAME format. Also
included in the GRASP package is a translator (see Section 10.15) which translates data from the
old data format used in 1994 to the new FRAME format. Data distributed for use with GRASP
will primarily be distributed in this new FRAME format, and over a period of time we will remove
from the GRASP package all of the code and routines which make use of the old format. In order
to help make the transition from old format to FRAME format as smooth as possible, the GRASP
package currently contains both old format and FRAME format versions of all of the exarnple
programs. For example animate and alinateF are two versions of the sarne program. The first
reads data in the old format, the second reads data in the FRAME format. If you are new to
GRASP, we don't recomend that you waste your time with the old data format; start using the
FRAME format immediately.

Data distributed in the FRAME format may not be compatible with future releases of the
FRAME library, so if the FRAME libraries are updated you may need to obtain a new copy of the
standa^rd 40-meter test data set from November 1994. The data that has been distributed and is
currently being distributed makes use of either version 2.20 or 2.30 of the FRAME library. Only two
files in the GRASP package (srclutility/franeinterf ace. c and srclexa.mples/examples-utility/traasla
depend upon the version of the FRAME library. We distribute GRASP with versions of these files
appropriate for different releases (currently 2.20, 2.30, and 2.33) of the FRAME library. The ver-
sion 2.30 FRAME library data format is compatible with versions 2.30 and 2.33 of. the FRAME
library.

In order to give the 1994 40-meter data a form as similar as possible to the data being taken
in 1997 and beyond, the channel names used have been given equivalent "FRAME" forms. These
are shown in Table 5.

Note that new data created in the frame format will attempt to address at least a couple of
the problems in the "old format" data. In particular, new frame format data (i.e., post 1996) has
sample rate in Hz always being powers of 2, for example, 4,096 Hz or 16 Hz or 16,384 Hz. In
addition, each frame always contains a power-of-two number of seconds of data. These conventions
will make it easy to "match up" sample of channels taken at different rates, and to do FFT's of
the channels. However the L994 data does not conform to either of these conventions: each frame
of 1994 data contains 5000 samples of the slow channels, and 50,000 samples of the fast channels,
during a 5.06666... second interval.
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Channel f ( 14 Nov 94 FRAME name ) 18 Nov 94 narne
0
1
2
.)

IFO output
unused
unused

microphone

IFO-DMRO

IFOj\4ike

IFO output
magnetometer

microphone
unused

IFO_DMRO
IFO-Mag-x
IFO_\4ike

A

5
o
7
8
9
10
11
L2
13
L4
15

dc strain
mode cleaner pzt

seismometer
unused
unused
unused

TTL locked
arm 1 visibility
arm 2 visibility

mode cleaner visibility
slow pzt

arm 1 coil driver

IFO-DCDM
PSLJ\4C-V
IFO-Seis-1

IFOl,ock
IFO-EAT
IFO.SAT
IFO-MCR
IFO-SPZT

SUSJE-Coil-V

dc strain
mode cleaner pzt

seismometer
slow pzt

por/er stabilizer
unused

TTL locked
arm 1 visibility
arm 2 visibility

mode cleaner visibility
unused

arm 1 coil driver

IFO-DCDM
PSLIVIC-V
IFO-Seis-1

PSLSPZT-V
PSL-PSS

IFOJock
IFO-EAT
IFO-SAT
IFO-MCR
IFO-SPZT

SUSiE-Coil-V

Table 5: Channel assignments for the November 1994 data runs. Channels 0-3 are the "fast"

channels, sampled at about L0 kHz; the remaining twelve are the "slow" channels, sampled at
about LKHz. The equivalent "FRAME" format names are also given.
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4.L Time-stamps in the November 1994 data-set

There is a serious problem in the original data format used in November 1994. To understand the
nature of this problem, remember that the individual data samples (fast channels) are taken at
about 10kHz, so that the time between samples is about L00 psec. Ideally, the time.stamps of the
individual blocks should be recorded with a precision which is substantially greater than this, i.e.
a few psec at the most. Ilowever the November 1994 time stamps are recorded in two ways: as
an integer number of seconds and msec (with 1000 psec resolution) and as a floating point eiapsed
tirne. This iatter quantity has a resolution of less than one psec at early times, but a resolution of
about 2000 p,sec at late times (say 15,000 sec into a run).

Thus, in translating the November 1994 data into frames (which have 1 nanoseC resolution time-
stamps), a reasonable effort was made to "correct" these time'stamps as much as possible, and to
specify the time at which each data block begins as precisely as possible. After some research, we
believe that the each block of old-format data is precisely 76175: 5.0666666- . . seconds long. So we
have corrected the time stamps accordingly. One can show that in general, our time stamps agree
with those in the original data, when they are expressed as floats, i.e. with the precison recorded
in the original data set. There are some blocks where there is a"n error in the least-significant bit
of the cast-into-float quantif,y; we do not understand this as well as we would like.

Please, be warned that the absolute time indi,cated by these stamps is not correct! These time
starnps were not taken with a modern GPS clock system, or even with an old-fashioned WWV
system. Our understanding is that the real-time computer system on which these data were origi-
nally taken had its clock set by wristwatch, with an accuracy of perhaps *5 minutes.. Indeed the
computer system crashed on November 15, 1994 and the clock was subsequently reset again, so
even the time difference carr not be trusted between Novemberl4 and NovemberLS data. It appears
that the computer clock was not reset after Novemberl5th, so the relative times in the remaining
data may be trustworthy with somewhat better than tL msec accuracy.

In any data anaysis work (such as pulsar searching) where it is important to have precise time.
stamps, these shortcomings must be taken into account. If you really want to determine the times
more precisely than a millisecond, our only suggestion is to examine the seismometer data channel
and correlate it with similar data taken by a system with good time-stamps. We don't know where
to find such data, but it might exist, somewhere, in the public domain. If you do go to this trouble,
please write to us and tell us the conclusions of your study. We would be delighted to correct the
absolute offset error in these November 1994 time.stamps, if someone could show us hovr to do it!

!

52



4.2 F\rnction: fget-cho

int fget-ch(struct fgetoutput *fgetoutput,struct fgetinput *fgetinput)

This is a general function for sequentially reading one or more channels of FRAME format data.
It can be used to obtain either locked sections only, or both locked and unlocked sections, and
to retrieve calibration information from the FRAME data. It concatenates multiple frames and
multiple files containing frames as necessary, to return continuous-in-time sequences.

The inputs to the routine fget-chO are contained in a structure:

struct fgetinput {
int nchan;
char **chnames;

int npoint;
short  ** locat ions;

char  * (x f i les )  O;
iat  in lock;
int seek;
iat calibrate;

) ;

The different elements of the structure are:

ncha.n: Input. The number of channels that you want to retrieve (> 1).

ch.ames: Input. The list of channel nuunes. Each element of chnames[0..ncban-1] is a pointer
to a null-terminated string. Note that the number of channels requested, and their na,rnes,
must not be changed afber the first ca.ll to fget-ch. It is assumed that the fi.rst channel in
the list has the fastest sample rate of any of the requested channels.

npoint: Input. The number of points requested from the first channel. (May change with each
call.)

focations: Input. The iocations in memory where the arrays corresponding to each channel
should be placed are locations [0. .nchan-1] . (Muy change with each call.)

filesO: Input. The name of a function, which takes no arguments, and returns a pointer to a
null-terminated character string. This string is the name of the file to look in for FRAME
format data. If no further frames remain in the file, then the function filesO is called
again. When this function returns a null pointer, it is assumed that no further data remains.
A useful utility function called framefilesO has been provided with GRASP, and may be
used as this argument. (May change with each call.)

inlock: Input. Set to zero, return ail data; set to non-zero, return only the locked sections of
data. If set nonzero, then on output fgetoutput. locklow and fgetoutput. Iockhi will be
set.

seek: Input. Set to zero) return data. Set to non-zero, seek past the data. performing a,ll normal
operations, but do not actually write any data into the arrays pointed to by locations [0. .nchaa-1] .
(May change with each call.) This is useful for skipping rapidly past uninteresting regions of
data, for example, the first few minutes after coming into lock.

calibrate: Input. If set non-zero, return calibration information. If set to z,ero, do not return
calibration information. (Muy change with each call.)

,G
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Except as noted above, it is assumed that none of these input arguments are changed afber the first
call to f get-cbO. It is also assumed that within arry given frame, the numbers of points contained
in different channels are exact integer multiples or fractions of the numbers of points contained in
the other channels.

The outputs from the routine fget-chO are contained in a structure:

struct fgetoutput {
double tstart;
double srate;
int *npoint;
int  *rat ios;

int discarded;
double t f i rst ;
double dt;
double lost lock;
double lastlock;
int returnval;
int frinr:m;
f loat * fr i ;
int tcalibrate;
int locklow;
int lockhi;

a

The difierent elements of the structure are:

tstart: Output. Time stamp of the first point output in channel shnamss [0]. Note: please see
the comments in Section 4.1.

srate: Output. Sample rate (in Hz) of channel chnames [0].

npoint: Output. The number of points returned in channel chnames [iJ is npo:-nt [i] . Note that
npoint [01 is precisely the number of points requested in the input structure f getinput.npoint.

ratios: Output. The sample rate of channel chnames [O] divided by the sample rate of channel
chnaoes [iJ is given in ratios [i] . Thus ratios [O] =t.

discarded: The number of points discarded from channel chnanes [O]. These points are discarded
because there is a missing period of time between two consecutive frames, or because the
instrument was not in lock for long enough to return the requested number of points (or for
both reasons).

tf irst: Output. The time stamp of the first point returned in the first call to f get-ch O .

dt: Output. By definition, tstart-tf irst, which is the elapsed time since the first time stamp.

lostlock: Output. The time at which we last lost lock (if searching oniy for locked segments).

lastlock: Output. The time at which we iast regained lock (if searching only for locked segments).

returnval: Output. The return value of fget-chO: 0 if it is unable to satisfy the request, 1 if
the request has been satisfied by beginning a new locked or continuous-in-time section, and
2 if the data returned is part of an ongoing locked or continuous-in-time sequence.

I
i
i _
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fgetinput. iulock=0;

)
else {

f* only locked x/
fgetinput. j.nlock=1;

)

fgetinput. seek=O;
f getinput . calibrate=0 ;
fgetinput . locations [0] =data;

while (1) {
/* get npoint points of data xf
code=f get-ch (&f getoutput, &f getinput ) ;
tstart=f getoutput . dt ;
srate=f getoutput . srate ;

/x if no data remains, exit loop r,/
if (code==O) break;

/* if starting a new locked segment, print banner x/
if (code==1) {

priatf(u-----__--_-_ NEIJ L0CKED SEGMENT --\n\n");
priutf(" Tine (sec)\t IFO output\n");

l
/* now output the data x/
for  ( i=0; i (npoint ; i++)  {

t ime=tstart+i/srate;
printf ( "7"f \t7.d\n" ,t ine, (iat)data[i] ) ;

)
l

)
/* close the data files, and return x/
return 0;
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4.6 Example: animateF program

This example uses the function fget-ch O described in the previous section to produce an animated
display showing the time series output of the IFO in a lower window, and a simultaneously calculated
FFT power spectrum in the upper window. To run this program, type

set env CRASPJRAMEP LTH / rsr/ local/GRASP/ 18nov94 . 1f rane
alinateF I xngr -pipe

This output from this program must be piped into a public domain graphing program called xngr.
This may be obtained from http: / /plasma-gate.weiznann. ac .LL/Yngr/. (This lists mirror sites
in the USA and Europe also). Some sample output of animateF is shown in Figure g.

Spectrum

f (Hz)

t n

0 t _
0.0

200.0

100.0

o.o

-100^0

-200.0 L
22.O0 22.10

Figure 9: Snapshot of output from animate.
seconds afber acquiring lock, befbre the violin

IFO output 4

22-20 22.30 22.40
t (sec)

This shows the (whitened) CIT 40-meter IFO a few
modes have damped down

After compilation, to run the program tvpe:
animateF I xrngr -pipe &

to get an animated display showing the data flowing by and the power spectrum changing, starting
from the first locked data. You can also use this program with command-line arguments, for
example

ani.nateF LOO 4 500 7 9o0 I .5 | xmgr -pipe &
wil l  show the data from time t:100 to t ime t:104 seconds. then from t:500 to f :507. then
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==>
==>

==>
==)

case O:
delt= (x [ilen-1] -x [0] ) / (ilen-1 . 0) ;
T= (x [i1eu-1] -x [0] ) ;
setlengtb ( cg, specset, il-.en/ 2) ;
xx=getx(cg,specset);

c a s e  1 :
delt- (x [ilen-l] -x [0] ) / (ilen-1 . 0) ;
1= (x [ i1en-1] -x [0]  )  ;

Figure L0: The corrections to a bug in the xngr program are indicated by the axrows above. This
bug is in the routine doJourierO in the file conputils. c.

from t : 900 to t : 901.5. Notice that the sequence of start times must be increasing. Note: the

start times are measured relative to the first data point in the first frame of data.

Note: The xngr prograrn as commonly distributed has a simple bug that needs to be repaired,

in order for the frequency scale of the Fourier transform to be correct. The corrected version of

xmgr is shown in Figure 10.

/x GRASP: Copyright 1997, Bruce Allen x/
#include "grasp.h"

iat nain(int argc,char xxargv) {
void graphout (f loat, f loat, int) ;
f loat  ts tar t=1.  e35,srate=1.  e-30, tn in, tmax,dt ;
double tine;
in t  i ,seq=0,code,npoint=4096 ;
short xdata;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

/,r number of channels x/
fgetinput . nchan=1 ;

/x source of files x/
f getiuput . f iles=f raoef iles ;

/* storage for channel names, data locations, points returned, ratios x/

fgetinput . 653amss= (char xx)malloc (fgetinput . nch:n*sizeof (char *) ) ;
fgetinput . Iocations= (short x*)nalloc (fgetinput . ncbaa*sizeof (short x) ) ;
f getoutput . npoint= ( int x ) roalloc (f get input . nchanxsizeof (int) ) ;
f getoutput . ratios= ( j.nt x ) na11oc (f getinput . ncha.uxsizeof (int) ) ;

/x set up channel names, etc. for different cases */
fgetinput . 6hn:rngs [0] =', fF0_DMR0" ;

/x set up for different cases x/
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if (NIILL !=getenv("GRASP-REALTIME")) 1
/x 40 meter lab *f
f get input . chn ame s [9] =get env ( " GRASP-REALTIME" ) ;
fgetinput. inlock=O;

!=" 1
/* Nov 1994 data set */
fgetinput. inlock=1;

)

/x number of points to get *f
fgetinput . npoint=npoint ;

/x don't seek, we need the sample values! x/
fgetinput. seek=0;

/* but we don't need calibration information x/
f getinput . calibrate=0 ;

/x allocate storage space for data xf
4atr3= (short x)nalIoc ( sizeof (short) xnpoint) ;
fgetinput. Iocatj.ons [0] =data;

/x handle case where user has supplied t or dt arguments x/
if (argc==1) {

tnin=-1 . e30;
dt=2.  e30;
argc=-1;

)

/x  now loop . . .  x /
seq=argc;
whi le  (argc l=1)  {

f * get the next start time and dt x/
i f  (argc t=-1)  {

sscaaf (argv [seq-argc+1] , "7"f " , &tmin) ;
sssanf (argv [seq-argc+2) ,"y,t" , &dt) ;
atgc-=2;

!

/x calculate the end of the observation interval, and get data */

tmax=tuin+dt;
uhi le  (1)  {

/x decide whether to skip (seek) or get sample values x/
if (tstartctroin- (npoiut+2O. ) /srate)

fgetinput . seek=1;
e lse

fgetinput. seek=0;

/* seek, or get the sample values x/
code=f get-ch (&f getoutput, &f getinput) ;

/x elapsed time, sample rate xf
tstart=f getoutput . dt ;
srate=f getoutPut . srate ;
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)
l
I

relurn

/* if no data left, return x/
if (code==o) return 0;

/x we need to be outputting now.. . */
if (tnin<=tstart){

for  ( i=0; i (npoint ; i++)  {
t ine=tstart+i/srate;
printf ("7"f \t7.d\n" ,t ine,data [i] ) ;

)

fx put out information for the graphing program x/
graphout (tstart,tstart+npoint/srate, (argc==! && tine>=tnax) ) ;

\
t

f * if we are done with this interval, try next one xf
if (tine)=tnax) break;

0 ;

/x set IFO green */
/.. FFT it x/

I
I

/x This routine is pipes output into the xmgr graphing program */
void graphout(float x1,float x2,iat last) {

static int count=0;
printf ("&\n") ; /x end of set marker x/

/x first time we draw the plot * /
if (cor:nt==O) {

printf("@doublebuffer true\n") ; /* keeps display from flashing x/
printf("@s0 coLor 3\n"); /x IFO graph is green x/
prJ.nt f  ( "@view 0.1,  0.1,  0.9,  0.45\n")  ;  f  *  set  the v iewport  for  IFO x/
printf("@with g1\a") ; /x reset the current graph to FFT x/
pr in t f ( "@view 0.1,  0.6,  0.9,  0.95\u") ; /x  set  the v iewport  FFT x/
printf("@with g0\n") ; lx reset the current graph to IFO x/
prlntf ("@world :<nin %f\n",x1); /x set min x *,/
prlntf ("@world :max 7.f \n" ,x2) ; /x set max x *./
printf("@autoscale\n") ; lx autoscale first time through x/
printf("@focus off\n") ; /x turn off the focus markers x/
printf("@xaxis 1abel \"t (sec)\"\nu); /*, IFO axis label x/
pr iDt f ( "@ff t (s0,  1) \n") ;  lx  compute the spectrum x/
pr int f ( "@s1 color  2\n") ;  /x  FFT is  red x/
priutf("@nove g0.s1 to 91.sO\a") ; l* move FFT to graph 1 x/
printf ("@with g1\n") ; l* set the focus on FFT *,/
printf("@gl type logy\n") ; lx set FFT to log freq axis x/
printf ( 'r@autoscale\n" ) ; /x autoscale FFT x/
printf("@subtit le \"Spectrum\"\n") ; l* set the subtit le x/
printf("@xaxis label \"f (Hz)\"\n"); /x FFT axis label x/
printf("@wj.th g0\n") ; lx reset the current graph IFO */
printf ("@subtitle \"IFO output 7.d\"\nu , count++) ; /* set IFO subtitle x/
j.f (! last) printf ("@kj.11 sO\a") ; l* ki l l  IFO; ready to read again x/

1t
else {

/* other times we redraw the plot x/

p r in t f  ( "@s0 co lo r  3 \n" )  ;
p r ia t f  ( "@f f t (s0 ,  1 ) \n " )  ;

OD



t pr int f  ( "@s1 color  2\n")  ;
p r i n t f ( "@move  g0 .s1  to  g1 .s0 \n " ) ;

/x set FFT red x/

/x move FFT to graph 1 x/
printf("@subtj.tLe \uIFO output 7.d\"\nu,count++);/* set IFO subtit le x/
printf ("@vor1d :oin 7.f \n" ,x1) ;
printf ("@$orld :max %f \n" ,x2) ;
printf ("@autoscale yaxes\n" ) ;
printf ("@clear stack\n") ;
i f  ( l last )  pr in t f ( "@ki11 s0\n") ;
pr in t f ( "@with g l \n") ;
printf ("@g1 type logy\n") ;
printf ( ' !@clear stack\u" ) ;
i t  ( ! last )  pr in t f ( "@ki I I  s0\n") ;
printf ("@wi.th g0\n") ;

]
return;

/x set min x x/

/x set max x x/

/x autoscale IFO x/

fx clear the stack x/

/x kill IFO data */

/x switch to FFT x/

/x set FFT to log freq axis x/

f* clear stack x/

/x kill FFT x/

f 'r ready to read IFO again x/
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4.7 Swept-sine calibration information

The swept sine calibration files are &column ASCII files, of the form:

' m

where t}re f i are frequencies, in Hz, and ri and i,i arc dimensionless ratios of voltages. There are

typicaliy rn : 801 lines in these files. The data from these files (as well as one additional line of

the form
0.0 0.0 0.0
showing vanishing response at DC) have been included in the frames. Each line gives the ratio of

the IFO output voltage to a calibration coil driving voltage, at a different frequency. The ri are the
"real part" of the response, i.e. the ratio of the IFO output in phase with the coil driving voltage,

to the coil driving voltage. Tlne i,i are the "imaginary part" of the response, 90 degrees out of phase

with the coil driving voltage. The sign of the phase (or equivalently, the sign of the imaginary part

of the response) is determined by the following convention. Suppose that the driving voltage (in

volts) is
Vcoit :10 cos(u,'t) : 10fte'" (4.7.7)

where a : 2tr x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of

the interferometer output to this is (again, in volts)

fo ro i's
fr rL iy
fz 12 i'2

irnJ m

Vlro : 6.93 cos(c.rt) + a sin(c.,'t)
: 6.93 cos(c..'t) -4 cos(c.rt+r12)
: 3 P"i(rut-nl6) (4.7.2)

This is shown in Figure 11. An electrical engineer would describe this situation by sayrng that the

phase of the response Vlro is lagging the phase of the driving signal %ol bX 30'. The corresponding

line in the swept sine calibration file would read:

0.6930 -0.40000

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote

this entry in the swept sine calibration file by 5(60) : 0.8 .-ir/6 : 0.693 - 0.400i. Because the

interferometer output is real, there is also a value implied at negative frequencies which is the

complex conjugate of the positive frequency value: 5(-60) : 5.(60) :0.8 einl6:0.693 + 0.400?.

Because the interferometer has no DC response, it is convenient for us to add one additional

point at frequency f : 0 into the output data arrays, with both the real and imagina.ry parts of

the response set to zero. Hence the output arrays contain one element more than the number of

lines in the input files. Note that both of these arrays are arranged in order of increasing frequency;

after adding our one additional point they typically contain 802 points at frequencies from 0 Hz to

5001 Hz.
For the data runs of interest in this section (from November 1994) typically a swept sine cali-

bration curve was taken immediately before each data tape was generated.

60.000
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The inverse Fourier transform is

Figure 11: This shows a driving voltage %o1 (solid curve) and the response voltage %r'o (dotted
curve) as functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of
the in-phase and out-of-phase components of Vlps are contained in the swept-sine calibration files.

We wili shortly address the follovring question. How does one use the dimensionless data in the
swept-sine calibration curve to reconstruct the differential motion Ar(t) (in meters) of the inter-
ferometer arms? Here we address the closely related question: grven V1p6, how do we reconstruct
I/"o1? We choose the sign convention for the Fourier transform which agrees with that of. Numerical
Rec'i,pes: equation (12.1.6) of [1]. The Fourier transform of a function of time lz(t) is

t(,f\: I u'"nt'v1t1at.
J "

r  ^ . - . -
v(t): 

J 
e-zrzttv(f)d,f .

With these conventions, the signals @.7.I) a,nd (4.7.2) shown in in Figure 11
nents:

7."1(60) :5 and 7"o1(-60):5,
yrpo(60) - 4"ir/6 and yrro(-60) - 4u-itt/6

At frequency -fo : 60 Hz the swept sine file contains

s(60) : g.g "-itr/6 + s(-60) : s.(60) :0.8 eiol6

since ̂ 9(-/) : S.(/).
With these choices for our conventions, one can see immediately from our example (and gener-

alize to all frequencies) that

v"o{f): s.(/) ' (4.7.8)

In other words, with the Numerical Recipes 11] conventions for forward and reverse Fourier Thans-
forms, the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by
the complex conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain
a "glitch" in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.

(4.7.3)

(4.7.4)

have Fourier compG

(4.7.5)

(4.7.6)

(4.7.7)

Trro
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4.8 F\rnction: GRcalibrateo

void GRcal ibrate(f loat * fr i , int  f r inun, int  num,f loat *conplex,f loat srate, int  rnethod, int

order)
This is a intermediate-level routine which takes as input a pointer to an array containing the swept

sine data, and outputs an array of interpolated points suitable for calibration of FFT's of the

interferometer output.
The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is fri [0] =/0,

fri [1] =rs, f ri l2f =io, fri [3] =fi, fri l4f =ru fri [5] =i1,... and the total length of the array

is fri [0. . frinun-1] .

frinun: Input. The number of entries in the array fri[0..frinr:m-l]. If this number is not

divisible by three, something is wrong!

nr:m: Input. The number of points l[ in the FFT that we will be calibrating. This is tlpically

N :2k where /c is an integer. In this case, the number of distinct frequency values at which a

calibration is needed is 2k-1* 1 : N12+ 1, corresponding to the number of distinct frequency

values from 0 (DC) to the Nyquist frequency .fNyquist. See for example equation (12.1.5) of

reference [1]. The frequencies are f6: ft4r-pre fori:0,." ,Nf2.

srate: Input. The sample rate F".rnp1g (in Hz) of the data that we are going to be calibrating.

conplex: Input. Pointer to an array complex[0. .s] where s = 2k * 1. The routine calibrateo

fills in this a^rray with interpolated values of the swept sine calibration data, described in the
previous section. The real part of the DC response is in complex [0] , and the imaginary part

is in coropJ.ex [1] . The real/imaginary parts of the response at frequency ft arc in conplex [2J
and conplex [g] and so on. The last two elements of complex [ ] contain the real/imaginary
parts of the response at the Nyquist frequency F"u'npt f 2.

nethod: Input. This integer sets the type of interpoiation used to determine the real and imag-

inary part of the response) at frequencies that lie in between those given in the swept sine

calibration files. Rationai function interpolation is used if nethod:O. Polynomial interpola-

tion is used if method:l. Spline interpolation with natural bounda.ry conditions (ranishing

second derivatives at DC and the Nyquist frequency) is used if method:2.

order: Input. Ignored if spline interpolation is used. If pollrromial interpolation is used, then

order is the order of the interpolating polynomial. If rational function interpolation is used,

then the numerator and denominator are both polynomials of order order f 2 if order is

evenl otherwise the degree of the denominator is (order+L)/2 and that of the numerator is

(order-l,) 12.

The basic problem solved by this routine is that the swept sine calibration data in a frame

typically contain data at a few hundred distinct frequency values. However to properly calibrate

the IFO output, one usually needs this calibration information at a large number of frequencies

corresponding to the distinct frequencies associated with the FFT of a data set. This routine

allows you to choose different possible interpolation methods. If in doubt. we recommend spline

interpolation as the first choice. The interpolation methods are described in detaii in Chapter 3 of

reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu
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Comments: It might be better to interpolate values of /2 times the swept-sine response function,
as this is the quantity needed to compute the iFO response function.
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4.9 Example: print-ssF prograrn

This example uses the function GRcalibrate O to read the swept sine calibration information from
a frame, and then prints out a list of frequencies, real, and imaginary parts interpoiated from this
data. The frequencies are appropriate for the FFT of a 4096 point data set with sample rate srate.
The technique used is spline interpolation. To run this program, and display a graph, tlpe

setenv GRASPfRAMEPATH / usr / Io cal /GRASP/ 18nov94 . 1f rame
print-ssF > outputfile
xngr -nxy outputfile

/x GRASP: Copyright 1997, Bruce Allen x/
#1nclude "grasp.b"

#define NP0INT 4096

1nt nalnO {
float cplx [NPOINT+2] , srate, freq;
in t  npoint , i ;
struct fgetoutput fgetoutput;
struct fgetj.nput fgetinput;

/x we need to ask for some sample values, even though all we want is calibration x/
f getinput. npoint=256 ;

/x number of channels x/
fgetinput.ns!:n=t '

/* storage for channel names, data locations, points returned, ratios x/
f geti.nput . 6hns6ss= ( shar xx ) roaf Lo c (f get input . nchan *.s izeof ( char x) ) ;
f getoutput . npoint= (int x ) nalIo c (f getinput . nchanxs izeof ( iat) ) ;
fgetoutput. ratios= (int *)rnal-loc (fgetinput . nchanxsizeof (int) ) ;

/x use utility function framefilesQ to retrieve file names x/
f getinput . f iles=f ramef iles ;

/x don't care if IFO is in lock x/
fgetinput. inlock=O;

/x don't need data anyway, so might as well seek */
fgetinput. seek=1;

/i. but we DO need the calibration information x/
f getinput. cal-ibrate=1 ;

/*. set the channel name x/
fgetinput. shnamss [0] ="fF0-DMR0" ;

/x number of points of (imagined) FFT x/
npoint=NP0INT;

/x now get the data (none) and calibration (what we want) */
f get-ch (&f getoutput, &f geti.aput) ;

7T





;

t_

I
I
I

i

l* the fast-channel sample l.ate *f
srate=f getoutput . srate ;

/* swept sine calibration array is first argument */
GRcalibrate (fgetoutput. fri,fgetoutput.frinun,npoint, cplx, srate,2,0) ;

/* print out frequency, real, imagina.ry interpolated values */
printf ("# Freq (flz)\tReal\t\tloag\n") ;
for (i=0;i(=NPOINT/2;i++) {

freq=i1"t."e/UlOtnt;
printf ( "%e\t%e\t%e\n" , freq, cplx [2*i] , cplx [2'ri+1] ) ;

)
return O;

Swept Sine Calibration Curue
18 Nov 1994, run 2

o

(u

: u
od

o

3

CE

Figure L2: A swept sine calibration
example program print-ssF.

curve, showing the real and imaginary parts, produced by the

72



4.IO F\rnction: GRnornalizeo

void GRnornalize(float *fri, int frinum, int npoint, float srate,float *resPonse)

This routine generates an array of complex numbers .R(/) from the swept sine information in

a frame, and an overall calibration constant. Multiplying this array of complex numbers by (the

FFT of) the raw IFO_data yields the* (FFT of the) differential displaccnent of the interferometer

arms Al, in meters: Al(/) : R(/)Crro(/). The units of R(/) are meters/ADC-count.
The arguments are:

fri : Input. Pointer to an array containing swept sine data. The format of this data is f ri [0] =.f0,

f ri [1] =r.6, f ri l2l=io, fri [3] =fi, f ri l4-J=ru f ri [5] =ir,... and the total length of the array

is f ri [0. . frinun-1] .

frinurn: Input. The number of entries in the array frilO..frinun-1]. If this number is not

divisible by three, something is wrong!

npoint: Input. The number of points l/ of IFO output which will be used to calculate an FFT

for normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of. the IFO output.

response: Output. Pointer to an array response [0. . s] with s : N * 1 in which E(/) will be

returned. By convention, R(0) : 0 so that response [0] =resPonse [t] =0. Array elements

response [22] and response l2i+Ll contain the real and imaginary parts of R(/) at frequency

,f : fsrate/lf. The response at the Nyquist frequency response [n] =o and response [N+1] =0

by convention.

The absolute normalization of the interferometer can be obtained from the information in the

swept sine file, and one other normalization constant which we denote by Q. It is easy to understand

how this works. In the calibration process) one of the interferometer end mirrors of mass rn is driven

by a magnetic coil. The equation of motion of the driven end mass is

(4.10.1)

where F(t) is the driving force and AJ is the differential length of the two interferometer arms, in

meters. Since the driving force d(t) is proportional to the coil current and thus to the coii voltage,

in frequency space this equation becomes

r)

*  ^Y-67:  F( t )
dto

(-zrifl2Vl: constant x %ol : constant . 
#ffi

(4.r0.2)

We have substituted in equation (4.7.8) which relates Vrro and 7"o;1. The IFO voltage is directly

proportional to the quantity recorded in the IFO output channel: Vrro : ADC x Ctpo, with the

constant ADC being the ratio of the analog-to-digital converters input voltage to output count.

Putting together these factors, the properly normalized value of Al, in meters, may be obtained

from the information in the IFO output channel, the swept sine calibration information, and the

quantities given in Table 6 by

n : Ru) ' di-o with R(f) : I a *99,, .- " \ r  /  _4T2f2S*( f ) :
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Table 6: Quantities entering into normalization of the IFO output.

Descriotion Na,me Value Units
Gravity-wave signal (IFO output) ADC counts

A*D converter sensitivitv Vrro ADC counts
Swept sine calibration Vrro V"oir)-

Calibration constant L.428 x L}-a meter (V""1)-

where the 
- 

denotes Fourier transform, and J denotes frequency in Hz. (Note that, apart from
the complex conjugate on .9, the conventions used in the Fourier transform drop out of this equa-
tion, provided that identical conventions (4-7.3,4.7.4) are applied to both Al and to C1p6)- The
constant quantity Q indicated in the above equations has been calculated and documented in a
series of calibration experiments carried out by Robert Spero. In these calibration experiments,
the interferometer's servo was left open-loop, and the end mass was driven at a single frequency,
hard enough to move the end mass one-half wavelength and shifb the interferences fringes pattern
over by one fringe. In this way, the coil voltage required to bring about a given length motion at
a particular frequency was established, and from this information, the value of Q may be inferred.
During the November 1994 runs the ralue of Q *as grven by

o : ry :1.428* ,o-n-"fl,l" where r,: ztzgs'.o, .
Vcoil melef ELZ"I'

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrateo.

(4.10.4)
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4.Ll Example: power-spectrunF prograrn

This example uses the function GRnormalize O to produce a normalized, properly calibrated power

spectrum of the interferometer noise, using the gravity-wave signal and the swept-sine calibration
information from the frames.

The output of this program is a 2-column file; the first column is frequency and the second
column is the noise in units of metersltfHz. To run this program, and display a graph, type

set env GRASP JRAMEPATH / usr / Lo callGRASP/ 1 8nov94 . 1f rame
power-spectruroF > outputf i1e
)cogr -nxy outputfile

A couole of comments are in order here:

Even though we only need the lnodulus, for pedagogic reasons, we explicitly calculate both the

real and imaginary parts of Al(f): R(,f)Cno(/).

The fast Fourier transform of Al, which we denote FFT[A/], has the same units (meters!) as Al.
As can be immediately seen from Numerical Recipes equation (L2.I.6) the Fourier transform
& t* units of meters-sec and is grven by N: LtFFT[A4, where At is the sample interval.

The (one'sided) power spectrum of Al in metercf tEz is P : ,l+l& where T : NAt is the
total length of the observation interval, in seconds. Hence one has

1.

2.

(4.11.1)

This is the reason for the factor which appeaxs in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed

(see the example pxogram calibrate and the function avg-specO to see how this works).

A sample of the output from this program is shown in Figure 1-3.

/x GRASP: Copyright 1997, Bruce Allen x/
#include "grasp.h"

#define NPOINT 65536

int nainO {
void realft(f loatx,unsip.ed long,int) ;
f loat  response [NPOINT+2] ,data[NP0INT], f req;
float res-rea1 , res-iaag, dl-reaI, dI-inag, cO-real, c0-inag, sPectrum, srate, factor;
int i.,npoi-nt;
short datas[NPOINT];
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

/x We need only the IFO output x/
fgetinPut . nchan=1 '

/x use utility function framefilesQ to retrieve file names x/
f getinput . f iles=f ramef iles ;

/x storage for channel names, data locations, points returned. ratios *f

t ,
P: t l#  Ar  lFFTlA, l l :

v lvl \ t

2Lt
,A/
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f getinput . shlanss= (char xx) nalloc (f getiDput . nchaaxsizeof (cbar x) ) ;
fgetinput . locations= (short xx)nalloc (fgetinput . ag[anxsizeof (sbort x) )
f getoutput . upoint= (int *) nal1oc (f getinput . nchaa*sizeof (iut) ) ;
fgetoutput . r.11qs= (int x) na11oc (fgetinput . nchanxsizeof (iat) ) ;

/x set channel name x/
fgetinput. chnames [0] ="IF0-D]1R0" ;

f * arc we in the 4O-meter lab? ,r/

if (NIILL!=getenv(,'GMSp_REALTIME,)) {
/x for Caltech 4O-meter lab *l
fgetinput. inlock=O;

h"" {
/x for Nov 1994 data set x/
fgetinput. inlock=1;

l

/* number of points to sample and fft (power of 2) xl
f get input . npo int=npo int=NP0 INT ;
f getinput . calibrate=1 ;

/* the array where we want the data to be put x/
fgetinput . locations [0] =datas;

/* skip 200 seconds into locked region fiust seek, no need for data)
fgetinput. seek=1;
fgetoutput. tstart=fgetoutput. Lastlock=o. 0 ;
whj.le (fgetoutput.tstart-fgetoutput. lastlock(200. 0)

f get-ch (&f getoutput, &f getinput) ;

fx and get next stretch ofdata (don't seek, we need data) */
fgetinput. seek=0;
f get-cb (&f getoutput, &f getinput) ;

/x the sample rate xf
srate=f getoutput . srate ;

/* convert gw signal (ADC
for ( i=0; i (NPOINT; i++)

/x FFT the data */
realf t (data-1,npoint, 1)

counts) from shorts to floats x/
data[i] =datas hl ;

;

f * get normalization R(f) using swept sine calibration information from frame *f
GRoonoalize (fgetoutput. fri, fgetoutput . fr inum, npoint, srate,response) ;

/,r one'sided power-spectrum normalization. to
factor=sqrt (2. 0/ (sratexnpoint) ) ;
/x compute dl. Leave off DC (i:0) or Nyquist
for  ( i=1; icnpolnt /2; i++)  {

/x frequency xf
freq=i*"t"te/npoint;

f * rcaI and imaginary parts of tilde c0 */

get meters/rHz x/

(i:npoint/2) treq x/
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cO-real=data [2*i] ;
c0-irnag=da1a [2*i+1J ;
f ,r real and imaginary parts of R */
res-rea1=response [2xi] ;
res-inag=response [2xi+1] ;
f ', real and imaginary parts of tilde dl x/
d1-reaL=cO-realxres-reaI- cO-imag*res-inag ;
d1-1nag=cO-realxre s-i.nag+c0-imagxres-real ;
/* ltilde dl| './
spectrurn=f actor*sqrt (dl-rea1xdl-real+dl-iroagxdl-iroag) ;
/x output freq in Hz, noise power in metersf rHz xf
printf ( "7.e\t7.e\nrr , freer spectrum) ;

]
return 0;

Author: Bruce Allen, bailen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of
the 60 Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) super-
posed on a continuum background (electronics noise, laser shot noise, etc) In such situations,
there are better ways of finding the noise pov/er spectrum (for example, see the multi-taper
methods of David J. Thompson [23], or the textbook by Percival and Walden [Za]). Using
methods such as the F-test to remove line features from the time'domain data stream might
reduce the sidelobe contamination (bias) from nearby frequency bins, and thus permit an
effective reduction of instrument noise near these spectral line features. Further details of
these methods, and some routines that implemen them, may be found in Section 10.16.
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Displacement Spectrum
19 Nov 94 run 3
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Figure l-3: An example of a power spectrum curve produced with polrer-spectrunF. The spectrum
produced off a data tape (with 1-00 point smoothing) is compared to that produced by the HP
spectrum analyzer in the lab.
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4.L2 Example: calibrateF program

This example uses the function GRnormalizeO and avg-specO to produce an animated displav,
showing the properly normalized power spectrum of the interferometer, with a 30-second charac-
teristic time moving average. After compilation, to run the program type:

set env GRASPJRAMEP ATH / usr/1oca1/GRASP/ 18nov94 . 1f rame
calibrateF I xmgr -pipe &

to get an animated display showing the calibrated power spectrum changing. An example of the
output from calibrateF is shown in Figure L4. Note that most of the execution time here is
spent passing data down the pipe to xmgr and displaying it. The display can be speeded up
by a factor of ten by binning the output values to reduce their number to a few hundred lines
(the example program calibrate-binnedF.c implements this technique; it can be run by typing
calibrate-binnedF I xmgr -pipe).

Calibrated IFO Spectrum
80.521896 sec since last lock. I = 80.521896 sec.

10-'

1o-to

l o t t

1o- t t

1o-tu

1o-tt

1o-t"

1o-tn

t (Hz)

Figure 14: This shows a snapshot of the output from the program calibrateF which displays an
animated average power spectrum (Welch windowed, 30-second decay time).

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.b"

#define NPOINT 4096

int naino {
void graphout (int, f loat,f loat) ;
float data INPOINT] , average [NP0INT] , response [2*NP0INT+4] ;
f loat spec,decaytine;
float srate , tstart=0 , freq, t lock;
i n t  i , j , code ,npo in t ,  i r ,  i i , r ese t=O,pass=O;
short datasINPOINT];
double mod;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

|  10 '"

? to"'
E ro-'u
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/x number of channels needed is one */
fgetinput . achaa=1 ;

/x use utility function framefilesQ to retrieve file names x/
f getinput . f iles=f ramef iles ;

/x storage for channel names, data locations, points returned, ratios x/
f get iaput . shlamss= ( ghar x*) na11oc (f get input . nchan xsizeof ( char x ) ) ;
fget input . Iocat ions=(short  *x)mal loc( fget input .nch:nxsizeof(shor t  * ) ) ;

f getoutput . npoi.nt= ( i.nt *) nalloc (f get input . nchanxsizeot ( int) ) ;
f getoutput . ratios= ( int x) nalloc (f get input . ach:nxsizeof (int) ) ;

/x set up channel name x/
fgeti.nput . chnames [0] =" IF0-DMR0" ;

/* set up channel names for different cases x/
1f (NULL!=getenv("GRASP-REALTIME")) {

f x for Caltech 4O-meter lab ,r/

fgetiaput. ialock=0;

)
else {

/x for Nov 1994 data set x/
fgetinput. ialock=l;

j

/x number of points to sample and fft (power ot 2) * I
f getinput . npoiut=opoint=NP0INT ;

/* we do need the data, so don't seek x/
fgetinput. seek=O;

/x do need calibration information x/
fgetiaput . calibrate=1 ;

/x where to put the data points */
fgetiuput. locatioos [0] =datas;

/x set the decay time (sec) x/
decayt ine=30.0;

f* get data *f
whiLe (code=Jget-ch(&fgetoutput,&fgetlnput) ) {

tstart=f getoutput. dt ;
srate=f getoutput . srate ;

/x put data into floats x/
for  ( i=0; i (apoi .nt ; i++)  data[ i ]=datas [ i ]  ;

/* use the swept-sine calibration (properly interpolated) to get R(f) */

i f  ( !pass++) GRnornaf ize( fgetoutput . f r i , fgetoutput . f r inun,2xapoint ,srate, resPoase);

/x Reset if just locked x/
i f  (code==1) {

reset=O;
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t lock=tstart;
1
.t

f * track average power spectrum, with Welch windowing. x/
avg-spec (data, average, npoint, &reset , srate, decaytine,2) ;

/x loop over all frequencies except DC 0:0) & Nyquist (1=npointl2) *l
f o r  ( j =1 ; j ( npo in t ; j ++ )  {

/x subscripts of real, imaginary parts x/
11= (11=j+j ) +1 i
/x frequency of the point x/
f req=g . 5'ksratex j /npoint ;
/,r, determine power spectrum in (meters/rH") g- print it x/
rood=response [1r] *response IirJ +response [i i ] *response [i i l  ;
spec=sqrt (average [j 3 xnod) ;
printf ( "%e\t%e\n",freq, spec) ;

)
/x print out useful things for xmgr program ... x/
graphout (0, tstart, t lock) ;

i
return 0;

)

voi.d grapb.out(int last,f loat t ime,float t lock) {
static int count=0;
p r i n t f ( "& \a " ) ;

/* first time we draw the plot */
if (count++==o) {

printf ("@doublebuffer true\n") ;
printf ("@focus off\n") ;
printf("@s0 col-or 2\n") ;
printf ("@g0 type logxy\n") ;
printf ( "@autoscale \n") ;
printf ( "@world :<min 7oe\n" , 10.0) ;
priatf ( " @world :rmax 7.e\n" , 5000 . 0) ;
printf ("@worId ymin /.e\n" ,1. e-19) ;
printf ("@world ymax 7.e\n", 1.e-9) ;
prlntf ("@yaxj.s tick ninor on\n") ;
pr in t f ( "@yaxis t ick najor  on\n") ;
printf("@yaxis tick rninor 2\n");
pr in t f ( "@yaxis t ick najor  1\o") ;
pr ia t f ( "@redraw \n") ;

/* end of set marker x/

/* keeps display from flashing */

/x turn off the focus markers x/

/x FFT is red x/

/* set graph type to logJog x/

/,r, autoscale FFT x/

/x set min x x/

f x set maxx *f

/x set min y */

f * s e t m a x y x f
/* turn on tick marks x/

/x turn on tick marks x/

/x turn on tick marks x/

/,r, turn on tick marks */

/x redraw graph x/
printf("@xaxis label \"f (Hz)\"\n"); /* FFT horizontal axis label x/

printf("@yaxis label \ ' tmeters/rHz\"\n"); /x FFT vertical axis label x/
printf("@title \"Calibrated IFO Spectrum\"\n");/x set t it le x/

/x set subtitle x/
pr j .n t f  ( "@subt i t le  \ "7. .2f  sec s ince last  lock.  t  = %.2f  sec. \ " \n" , t ime-t lock, t ine) ;
if ( !1ast) printf("@k111 sO\n") ; l* ki l l  graph; ready to read agai x/

l
e lse {

f * other times we redraw the plot x/

/x set subtitle */
pr in t f ( "@subt i t le  \ '7 . .2 f  sec s j -nce last  lock.
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printf ("@s0 color 2\n") ;
printf ("@g0 type logxy\n") ;
printf ("@world :oin 7oe\D" , :.0.0) ;
printf ("@wor1d :nnax o/og\n",S000.0) 

;
printf ("@world ynin %e\n" , 1. e-19) ;
priatf ("@world Snnax 7.e\n" ,1. e-9) ;
printf ( ' !@yaxis tick miaor on\n") ;
pr ia t f ( "@yaxis t lck najor  on\n") ;
printf("@yaxis tick minor 2\n");
pr in t f ( "@yaxis t ick major  1\n") ;
printf ( "@redraw\n" ) ;
i t  ( ! Iast )  pr iu t f ( "@ki ]1 s0\n") ;

I
)
? o f t 1 h '

/x FFT is red x/

/x set graph type to logJog x/

/* set min x x/

/x set max x x/

/x set min y x/

f * se tmaxy* f
/x turn on tick marks x/

/x turn on tick rnarks x/

/x turn on tick marks x/

/* turn on tick marks x/

/x redraw the graph x/

/x kill graph, ready to read again

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for power-spectrunF example progtarn.
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4.L3 Example: diagF program

This program is a frequency-domain "novelty detector" and provides a simple example of a time-
frequency diagnostic method. The actual code is not printed here, but may be found in the GRASP
directory src,/exanples,/examplesJrarne in the file diagF.c. To run the program type:

s et env GRASPfRAIIEPATH / usr / 7o c aI / GRASP / 78nov94 . 1f rame
diagF &

which will start the diagF program in the background.
The method used by diagF is as follows:

L. A buffer is loaded with a short stretch of data samples (2048 in this example, about Ll\ of. a
second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each
frequency bin, this provides a value ,S(/).

3. Using the same auto-regressive averaging technique described in avg-spec O the mean value of
S(/) is maintained in a time-averaged spectrum (S(/)). The exponential-decay time constant
for this average is AVG-TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average A.t(/) = lS(/) -

(S(/))l is determined. Note that the absolute value used here provides a more robust first-
order statistic than would be provided by a standard variance (AS(/))'�.

5. Using the same auto-regressive averaging technique described in avg-specO the value of
AS(J) is maintained in a time-averaged absolute difference (AS(/)). The exponential-decay
time constant for this average is also set by AVG-TIME.

6. In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) > THRESHOTo x (AS(/))
then a point is plotted for that frequency bin; otherwise no point is plotted for that frequency
bin. In this example, TIIRESHOLD is set to 6.

7. In each frequency bin, A5(/) is compared to (AS(/)). If AS(/) < INCLUDE x (AS(/)) then
the values of S(/) and AS(/) are used to "refine" or "revise" the auto-regressive means
described previously. In this example, INCLUDE is set to 1.0.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out
the oldest 1024 points from the start of the buffer, and the whole loop is restarted at step 2
above.

The diagF program can be used to analyze any of the different channels of fast-sampled data, by
setting CHANNEL appropriately. It creates one output file for each locked segment of data. For
example if CHANNEL is set to 0 (the IFO channel) and there are four locked sections of data, one
obtains a set of files:
chOdiag. 000, chOdiag. 001, chOdiag. 002, and chOdiag. 003.
In similar fashion, if CHANNEL is set to 1 (the magnetometer) one obtains files:
chldiag. 000, chldiag. 001, chldiag. 002, and chldiag. 003.
These files may be used as input to the xngr graphing program, by gping:
xngr chOdiag. 000 ch1diag.000
(one may specify as many channels as desired on the input line). A typical pair of outputs is shown
in Figures 15 and 16. By specifying several different channels on the command line for starting
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19 November 1994 run 1
Time/Frequehcy statistics for channel 0

5000.0

4000.0

3000.0

0.0 ' '
180.0 280.0

Time (sec)

Figure L5: A time-.frequency diagnostic graph produced by diag. The vertical line pointed to by

the arrow is a non-stationary noise event in the IFO output, 325 seconds into the locked section.

It sounds like a "drip" and might be due to off-acis modes in the interferometer optical cavities.

xrgr, you can overlay the different channels output with one another. This provides a visual tool for

identifying correlations between the channels (the graphs shown below may be overlaid in different

colors).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Cornments: This type of time-'frequency event detector appears quite useful as a diagnostic tool.

It might be possible to improve its high-frequency time resolution by being clever about using

intermediate information during the recursive calculation of the FFT. One should probably

also experiment with using other statistical measures to assess the behavior of the different

frequency bins. It would be nice to modify this program to also examine the slow sampled

channels (see comment for get-dataO).
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19 November 1994 run 1
Time/Frequency statistics for channel 1

s000.0

N
I

o

o
6
o

Ll-

4000.0
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2000.0

1000.0

0,0 L
180.0 280.0

Time (sec)

Figure 16: A time-frequency diagnostic graph produced by diag. This shows the identical period
as the previous graph, but for the magnetometer output. Notice that the spurious event was not
caused by magnetic field fluctuations.
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' l 5 GRASP Routines: Gravitational Radiation from Binary Inspi-
ral

one of the principal sources of gravitational radiation which should be detectable with the first or
second generation of interferometric detectors is binary inspiral. This radiation is produced by apair of massive and compact orbiting objects, such as neutron stars or black holes.

The simplest case is when the two objects are describing a circular orbit about their common
center-of-mass, and neither object is spinning about its own axis. With these assumptions the
system is then described, at any time, by the masses rn1 and m2 ofthe objects, and their orbital
frequency o' (It is also necessary to describe the orientation of the orbital plane and the positions
of the masses at a given time; these are details we will sort out later).

For convenience in dealing with dimensional quantities, we introduce the Solar Mass M6 and,
the Solar TimeTs defined by

Mo : 1.989 x 1033 grams

% : (9\ *":4.8e728x 1o-6 sec.\c./ 
- -"

GRASP functions typically measure masses in units of. Mg and times in units of second.s.

(5.0.1)

(5.0.2)
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5.1 Chirp generation routines

The next several subsections document a number of routines for generating "chirps" from coalescing

binaries. This package of routines is intended to be versatile, flexible and robust; and yet still

fairly simple to use. The implementation we have included in this package is based on the second
post-Newtonian treatment of binary inspiral presented in [6] and augmented by the spin-orbit

and spin-spin corrections presented in [7]. The notation we use - even in the source code - closely

reflects the notation used in those papers. In keeping with that notation, these routines calculate the

orbital phase a^nd orbital frequency. The gravitational-wave phase of the dominant quadrupolar

radiation can be obtained by muttiplying the orbital phase by two. The routines can be used

to compute a few chirp waveforms (say to make transparencies for a seminar), or for wholesale

computations of a bank of matched filters.
The routines are flexible in the sense that they have a number of. run-time options available

for choosing the post-Newtonian order of the phase calculations, or choosing whether or not to

include spin effects. We have also isolated those parts of the code where the messy post-Newtonian

coefficients appear; thus the routines may be easily modified to include yet higher-order post-

Newtonian terms as they become available.
The post-Newtonian equations for the orbital phase evolution are notoriously ill-behaved [8, 9]

as the binary system nears coalescence. In this regime the expansion parameters [namely the

relative velocity uf c of.the bodies and/or the field strength GMtotl(?ro"ort)] used in the derivation

are comparable to unity. In post2-Newtonian calculations higher orders such as post3-Newtonian

terms have been discarded. Because of this truncation, quantities that are are positive definite in

an exact calculation (say the energy-loss rate, or the time derivative of the orbital frequency) often

become negative in their post-Newtonian expansion when the orbital separation becomes small.

When this happens you are using a post-Newtonian expression in a regime where its lalidity is

questionable. This is cause for concern, and it may be cause for terminating a chirp calculation;

but, it need not crash your code. A fuil-scale gravitational-wave search will need to compute chirps

over a broad rarlge of parameters, virtually assuring that any post-Newtonian chirp generator will

be pushed into a region of parameter space where it doesn't belong. These routines are designed

to traverse these dangerous regions of parameter space as well as possible and gently warn the user

of the dangers encountered. The calling routines may wish to act on the warnings coming from the

chirp generator. For example a severe warning may prompt the calling routine to discard a given

filter from a data search, because the second post-Newtonian calculation of the chirp is so dubious

that it can't give meaningful results.
In the next several sections we detail the use of three routines used to compute the "chirp"

of a coalescing binary system. The first routine we describe is phaseJrequencyO. This is the

underlying routine for the other chirp routines. Given a set of parameters (e.9. the two masses,

and the upper and lower cut-off frequency for the chirp) it returns the orbital phase and orbital

frequency evolution as a function of time. Next we describe chirpJilterO which returns two

(unnormalized) chirp signals. This routine can be used for wholesale production of a bank of

templates for a coalescing binary search. The routine strainO returns the full second post-

Newtonian gravitational wave strain. This can be used for plotting and examining the expected

waveform of a given coalescing binary, or to add a "realistic" signal into detector noise. The strain

output contains all the (sub)harmonic structure and its amplitude reflects the true astrophysical

distance to the source.
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5.2 tr\rnction: phase-frequencyo

int phase-frequency(float n1, float rn2, float spin1, float spin2, int n-phaseterns,
float *phaseterms, float Initial-Freg, float Max-Freq-Rqst,
float *Max_Freq_Actua1, float Sa-nple_Time, float **phase, float **frequency,

int *steps-a1loc, int *steps-fi.1ld, int err-cd-sprs)

This function computes the orbital phase and orbital frequency evolution of an inspiralling
binary. It returns an integer termination code indicating how and why the chirp calculation teimi-

nated. This routine is the engine that powers the other chirp generation routines. The arguments
are:

ro1: Input. The mass of body-l in solar masses.

ro2: Input. The mass of body-2 in solar masses.

spinl: Input. The dimensionless spin parameter of body-1. See section on spin effects.

spin2: Input. The dimensionless spin parameter of body-2. See section on spin effects.

n-phaseterns: Input. Integer describing the number of post-Newtonian (pN) approximation
terms implemented in the phase and frequency calculations. In the present implementation
this should be set to 5.

phaseterms: Input. The array phase-terros [0. . n-phaseterns-1] specifies which pN approxima-
tion terms will be included in the phase frequency calculations. Setting phase-terms [i] =0.0

nullifys the term. Setting pbase-terrns[i]=1.0 includes the term. This allows for easy run-
time nullification of any term in the phase and frequency evolution, e.g. setting phase-terns [4] =0.0

eliminates the second post-Newtonian terms from the calculation.

faitialfreq: Input. The starting orbital frequency of the chirp in Hz.

MaxJreq3qst: Input. The requested orbital frequency where the chirp will stop. However, the

actual calculation may not proceed all the way to this orbital frequency. This is discussed at

length below.

Maxfreq-Actual: Output. The floating number *MaxJreqictual is the orbital frequency in Hz

where the chirp actually terminated.

Sa-nple-Tine: Input. The time interval between successive samples, in seconds.

phase: Input/Output. The phase ephemeris Q in radians is stored in the array *phase [0. .stepsJilld-lJ .

Input in the sense that much of the internal logic of phaseJrequency O depends on how the
pointers *phase (and *frequency below) are set. If either is set to NULL memory aliocation

will be performed inside pbaseJrequencyO. If both are not NiILt then it is assumed the

calling routine has allocated the memory before calling phaseJrequencyO.

f requency: Input/Output. Similar to phase above. The frequency ephemeris / : dA/dt is stored

in the array *frequency[0. .stepsJi l ld-1].

steps-aiioc: Input/Ouipiii. The inieger *steps-all-oc is the number of foating poini eniries

aliocated for storing the phase and frequency evolution, 'i.e. the length 6f 'r,iphase and
**frequency. This integer should be set in the calling routine if memory is allocated there,
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or it will be set inside phaseJrequencyo if memory is to be allocated there. If both of the
pointers *phase and xfrequency are not NULL then phaseJrequency O understands that the
calling routine is taking responsibility for ailocating the memory for the chirp, and the calling
routine must set *steps-aIloc accordingly. In this case phaseJreguencyO will fill up the
arrays **phase and **frequency until the memory is full (f.e fill them with *steps-aI1oc

of floats) or until the chirp terminates, whichever is less.

stepsJJ-Ild: Output. The integer *stepsJilld is the integer number of time steps actually
computed for this evolution. It is less than or equal to *steps-a1}oc.

clscnc-time: Output. The float xclscnc-tine is the time to coalescence in seconds, measured
from the instant when the orbital frequency is InitialJreq given by t" in Eqs.(5.4.1) and
(5.4.2).

err-cd-sprs: Input. Error code supression. This integer determines at what level of disaster
encountered in the computation of the chirp the user will be explicitly warned about with
a printed message. Set to 0: prints all the termination messages. Set to 4000: suppresses
all but a few messages which are harbingers of complete disaster. The termination messages
are numbered from 0 to 3999 loosely in accordance with their severity (the larger numbers
corresponding to more severe warnings). Any message with a number less than err-cd-sprs
will not be printed. A termination code of 0 means the chirp calculation was executed as
requested. A termination code in the 1000's means the chirp was terminated early because
the post-Newtonian approximantion was deemed no longer valid. A termination code in the
2000's generally indicates some problem with memory allocation. A termination code in the

3000's generally indicates a serious logic fault. Many of these "3000" errors result in the

termination of the routine. If you get an error message number it is easy to find the portion

of source code where the fault occured; just do a character string search on the four digit
number.

This phase and frequency generator has a number of very specialized features which will be dis-

cussed later. However, before we proceed further, we show a simple example of how phaseJrequency ( )
can be used.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Ailen, ballen@dirac.phys.uwm.edu

Comments: This function will need to be extended when results of order 2.5 and 3 post-Newtonian

calculations have been reoorted and published.
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5.3 Example: phase-evoltn program

This exampie uses pbaseJrequencyo to compute the phase and frequency evolution for an in-
spiraling binary and prints the resuits on the screen (stdout). The other output messages go to
stderr.

/x GRASP: Copyright 1997, Bruce Allen x/
#incl-ude "grasp.h"

int rnainO {
f loat m1,m2, spin1, spia2,phaseterns [5], clscnc-t j.ne, xptrphase, xptrf requency ;
float tj.ne,fnitj-alJreq,Max-Freq-Rqst,MaxJreq-Actual ,Sanple-Tiroe,tj.ne-j.n-baad;
int steps-alLoc, steps Ji11d, i, n-pbaseterms, err-cd-sprs, chirp-ok ;

/x Set masses and spins of the orbital system: x/
e l=s)=t .Q;
spinl=spin2=O. ;

/* Set ORBITAL frequency range of the chirp and sample time: */

Sanple-Tiroe=7. /9868.4208984375; /x in seconds x/

/x post-Newtonian [O(l/c^n)] terms you wish to include (or supress)
in the phase and frequency evolution: x/

Init ial-Freq=60. ;
Max-Freq-Rqst=2000. ;

n-phaseterms=5;
phaseterms [0] =1. ;
phaseterns [1] =0. ;
phaseterns l2l =L.;

phaseterms [3] =1. ;
phasetems [4] =1 . ;

/x in cycles/second x/

/* in cycles/second x/

f * the number of entries in phaseterms x/

/x The Newtonian piece x/

/x There is no O(1/c) correction x/

/x The post-Newtonian correction x/

/* The tail correction x/

/x The 2PN correction xf

/x Set memory-allocation and error-code supression logic: x/
ptrphase=ptrf requency=NIJLL ;
err-cd-sprs=0;

/x Use phase-frequencyfl to compute phase and frequency evolution: x/
chirp-ok=phas e-f requency (n1, m2, spin1, spin2, n-phaset erms, phaseterms,

Init ialJreq , MaxJreq-Rqst , &MaxJreq-Actual , Sample-Tiroe , &ptrphase ,
&ptrf requency, &steps-aI1oc, &stepsJ it ld, &clscnc-tine, err-cd-sprs ) ;

/x ... and print out the results: x/
t ine-in-band= (f1oat) (stepsJil ld- 1) *Sanple-Tine ;
fprintf (stderr, tt\nml=o/o1 m2='/"f fnitial-Freq=7"f \n" , m1 ,m2 , Initialfreq) ;
fprintf (stderr, " steps-filLd=7.i steps-a11oc=7,i Max-Freq-A"tro31=o/of\n" ,

steps-f i11d, steps-al1oc, MaxJreq-Actual) ;
fprintf(stderr,"t iue-in-band=7.f clscnc-tiss=o/of\D",tirne-in-band,clscnc-tiroe);
fprintf (stderr, "Termniaati-oa code: 7.1\n\nu , chirp-ok) ;

f or (i.=0; i(stepsJil ld; i++) {
tine=ixSa.nple-Tine ;
printf ( " %i\t7,f\t7"f\t7.f\n' , i , t ime, ptrphase [i] , ptrfrequency [iJ ) ;

)
r a t r r r n  f l  . 1
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Here is the output from the phase-evoltn example:

GRASP:phase-frequencyO :Frequency evolution no longer monotonic.
Terninated at orbital frequency(Hz): 907.465881 and step: 13515
Terminating chirp. Ternination code set to: I2AL
Returning to calling routine.

n1=1.400000 n2=1.400000 Ini t ia l-Freq=60.000000
steps-filId=13515 steps-al1oc=16384 Max-Freq-Actual=907.465881
tine-in-band=t . 369419 clscnc-tine=1 . 369547
Ternination code: 7201

0
1
2
?

5
o

0 . 0 0 0 0 0 0
0 . 0 0 0 1 0 1
0.000203
0.000304
0.000405
0.000507
0 . 0 0 0 6 0 8

0.000000
0.038086
0 . 0 7 6 4 1 6
0.  114502
0.L52710
0.  190918
0.229L26

60.000000
6 0 . 0 0 1 6 5 9
60.003315
60.004967
60.006622
60.008278
60.009930

13507 1 .368709
13508 1 .368811
13509 1 .368912
13510 1 .369013
1 3 5 1 1  1 . 3 6 9 1 1 5
L 3 5 L 2  1 . 3 6 9 2 1 6
13513 1 .369317
13514 1 .369419

807.409851
807.882446
808. 369873
808.873962
809.397034
809.941467
810.508545
8 1 1 . 0 9 0 8 2 0

731.514954
753.4207t5
778.076355
806.010376
837 .697449
872.924805 .
907.445435
907 .465881

The first four lines of output come directly from phaseJrequencyO, and are printed to stderr.
These glve a warning message telling why the chirp calculation was terminated; it no longer had
monotonically increasing frequency. It also tells where the chirp was terminated; after computing
13515 points it has reached a frequency of.907Hz. The termination code (1201) is also printed.

Knowing the termination code makes it easy to find the segment of source code that produced the
termination; just do a search for the character string "720L" and you will find the line of code where

the termination code was set. Setting err-cd-sprs greater than 1201 would suppress the printing

of this wa,rning message and all messages with a termination code less than 1201. However, even
without the printed message the calling routine can determine the value of the termination code;
it is returned by phaseJrequencyO.

The rest of the output comes from the phase-evoltn program. The quantity tine-in-baad:
(stepsJilld-1)xSanple-Time is the length (in seconds) of the computed chirp. The quantity

clscnc-tine is the value of t"that enters Eqs.(5.4.1) below. The four column output from left to
right is the integer index of the data points, time stamp of each point in seconds (starting arbitrarily
from zero), the orbital phase in radians (starting arbitrarily from zero), and the orbital frequency
(starting from the initial frequency of 60Hz).

To summarize: It takes about 1.37 seconds for two 1.4M6 objects to spiral in from an orbital
frequency of 60Hz to an orbital frequency of.9OTHz. The chirp calculation was terminated at 907H2
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- instead of the requested 2OO}Hz - because the post-Newtonian expression used to compute the

chirp is clearly out of its region of validity: the frequency is no longer increasing. Examining

the last few data points shows that the frequency was rising quickiy - as expected - until the

last two data points. During this inspiral the orbital system went through 811 .OelQtr) =129.09

revolutions. The two integer numbers stepsJilld and steps-alloc are the number of actual data

points computed and the number of floating point memory siots allocated, respectively. (Memory is

allocated in blocks of 4096 floats at a time. Thus steps-alLoc will generally exceed stepsJilld.)

The values of the phase and frequency at every 1/Sanple-Tiroe: 1.10333 x LO-a seconds starting

from when the binary had an orbital frequency of 60IIz until it neared "coalescence" at 9O7Hzhave

been calculated.
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5.4 Detailed explanation of phase-frequencyO routine

The phaseJreguency O routine starts with inputs describing the physical properties of the system
(the masses) and an initial frequency from which to start the evolution. We then compute the orbital
frequency evolution [in cycles/second] directly from the formula given in [6]

t@ : ff i{o-"'.(#.#r)o-;/e -f ir- ' 'n
* f ll's=1on=n= + =5=6g1 377 o\ ̂ -",o)

\144b0688' 2sB04Bn+ ff in' )o-" ' j '  
(5'4'1)

where rn1s1 is the total mass of the binary in grams. The time integral of this equation gives the
orbital evolution in cycles. Muitiplying by 2r yields the orbital phase in radians

r.:!

dQ) : d"-;{""'. (#. #') o:/s - Tr' 'n
.(ffi*'ffi, *ffin') o',')

Here O is a dimensionless time variable

-ll,/f ^
o : -+"e- (t" - t) ,

DL6rn1q1

(5.4.2)

(5.4.3)

rl: lt/rz:aot, and t" is the time of coalescence of the two point masses. Similarly the constant /" is
the phase at coalescence, which is arbitrarily set in phaseJrequeacyo so that Q : 0 at the the
initial time. [See the detailed discussion of the phase conventions below.] Also notice that the mass
quantities only appear as ratios with the solar Mass Mg, and the time only appears as a ratio with
the quant i ty To:4.89128 x 10-6 in Eq.(5.0.2).

These formulations of the post-Newtonian equations for the phase and frequency are simple to
implement: each pass through the loop increments the time by the sample time (Sa'nF1e-Tine in
the example) and computes the phase and frequency using Eqs. (5.4.1) and (5.4.2). However, there
is an alternative formulation. In deriving these equations the "natural" equation that arises is of
the form j : p(f). [See e.9. [to] Eq.(s).] This in turn can be integrated to give an equation of the
formt.-t : f U). In our formulation this equation has been inverted - throwing away higher-order
post-Newtonian terms as you go - to give Eq.(5.4.1). However the equation in the form f"-t : T(f)
can also be implemented directly. In this type of formulation one would again increment the time,
but then use a root-finding routine to find the frequency at each time step. Our chosen method has
the advantage of avoiding a time-consuming root-finder at each time step; however the alternative
formulation has undergone fewer damaging post-Newtonian transformations, and may therefore be
more accurate.

In our formulation we only need to call a root-finding routine at the start of the chirp to find the
value of f" - t when the system is at the initial frequency. In order to insure that we find the correct
root for the starting time we begin a search at a time when the leading order prediction of the
frequency is weil below the desired starting frequency. We step forward in time untii we bracket the
root; we then call the Numerical Recipes root-finder rtbisO to compute the root precisely. This
is depicted in the lower right corner of figure 17 where we show the value of the "time" coordinate
X that corresponds to an initial frequency of 60H2. This method is virtually assured of finding the
correct root in that it will find the first solution as we proceed from right to left in figure 1,7. The
primary problem in finding this root is that there may actually be no meaningfull start-time for
the specified chirp. For example, if you you were to specify a chirp with two 1.4Mo objects with
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an initial frequency of 1000H2, you can see from the figure that there is no value of. X (i.e. t"-t)
that corresponds to this frequency. In this case phaseJrequencyO will search from right to left
for the start time. It will notice that it is passing over the peak in the graph and out of the regime
of post-Newtonian viabilty. It will then terminate the search and notify the caller that there is no
solution for the requested chirp.

The behavior of the frequency equation is shovn in figure 17. As time increases the frequency
rises to a maximum and then begins to decrease dramatically. Notice that the maximum occurs
when the dimensionless time parameter g : ,nfu* : X8 is approximately unity; this feature
is only weakiy dependent on the mass ratio. The fact that O = 1 means the post-Newtonian
corrections in Eq.(5.4.1) are comparable to the leading order term. Therefore, this peak is a natural
place to terminate the post-Newtonian chirp approximation. In the exa.mple the code terminated
the chirp for precisely this reason. [S"" the warning message.]

Although it is not shown in the figure the behavior of / as X nears zero is very abrupt; the
function goes sharply negative and then turns around and diverges to *oo as X * 0 (i,.e. t ---> t").
This abrupt behavior will happen on a time scale of order ?6 (a few microseconds). Typical sa.mple
times are likely to be on the order of a tenth of a millisecond, and therefore the iterative loop may
step right over this maximum-minimum-divergence behavior of the frequency function altogether.
Don't worry. The routine phaseJrequencyO handles this case gracefully. The routine will stop
the chirp calculation and warn the caller if the time stepper goes beyond the coalescence time. It
will also stop the chirp calculation if it senses that the time has stepped over the dip in frequency
and is on the strongly divergent part of the frequency curve near the X : 0 axis.
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5.5 F\rnction: chirp-f ilters o

int chirp-fil-ters(float n1, float n2, float spin1, float spin2, int n-phaseterms,
float *phaseterros, float Initial-Freq, float Ma:r-Freq-Rqst,
float *Max_Freq_Actual, float Sarnple_Time, float **ptrptrcos,

float **ptrptrsin, int *steps-aIIoc, int *steps-fi11d, int err-cd-sprs)

This function is a basic stripped-down chirp generator. It computes two - nearly orthogonal - chirp
waveforms for an inspirailing binary. The two chirps differ in phase by rl2 radians. The chirp values
are given by Eqs.(5.6.1) and (5.6.2). Just as the phase and frequency calculator phaseJrequencyo

returns an integer number which describes how the chirp calculation was terminated, this routine
does aiso.

The arguments are;

n1: Input. The mass of body-1 in solar masses.

ra2: Input. The mass of body-2 in solar masses.

spinl: Input. The dimensionless spin parameter of body-l. See section on spin effects.

spin2: Input. The dimensionless spin parameter of body-2. See section on spin effects.

n-phaseterns: Input. Integer describing the number of terms implemented in the phase and
frequency calculations. In the present implementation this should be set to 5.

phaseterns: Input. The array phase-terrns [0. .n-phaseterrns-1] describes which terms will be
included in the phase frequency calculations. Setting phase-tenns [i] =0 nullify3 the term.
Setting phase-terros [i] =t includes the term. This allows for easy run-time nullification of

any term in the phase and frequency evolution, e.g. setting phase-terns [4] =0 eliminates the
second post-Newtonian terms from the calculation.

InitialJreq: Input. The starting orbital frequency of the chirp in Hz.

MaxJreq3qst: Input. The requested orbital frequency where the chirp will stop. However, the
actual calcuiation may not proceed all the way to this orbital frequency.

Maxfreq-Actual: Output. The floating number *MaxJreq-Actual is the orbital frequency in Hz

where the chirp actually terminated.

Sample-Tine: Input. The time interval between points in seconds.

ptrptrCos: Input/Output. The chirp corresponding to Eq.(5.6.1) is stored in
*ptrptrcos[O..stepsJilld-1i. Input in the sense that much of the internai logic of
chirpJiltersO depends on how the pointers *ptrptrCos (and *ptrptrsin below) are
set. If either is set to NIJLL memory allocation will be performed inside chirpJiltersO.

If both are not NULL then it is assumed the calling routine has allocated the memory before

calling cbirpJilters O.

ptrptrSin: Input/Output. Similar to ptrptrCos above. The chirp corresponding to Eq.(5.6.2)

is stored in *ptrptrSin [0. . stepsJilld-1] .
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steps-alloc: Input/Output. The integer *steps-alIoc is the number of floating point entries
allocated for storing the the two chirps, i.e. the number of valid subscripts in the arrays
**ptrptrCos and **ptrptrsin. This integer should be set in the calling routine if memory is
allocated there, or it will be set inside chirpJilters O if memory is to be allocated there. If
both of the pointers *ptrptrCos and {,ptrptrSin are not NULL then chirpJilters O under-
stands that the caliing routine is taking responsibility for allocating the memory for the chirp,
and the calling routine must set *steps-alloc accordingly. In this case cbirpJilterso
will filI up the arrays **ptrptrCos and **ptrptrSin until the memory is full (z.e fill them
qrith xsteps-alIoc of floats) or until the chirp terminates, whichever is less.

stepsJilld: Output. The integer *stepsJilld is the number of time steps (sample values)
actually computed for this evolution. It is less than or equal to xsteps-alloc.

clscnc-tine: Output. The float *cfscnc-tine is the time to coalescence in seconds, measured
from the instant when the orbital frequency is InitialJreq gven by t" in Eqs.(5.4.1) and
(5.4.2).

err-cd-sprs: Input. Error code supression. This integer specifies the level ofdisaster encountered
in the computation of the chirp for which the user will be explicitly warned with a printed
message. Set to 0: prints all the termination messages. Set to 4000: suppresses all but a
few messages which are harbingers of true disaster. The termination messages are numbered
from 0 to 3999 loosely in accordance with their severity (the larger numbers corresponding
to more severe warnings). Any message with a number less than err-cd-sprs will not be
printed. A termination code of 0 means the chirp calculation was executed as requested.
A termination code in the 1000's means the chirp was terminated early because the post-

Newtonian approximantion was deemed no longer valid. A termination code in the 2000's
generally indicates some problem with memory allocation. A termination code in the 3000's
generally indicates a serious logic fault. Many of these "3000" errors result in the termination
of the program. If you get an effor message number it is easy to find the portion of source
code where the fault occuredl just do a character string search on the four digit number.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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t 5.6 Detailed explanation of chirp-f iltersO routine

The routine chirpJilters O calls phaseJrequencyO to find out the how the orbital phase and

frequency evolve in accordance with the input parameters. It then makes a single pass through that

phase and frequency ephemeris, computing the chirps as it goes, and storing the information in the

space already allocated for the phase and frequency. Most of the fault checking and computations

are done in the phaseJrequencyO routine, and all the errors messages and warnings come from

there.
The routine chirpJilters O computes

(5.6.2)

with all the leading numerical factors we display.
If the so called "restricted" post2-Newtonian polarizations fieading order in the amplitude, but

post2-Newtonian phase corrections] are desired, they can be easily assembled from h" and h". The
"*" (plus) polarization is given by

, "_) 
lzrToTy"tf ft)l'lt "o"zte)h"(t) : r\fi", 
l, Mo I

and the other orbital-phase chirp which is rl2 out of phase with h"(t)

h"(t) : r(h)1ryt\ "",,, 2oQ),

h*(t) :-Tf t + cos2 i)hcft) ,
D

and the t'x" (cross) polarization is given by

h*(t): -2ffPori) hs|r) .

Here D is the (luminosity) distance to the source in centimeters, c is the speed of light in centime-

ters/second, and i is the inclination angle (radians) of the of the angular momentum axis of the

source relative to the line.'of-sight. See Will a^nd Wiseman [7] figure 7 for the precise definition of

the inclination angle.
The restricted post2-Newtonian strain amplitude impinging on the detector can also be calcu-

lated from the output of chirpJiltersO by

(5 .6.1)

(5.6.3)

(5.6.4)

h(t) :  F+h+(t) + F"h"(t) ,

where Fa and & are the detector beam-pattern functions.

tD.o.DJ

In the remainder of this section we will clarify some technical issues involving the orbital phase.

First, in computing Q(t) inphaseJrequencyO we have arbitrarily set the constant S"inEq.(5.4.2)
such that Q : 0 at the beginning of the chirp. The astrophysical convention for defining the orbital

phase angle / given in [7] measures @ in the piane of the orbit from the ascending node. [The
ascending node of the orbit is where body-l passes through the plane of the sky going away from the

observer.] Choosing @" in this way we have assumed that body-l is passing through the ascending

node of the orbit at the instant we start our chirp. Detailed information about the overail phase is

not needed for many purposes (f.e. matched filters), therefore our choice is of little consequence.

If this information needs to be included for some application, chirpJilters O can be modified to

do so; thus one can leave the computational engine phaseJrequeacyO untouched.
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The second issue involving the phase is a bit more delicate. We have used the true orbital phase

S(t) to compute oscillatory part of the chirp in Eqs.(5.6.1) and (5.6.2). But should we use the
logarithmically modulated phase variable

(D.O.b ]

in our computation of the chirp? After all, the true phase of the gravitational-wave signal impinging
on the detector is 2tlt. Let us examine the effect on our signal replacing sin2Q in Eq.(5.6.2) with
the logarithmically corrected sin2tlt

sinltl.t : =i,'(24 - 8nm'!gtfG 
h(/(r)//,))

\ s - /

'sin2Q"o"(Wls h(/(r)//,)) - cos 2@sin (snmvtf G 
ht/(t)/t))'  \  c  ' - " ' " - ' /  \  e  * " ' " /

= (t*o(ric6)) sin2Q - (8rm':etf G 
h(/(t)/ / ' )) cos2Q- (5.6.7)

\  "  ' /  \  c  ' " " ' - ' /

The Olllc6] is a post3-Newtonian term and can be neglected in the present post2-Newtonian anal-
ysis. However the coefficient of the cos2$ is a post3/2-Newtonian order correction to the waveform,
and must be included in any full post2-Newtonian analysis. This logarithmic term is included in
the waveform calculation in the strainO routine. However, the last line of Eq.(5.6.7) also shows
that the logarithmic phase correction can be considered a post3/2-Newtonian correction to the am-
plitude. In our present restricted post-Newtonian chirp caiculation we neglect these higher order
amplitude corrections, so we are justified in neglecting the logarithmic correction to the phase.

The advantage of neglecting the logarithm is that it speeds up the calculation of the chirps:
we don't have to compute a logarithm at each time step. However, this may be at expense of
accurately tracking the signal phase of a strongly relativistic source. After all much research has
gone into computing the gravitational wave phase from these sources and we shouldn't willy-niily
discard these phase corrections. Is it difficult to modify our code to include this term? Not at
all. In fact, the inclusion of the logarithmic correction to the gravitational wave phase wouid not
affect phaseJrequencyo, at all. The fact this logarithmic propagation effect only enters the
chirpJiltersO routine and not the phaseJrequencyO routine may seem like a computational
quirk, but this actually has a physical origin: The routine phaseJrequencyO computes the loca"l
orbital phase of the binary; whereas, the physical origin of the logarithmic term is a propagat'ion

effect and has nothing to do with the orbital phase,
This is not say that no log terms will ever be needed in phaseJrequencyO. Note that at

posta-Newtonian order there are log terms which do affect the local instantaneous orbital motion
of the binary so if phaseJrequencyO is ever modified to incorporate that order, then log terms
will appear there also.

Another issue involving the log term in the phase is the presence of the "arbitrary" scale factor

/o entering the definition of. {(t) in Eq.(5.6.6). The net effect of adjusting this constant is to change
the value of another arbitrary constant in our phase and frequency equations; it shifts the value
of t" in Eq.(5.4.3). In order to to facilitate swift computation, we choose /o to be the minimum
frequency of the requested chirp. This insures that the ratio in the logarithm is of order unity
during the chirp computation.

t(t) : r - 
aGrysnf (t) hff (t)lf")
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I 5.7 Example: f i l ters prograrn

This example uses chirpJiltersO to generate two chirps rfZ out of phase with each other. It

also demonstrates a different memory allocation option than the phase-evoIn example program.

/* GRASP: Copyright 1997, Bruce Allen x/

# iac lude "grasp.h"

int naiuo {
f loat m1, m2, spin1, spin2, phaseterns [5], clscnc-t ime, xptrCos, *ptrSin ;
f loat t ine,Init ialJreq,MaxJreq-Rqst,MaxJreq-Actual ,Sarnple-Tine,tine-in-band;
int steps-alloc, stepsJil ld, i, n-phaseterns, err-cd-sprs, chirp-ok ;

/x Set physical parameters of the orbital system: x/

mL=m2=L.4;
spin l=spin2=O. ;

/x Set ORBiTAL frequency range of the chirp and sample time: x/

Initial-Freq=60. ; fx in cyclesfsecond x/

Max-Freq-Rqst=2000.; /x in cycles/second x/

Sample-Tirne=t./ga0A. 4208984375, l* rg]seconds x/

/x post-Ne*'tonian [O(1/c-n)] terms you wish to include (or supress)

in the phase and frequency evolution: x/

n-pbaseterms=5;
phaseterns [0] =1. ;
phaseterms[1]  =0. ;

phaseterns 12) =t. ;
pbaseterns[3] =1. ;
pbaseterms [4] =1. ;

/x Set memory-allocation and error-code supression logic: */

steps-a11oc=10000;
ptrCos= (f loat x)roal-Ioc (sizeof (f toat)l.stePs-a}loc) ;
ptrsir= (float x)aalIoc (sizeof (f loat) xsteps-atIoc) ;
err-cd-sprs=Q; /* 0 means print all warnings x/

/x Use chirp-filters$ to compute the two filters: x/

chirp-ok=chirp-f i1t ers (m1, m2, spin1, spin2, n-phas et erms, phaseterms,

IaitialJreq, MaxJreqJqst , &MaxJreq-Actual , Sample-Time ,
&ptrCos, &ptrSin, &steps-a11oc, &stepsJil ld, &clscnc-time , err-cd-sprs) ;

/x ... and print out the results: x/
t i.me_in_band= (f loat ) ( stepsj i[d- 1 ) xSanpl e_Tine ;
fprintf (stderr, " \nn1=7.f m2='/"f Initial-Freq=o/of \n" , m! ,m2, InitialJreq) ;
fpriatf (stderr, "steps-f i11d=7.i steps-a1loc=7.i Max-Freq-A"3t a1=o/of \D" ,

steps-f i11d, steps-a11oc, MaxJreq-Actual) ;
fprintf (stderr, "time-i-n-baad=7.f clscnc-ting="/of \D" ,tine-in-band, clscac-time) ;

fprintf (stderr, "Termnination code : 7.i\n\n",chirp-ok) ;
for  ( i=0;  i (s tepsJi l ld ;  i .++)  {

tine=i*Sample-Tiue ;
printf ( "7"i\t7.f \t%f \t7.f \n" , i , tine , ptrCos I j.] , Ptrsi.n [i] ) ;

)
return 0;

]

I
I

l* The Newtonian piece x/

/x There is no O(1/c) correction ,r./

/x The post-Newtonian correction x/

/x The tail correction x/

/x The 2PN correction *f
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Figure 18: The zero-phase chirp waveform from a 2 x l.4Ms binary system, starting at an orbital
frequency of. 60 Hz. The top graph shows the frequency of the dominant quadrupole radiation as a
function of time, and the middle graph shows the waveform. The bottom graph shows a 40-msec
stretch near the final inspiral/plunge.

Notice that we only allocated enough memory for L0000 points, and we know from the output
from the previous example that this chirp takes 13515 points. Therefore running this example
results in following error message printed to stderr:

GRASP:phase-frequencyO :Allocated memory is fil1ed up before
reaching the maximum frequency reqested for this chirp,
Orbital Frequency Reached(Hz): 98.867607, Number of points: 10000
Terminating chirp. Terniaatlon code set to: 2001
Returning to calling routlne.

However, even though ihe routine ran out of memory it still computed the first 10000 points of
the chirp and returned them in the arrays *ptrptrCos[0..steps-a11oc-1] and
*ptrptrsin [0. .  steps-a11oc-1] .
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5.8 Practical Suggestion for Setting Up a Large Bank of Filters:

We have carefully explained (how to avoid) a number of the pitfalls in computing post-Newtonian

chirps. Before using the chirp generators to spit out hundreds or thousands of chirps needed for a

bank of filters and farming out the computations out to dozens of paraliel processors in a massive

coalescing binary search, we strongly suggest that you edit the examples already given and check

the routine a$ainst the three extreme cases you will encounter in your S€arch.

1. TYt the example with both masses set to the minimum mass in four piopoSed seardh, z.e.

compute the phase and frequency evolution and the chirps for the template in the upper right
hand corner in figure 32. This is the template of longest duration. If you are going to have a
rnemory allocation probiem you will have it with this template. Also, knowing the duration

of the longest template in your search will help you decide the length of the segments of data
which you fiIter. In general, you want the length of these data segments to be at least several
times longer than the longest chirp. See Section 5.14 for further details.

2. TYy the chirp generator with both masses set to the maximum mass in your search, i.e.

compute the phase and frequency evolution of the template in the lower left corner of figure

32. This is the shortest duration template and the one least likely to make it to the upper

cut off frequency before going out of the region of post-Newtonian viability. This case will

be the most demanding test of the "chirptermination" logic in phaseJrequencyO. It is

also possible in the case of extremely large masses that there really is no chirp at ali in

the frequency regime requested. For example a binary composed of two 100Mo object will

coal.esce long before it reaches the initial chirp frequency of the 60Hz we are using as our a

lower cutoff frequency in our example. Don't worry. The routine phaseJrequencyO will

warn you that the root finder was unable to find a viable solution for the initial time. You

may have to adjust the search range accordingly.

3. fl'y the chirp generator with one mass at the minimum alloril/ed value and the other mass

at the maximum allowed value, i.e. compute the phase and frequency evolution for the

template in the upper left corner of figure 32. This is the template which is most dominated

by post-Newtonian terms in the evolution.

If the routine gives satisfactory results for these three cases, it should work for all the cases shown

in figure 32; you are now ready for wholesale production.
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5.9 F\rnction: na-ke-f ilters o

void nal<ej i l ters(f loat nl , f loat n2,f loat *ch1,f1oat *cb2, f loat fstart , int  n, f loat
srate, int  xf i l led,f loat * t-coal,  int  err-cd-sprs)
This function is an even more stripped down chirp generator, which fiIls a pair of arrays with
waveforms for an inspiralling binary. The two chirps differ in phase by r /2 radians and are given
by Eqs.(5.6.1) and (5.6.2). This routine assumes spinless masses, and eomputes a chirp with phase
corrections up to and including second-order post-Newtonian order.

The arguments are:

n1: Input. The mass of body-l in solar masses.

m2: Input. The mass of body-2 in solar masses.

ch1: Output. Upon return, ch1[0..fi1led-1] contains the O-phase chirp. The remaining array
elements ch1[fiIled. .n-1] are set to zero.

ch2: Output. Upon return, ch2[O..fi[ed-1] contains the rf2-phase chirp. The remaining
array elements ch2ltittea..n-1] are set to zero.

fstart: Input. The starting gravity-wave frequency of the chirp in Hz. Note: this is twice the
orbital frequency!

n: Input. The length of the arrays ch1 [] and ch2 [].

srate: Input. The san:ple rate, in Hz. This is l/At where At is the time interval between
successive entries in the ch1 [] and ch2[1 arrays.

filled: Output. The number of of time steps actually computed, before the chirp calculation
was terminated, or until the arrays were filled (hence fil1ed < n). Thus, on return, only
the array elements ch1[0..fiI1ed-1] and cb2[0..fil led-l] are contain the chirp; the
remaining array elements are zere.padded.

t-coal: Output. The time to coalescense measured from the first point output, in cb* [0j .

err-cd-sprs: Input. Error code supression. This integer specifies the level of disaster encountered
in the computation of the chirp for which the user will be explicitly warned with a printed
message. Set to 0: prints all the termination messages. Set to 4000: suppresses all but a few
messages which are harbingers of true disaster. (See identical argument in chirpJiltersO.

This routine assumes that you have already allocated storage arrays for the chirps. Note that
the coalescence time may be much later than the last non-zero entry written into the chl U and
cb2[J arrays.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.L0 Wiener (optimal) filtering

The technique of opti,mal filtering is a well-studied and well-understood technique which can be

used to search for characteristic signals (in our case, chirps) buried in detector noise. In order to

establish notation, we begin this section with a brief review of the optimal filtering technique.

Suppose that the detector output is a dimensionless strain D(t). (In Section 3 we show how to

construct this quantity for the CIT 40-meter prototype interferometer, using the recorded digital

data stream). We denote bV C(t) the waveform of the signal (i.e., the chirp) which we hope to

find, hidden in detector noise, in the signal stream h(t). Since we would iike to know about chirps

which start at different possible times t6, we'll take C(t) : f(t- te) where 7(t) is the waveform

of a chirp which enters the sensitivity band of the interferometer at time t : 0 (for the moment,

forget about the fact that the chirps come in two different phase "flavors").

We will construct a signal ,5 which is a number, defined by

/nOO

s :  I  d th ( t )Q( t ) ,
J-oo

(5.10.1)

where Q(t) is an optimal filter function in time domain, which we will shortly determine in a way

that maximizes the signal-tenoise ratio SIN or SNR. We will assume that Q is a real function of

time.
We use the Fourier transform conventions of (3.9.3) and (3.9.4), in terms of which we can write

the signal .9 as

r l:flf 
"-znirt+2"i r'' h(f)Q- U')

d.f'5(f - f')h(f)Q"u')

d,fi'(flQ.ff). (5.10.2)

This final expression gives the signal value S written in the frequency domain, rather than in the

time domain.
Now we can ask about the expected value of ,9, which we denote (S). This is the average of S

over an ensemble of detector output streams, each one of which contains an identical chirp signal

C(t) but different realizations of the noise:

h ( t ) : C ( t ) + n ( t ) . (5.10.3)

So for each different realization, C(t) is exactiy the same function, but n(t) varies from each

realization to the next. We will assume that the noise has zero mean value, and that the phases

are randomly distributed, so that (n (/)) : 0. We can then take the expectation value of the signal

in the frequency domain, obtaining

e

:

*l*
rl:

E
t:
E

(5.10.4)

W-e novr define the no,i,se l/ to be the difference between the signal value and its mean for any given

(fl:,[: d,f 0,0)8.0: I* d'fe6)Q.U)

r/: ^e - (s) : I* or^fflQ.U).
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T h e e x p e c t a t i o n v a l u e o f l t r c l e a r l y v a n i s h e s b y d e f i n i t i o n , s o ( N ) : 0 . T h e e x p e c t e d v a I u e o f l f 2 � �
is non-zero, however. It may be calculated from the (one-sided) strain noise power spectrum of the
detector SnU), which is defined by 

F
(ilu)n.u)) : lrnflrl)d(/ - /'), (5.10.6)

and has the property that

(n,(t)) : [* sn(f) df . (s.lo.z)
J O

We can now find the expected value of N2, by squaring equation (5.10.5), taking the expectation I
value, and using (5.10.6), obtaining

1 r d

: 
; J-*.f shlfl)@(il1'�

: [* of sh1)l}(il12. (b.10.8)
Jo

There is a nice way to write the formulae for the expected signal and the expected noise'squared.
We introduce an "inner prod.uct" defined for any pair of (complex) functions A(/) and B(/). The
inner product is a complex number denoted by (A,B) and is defined by 

i
(A,B): [* df A(f)B-(/)sn1/l) .  (b.10.e)

J -oo

Because 56 is real, this inner product has the property that (.4,-4) > 0 for all functions.4(/),
vanishing if and only if A:0. This inner product is what a mathematician would call a "positive

definite norm" I it has all the properties of an ordinary dot product of vectors in three.dimensional
Cartesian space.

In terms of this inner product, we can now write the expected signal, and the expected noise-
squa,red, as

a  1 -
(s) : (;,8) and (rr') : ;(a,A). 

(5.10.10) i

(Note that whenever ,9;, appears inside the inner product, it refers to the function Sa(l/l) rather l
than S7r(/).) Now the question is, how do we choose the optimal filter function Q so that the
expected signal is as large as possible, and the expected noise-squared is as small as possible? The
answer is easy: to maximize the signal-to-noise ratio

(5.10.11)

we choose

QU):  
C( f )  T( f )  ^2r i t to

ff i :ff iu 
(5'10'12)

Going back to the definition of our signal ^9, you will notice that the signal .9 for "arrival time
offset" t9 is given by

fco

s : I athj)e.ff)
J -oo
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(5.10.13)

Given a template f and the signal [, the signal values can be easily eva]uated for any choice of

arrival times t6 by means of a Fourier transform (or FFT, in numerical work). Thus, it is not really

necessary to construct a different filter for each possible arrival timel one can filter data. for all

possible choices of arrival time with a single FFT.
The signai-to-noise ratio for this optimally-chosen filter can be determined by substituting the

optimal filter (5.10.12) into equation (5.10.11), obtaining

(#)' : 2(Q,Q) : z I:-m : n lo* drffi (5.10.14)

You wiil notice that the signal-to-noise ratio Spl in (5.10.11) is independent of the overall normal-

ization of the optirnal filter Q: if we make Q bigger by a factor of ten, both the expected signal

and the expected noise increase by exactly the same amount. For this reason, we will frequently

specify the normalization of the filter so that the expected noise-squa,red from a specified source is

unity: (N') : 1. This adjustment or change of the filter normalization can be obtained by moving

the (fictitious) astrophysical system emitting the chirp template either closer or farther away from

us. Because the metric strain h falls off as 1/distance, the measured signal strength S is then a

direct measure of the inverse distance.
For example, consider a system composed of two 1.4 M6 masses in circular orbit. Suppose that

normalizing the optimal filter for this system so that (l/') : 1 corresponds to putting the system

at a distance of 15 megaparsecs (i.e., choosing C(t) to be the strain produced by an optimally-

orienteti two x 7.4 Mo system at a distance of 15 megaparsecs). If we then detect a signal with

a signal-to-noise ration SIN:30, this corresponds to detecting an optimaliy-oriented source at a

distance of half a megaparsec.
The functions correlateO and productcO are designed to perform this type of optimal

filtering. We document these routines in the following section and in Section s:utility, then provide

a simple example of an optimal filtering program.

There is an additional complication, arising from the fact that the gravitational radiation from

a binary inspiral event is a linear combination of two possible orbital phases, as may be seen by

reference to equations (5.6.1) and (5.6.2). Thus, the strain produced in a detector is a linear

combination of two waveforms, corresponding to each of the two possible (0' and 90') orbital

phases:
h(t) : aTs(t) + 7rgo(t) + n(t). (5.10.15)

Here the subscripts 0 and 90 label the two possible orbital phases; the constants a and B depend

upon the distance to the source (or the normalization of the templates) and the orientation of the

source relative to the detector. Thus "o(t) denotes the (suitably normalized) function h"(t) given

by equation (5.6.1) and ?es(t) denotes the (suitably normalized) function h'(t) given by equation

(5.6.2).
In the optimal filtering, we are now searching for a pair of amplitudes a and B rather than just

a single amplitude. One can easily do this by choosing a filter function

to7) - irgo7)
sn(l/ l)
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We will assume that the individual filters for each polarization are normalized by the convention
just described, and that they are orthogonal:

(5.10.17)

Note that ?6 and ?go are only exactly orthogonal in the adiabatic limit where they each have many

cycles in any frequency interval d/_ in which the noise power spectrum ^9ir(/) changes significantly.

Also note that the filter function 0(/) does not correspond to a real filter Q(t) in the time domain,

since Q(-/) + Q.ff), so that the signal

(* *) :2, and (?'#) :2, and (#'e) : '

s(,0) : (* u)

(I/t') : !@,at
t (fo - iiso "o - z"go\:  t \  st '  sn )
l l  ( t '  "o\ - /rro r"\ l  _ ":  t  L \ r r '  t r )  *  

\ sn '  sn  ) ) :  
" '

/ r i t  1  l a f o + g T g o t o - t f  \
($:  (#,Q) :  ( - - , - , i l *J :2,"*2i9.

Hence the signal-to-noise ratio is
(s)

f f i : a i x l '

ffi : a2 * p, :'r,l t* *)'. (#, #)'

(5.10.18)

is a complex-valued functions of the lag ts. We define the noise as before, by lf - S - (S). it's

mean-souared modulus is

(5.10.1e)

where we have made use of the orthornormality relation (5.10.17). Now the expected signal at zero

l a g t e : Q i 5

(5.10.20)

(5.10.21)

In the absence of a signal (S) : 0 and the variance of this quantity (from the definition of l/) is

unity:
f ls l ' )  _ ,
flArl1 

- ' '

In the presence of a signal, the signal-to-noise ratio is

(5.r0.22)

(5.10.23)

The attentive reader will notice that we have lost a factor of rt in the signal-to-noise ratio compared

to the case where we were searching for only a single phase of waveform. This is because of the

additional uncertainty associated with our lack of information about the relative contributions of

the tw'o orbital phases. In other words, if we know in advance that a waveform is composed entirely

of the zero-degree orbital phase, then the expectation value of the signal-to-noise, determined by

equation (5.10.11) would be given by (S)/N : {2a. However if we need to search for the correct

linear combination of the two possible phase waveforms, then the expectation value of the signal-

to-noise is reduced to (S)/N : a.

L07



5.11 tr\rnction: correlateo

void correlate(float *s,float *b,float *c,float *r,int n) This function evaluates the

correlation (as a function of lag time t) defined by the discrete equivalent of equation (5.10.13):

s(t) : df hu)z. (f )F (fl e-z"t' rt (5 .1 i .1)

It is assumed that [(1) ana Eff) are Fourier transforms of real functions, and that f(f) is real. The

factor of 112 appears in (5.11.1) for efficiency reasons; in order to calculate the integral (5.10.13)

one should set r(/) :2lSnU). The routine assumes that F vanishes at both DC and the Nyquist
frequency.

The arguments are:

s: Output. Upon return, the array s[0..n-1] contains the correlation s(t) at times

f  :0 ,  L t ,2At , . - '  , (n  -  1)At . (5.11.2)

Input. The array h[0..a-1] contains the positive frequency (/ > 0) part of the complex

function n(/). fn" packing of h into this array follovrs the scheme used by the Numerical

Recipes routine realftO, which is described between equations (12.3.5) and (12.3.6) of [t].
The DC component [10; ir real, and ]ocated in h [O] . The Nyquist-frequency component

h("fNvq"i"t) is also real, and is located in h[1]._The array elements h[2] and h[3] contain

the ieal and imaginary parts, respectively, of [1a1; where Af :2fNycur"t/n-: (nAt)-l'

Array elements ht2jl and h[23'+f] contain the real and imaginary parts of h(j A/) for

j : L,. . . .,n12- 1. It is assumed that h(/) is the Fourier transform of a real function, so_that

correlate O can infer the negative frequency components from the equatio" h(- f ) : h* (f)

In_put. The array c[0..n-f] contains the complex function 6, packed in the same format as

[1;;, *itft the same assumption that a(-/) : e.(l). Note that while you provide the function

e(/) to the routine, it is the compler-conjugate of. the function contained in the array c[ J

which is used in calculating the correlation. Thus if f is positive, correlate(s,c,c,r,a)

will always return s[o] > 0.

Input. The array rlo..n/2f contains the values of the real function f used as a weight in the

integral. This is often chosel to be (twice!) the inverse of the receiver noise, as in equation

(5.10.13), so that F(f):ZlSn(fl)- The array elements axe arranged in order of increasing

frequency, from the DC va.lue at subscript 0, to the Nyquist frequency at subscript n/2. Thus,

the j'th array element r [j] contains the real ralue f ff A/), for j : 0,7," ' ,n/2' Agun it is

assumed that i(-/) : i.(/) : F(f).

n: Input. The total length of the complex arrays h and c, and the number of points in the output

array s. Note that the array r contains nl2+ l points. n must be even.

The correlation function calculated by this routine is |f ff-rlne.f] and has the same dimensions

as the oroduct ir, x Ex f. The definition is

tn

h:

I  l l - 1

sk : ; lnicltP-2zri'jk/no  j =o

where it is understood that In-i: hl and that Z,-7: cl, and that Fo-i:ii.
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5.13 Function: orthononnalizeo

void orthonormal ize(f loatx chOti lde,f loat* ch9Oti lde,f loat* twice- inv-aoise, int  n, f loatx
n0,f1oat* n90)
This function takes as input the (positive frequency parts of the) FFT of a pair of chirp signals.
Upon return, the 90o phase chirp has been made orthogonal to the 0o phase chirp, with respect to
the inner product defined by 2lS7r. The normalizations of the chirps are also returned.

The arguments are:

ch0tilde: Input. The FFT ofthe zero-phase chirp 7e.

ch90tilde: Input/Output. The FFT of the 90'-phase chirp ?e6.

twice-inv--noise : Input. Array containing 2/^97r.

n: Input. Defines the length of the arrays: chOtilde [0 . . n-1] , ch9Oti1de [0. . n-1] , and twice-inv-aoise [r,,

n0: Output. The normalization of the 0-phase chirp.

n90: Output. The normalization of the 9O'-phase chirp.

Usingthenotationof(5.10.9)onemaydefineaninnerproductofthechirps.Thenormalizations
are defined as follows:

)  = l (eo,eo),  (b.13.1)
n 6 z

where Qo is the optimal filter defined for the zero-phase chirp 7s. The chirps are orthogalized
internally using the Gram-Schmidt procedure. We first calculate (Qo,Qo) and (Qes,8o) then
def ine€: (Qso,Qo) l (Qo,Qo) .Wethenmodi fy the90o-phasech i rpse t t ingTgo.?99_e?g.Th is
ensures that the inner product (Qgo, Qs) vanishes. The normalization for this newly-defined chirp I

is then defined by
i

/ <  l a  t \  :
\ u .  r u . 4 /  i

Author: Bruce Allen, balien@dirac.phys.uwm.edu

Comments: Notice that the filters Qe and Qe6 are not in general orthogonal except in the adiabatic
limit as Snff) varies very slowly with changing /. Our approach to this is to construct a
slightly-modified ninety-degree phase signal. Note however that this may introduce small
errors in the determination of the orbital ohase. This should be ouantified.

I

| r=)re 'o '  oso) '
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S(io) :

Thus, if the data is treated as periodic, and the template is treated as periodic) one can compute
the correlation as a function of time using only an FFT. In particular, the use of rectangular
windowing does create sidelobes of the template's frequency components. However it also creates
identical sidelobes of the signal's frequency components - so in effect the correlation in the time
domain can be calculated exactly, without any windowing of the signal being necessary.

The only complication arises from the fact that the FFT treats the data as being periodic. Let's
consider some simple examples to illustrate the effects of this. In all of our examples, the number
of data points is .l{ : 65,536 : 216 and the (schematic) chirp filter has length m : 13,500 and is
zero-padded after that time. Please remember, in all the figures that follow, to identify the far right
hand side of the $aph (i : 65535) with the far lefb hand side (? : 0). Figure 19 shows S(ie) for
a schematic chirp which begins at the first data point in the rectangular window. You will notice
that the filter output peaks at i :0. If the incoming chirp arrives somewhat later (it starts at
z : 15,000) as shown in Figure 20 then the the fiiter output peaks at the start time, as shown. A
chirp in the signal which starts at the i : 65,535 - 13,500 as shown in Figure 21 causes the filter
output to peak at i : 52,035. Thus, in order to find chirps, we need to find the maxima of the
filter output over the interval i, : 0.. -,N - m.

Chirp fiiters can be "stimulated" or "triggered" by events that are not chirps. We will shortly
discuss some techniques that can be used to distinguish triggering events that are chirps from
those that are simply noise spikes or other transient (but non-chirp) varities of non-stationary
interferometer noise. Suppose that a chirp filter is triggered by some kind of transient event in

N-1 N-1

t t u-2riik/ N fir"-2ri(j -io)k' / N f*,
&=0 &/:0
N- l

f Nd*.-u, uhtiiok' / N l1rf1r,
kt:0

71J"-2triiok/N hrfi.

(5.14.3)

(5.14.4)

(5.14.5)

5.L4 Dirty details of optimal filtering: wraparound and windowing

To carry out optimal filtering, we need to break the data set (which might be hour, days, or weeks
in length) into shorter stretches of l/ points (which might be seconds or minutes in length). We
can understand the effects of "chopping up" the data most easily in the case for which (1) the
instrument noise is wh'ite, so that Sn(f) : L; (2) the source is so close that it's signal overwhelms
the noise in the IFO, and (3) we are looking for a signal with a given phase (not a linear combination
of the two orbital phases).

We want to calculate a signal ^9 as a function of lag t6 using an FFT.

s(to) (5.14.1)

where we have written both the continuous-time and discrete-.time version of the same equation.
Using the definition of the discrete Fourier transform, and writing

N- l  N - l

hi : D "-2trtik/Nlrr and Ti-oo : I e-z"t{i-io)k'/Nfk'
&:0 k':O

one can easily compute that the signal as a filnction of lag f9 is

(5.14.2)

.^r-1

t
j=0

N- l

T
k=0
N-1

t
k=0
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Figure 19: A chirp starting at initial time i : 0 and ending at time i : 13500 is processed through a
chirp filter, whose output peaks at time i : 0. Notice that because of wraparound, the (non-causal)
filter output begins "earlier" than i: 0.

I'igure 20: A chirp starting at initial time 'i : 15,000 and ending at time i :28,500 is processed
through a chirp filter, whose output peaks at time i : 15,000.

the IFO output. At what time did this transient event ocurr? The answer to this question can be
seen by examining the impulse response of the "periodic filter" scheme, as shown in the following
figures. Thus, by searching for maxima in the filter output over the range i: A, '..,4r-rn-1we

candetecte i ther t ruechi rps inthedatast ream,star t ing inthet imeinterva l i :0 , . . . , - l t r -m-L
and coalescing (roughly speaking) in the time inverval i : rTL,. . . , -ly' - 1, or we can detect transient
impulse-l ike events in thedatastream, which take place inthetime intervali :rTL,' . ' ,- fV -1. In
the GRASP optimal filtering code, after examining the stretch of .Af data points, we then shifi the
da tapo in ts i : . l f - n ' L ) . . . , I y ' - l i n to the range i :0 , - . - , f f i - l andaqu i reanewadd i t i ona l se t
of l/ - m data points covering remaining (new) time interval.

Note that in practice, because the chirp signal has to be convolved with the response function
E(f) of the detector, the impulse response of the filter is typically a few points longer than the
actual chirp signal. For this reason it is smart to assume that the impulse response of your optimal
filter is slightlv longer (say a hundred points longer) than the actual time-domain length of the
corresponding chirp. 'lhis safety margin is set with the #def ine SAFETY statement in the optimal

Filtd dFut
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Figure 2L: A chirp starting at initial time i, :52,035.

Figure 22: An impulse shortly after i :0.

liltering example. You lose a tiny bit of efficiency but reduce the likelyhood that boundary effects
from the data discontinuity at the start/end of the rectangular window will significantly stimulate
theopt imal f i l ter  output  for  r :0 , . . . ,  N -m-1.  (SeeFigs.22 and 25 tosee an i l lust rat ionof
how this windowing discontinuity will corrupt the filter's output.)

We have demonstrated explicitly that with no windowing (or rather, rectangular windowing)
of the data, one can find the appropriate correlation between the signal and a filter exactly: the
rectangular window has the same effect on the signal as it does on the template (shif[ing energy
into sidelobes in identical fashion). The only complication was that because of the periodic nature
of the FFT one has to be caseful about wrap-around errors in relating the output of a filter to the
time of occurence of a signal or impulse.

There is one rernaining ugly question. The optimal filter Q depends upon the noise power
spectrum of the detector. In real-world filtering, should this noise povrer spectrum be calculated
with windowed, or non-windowed data? We can determine the correlation between signal and
template exactly, with only rectangular windowing, because energy in either of these functions is
shifted into sidelobes in identical fashion. However a "quiet" part of the IFO spectrum can be
corrupted by sidelobes of a nearby noisy region. The effect of this is that the signal get rather less
weight from this region of frequency space than it ought, in theory to receive. This would argue
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Figure 23: An impulse at i :15,000.
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Figure 24: An impulse at i :28, 500.

for using only properly-windowed data to find the noise power spectrum to use in determing an
optimal filter.

In fact, in our experience, it does not make any difference, at least not when vou are searching
for binary inspiral chirps. The reason is that the SNR obtained in an optimal filter is only sensitive
at second order to errors in the optimal filter function. Thus, the errors due to noise sidelobes
which appear if you fail to window the data to calculate an optimal filter are typicaily not large.
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Rltorinpul
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5.15 Function: find-chirpo

void f ind-chi rp( f loatx ht i lde, f loatx ch0t i lde, f loat*  ch9Ot i lde, f loat*  twice- inv-noise, f loat

n0, f loat  n90,  f loat*  output0, f loat*  output9O, int  n, in t  ch i rp len, in t*  of fset , f loat+

snr-max, f loat*  c0, f loat*  c90, f loat  xvar)

This routine filters the gravity-wave strain through a pair of optimal filters corresponding to
the two phases of a binary chirp, then finds the time at which the SNR peaks.

The arguments are:

htilde: Input. The FFT of the gravity-wave strain.

ch0tilde: Input. The FFT of the 0-degree chirp.

ch90tilde: Input. The FFT of the 9O-degree chirp (assumed orthogonal to the Gdegree chirp).

twice-inv-aoise: fnput. Twice the inverse noise power spectrum, used for optimal filtering.

n0: Input. Normalization of the O-degree chirp.

u90: Input. Normalization of the 90-degree chirp.

outputO: Output. A storage aray. Upon return, contains the filter output of the O-degree phase
optimal filter.

outputg0: Output. A storage array. Upon return, contains the filter output of the 90-degree
phase optimal filter.

n: Input. Defines the lengths of the various arrays: chOtilde[0..n-1], ch9Oti1de[0..n-1J,
outputO [0. .n-1] ,  outputg0 [0. .n-1] ,  and twicejnv--noise 10. .n/21.

chirplen: Input. The number of bins in the time domain occupied by the chirp that you are
searching for. This is necessary in order to untangle the wraparound ambiguity explained
earlier.

off set: Output. The offset, from 0 to n-chirplen-1, at which the signal output (for an arbitrary
linear combination of the two filters) peaks.

snrrnax: Output. The maximum signal-to-noise ratio (SNR) found.

c0: Output. The coefficient of the 0-phase template which achieved the highest SNR.

c90: Output. The coefficient of the 90o-phase template which achieved the highest SNR. Note
that cfr * {6 should be 1.

var: Output. The variance of the filter output. Would be L if the input to the filter were colored
Gaussian noise with a spectrum defined by Srr.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.16 F\rnction: freq-inject-chirpo

void freqjnject-chirp(f loat c0,f loat c90, int  of fset, f loat invMpc,f loat* cbOti lde,f loat*
cb9Oti lde,f loat* ht i lde, int  n)

The bottom-line test of any optimal filtering code or searching routines is: can you inject
"fake" signals into the data stream, and properly detecting them, while properly rejecting all other
signatures of instrumental effects, etc. This routine injects artificial signals into the frequency-
domain strain h(/). The plane of the binary system is assumed to be normal to the line to the
detector.

The arguments are:

c0: Input. The coefficient of the Gphase template to inject.

c9O: Input. The coefficient of the 9Oo-phase to inject. Note that Co+ 4o should be 1.

of f set: Input. The offset number of samples at which the injected chirp starts, in the time
domain.

iavMpc: Input. The inverse of the distance to the system (measured in Mpc).

chOtilde: Input. The FFT of the phase.O chirp (strain units) at a distance of 1 Mpc.

ch9Otilde: Input. The FFT of the phase'90 chirp (strain units) at a distance of 1 Mpc.

htilde: Output. The FFT of the gravity-wave strain. Note that this routine adds into and
increments this array, so that if it contains another "signal" like IFO noise, the chirp is
simply super-posed onto it.

n :  Input .  Def ines the lengthsof therar iousar rayschOt i lde [0 . .n -1 ] ,ch9Ot i1de[0 . .n -1 ] ,and
h t i l d e [ 0 . . n - 1 ] .

Note that in making use of this injection routine, you must determine the level of the quantiza-
tion noise of the ADC, and be careful to inject a properly dithered version of this signal when it's
amplitude is small compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See the comments for tine-inject-chirp, particularly with respect to the digital
quantization noise.
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5.L7 F\rnction: tiroe-inject-chirpo

void t inejnject-chirp(f loat cO,f loat c90, int  of fset, f loat invMpc,f l -oat* chirpO,f loat*
chirp9O,f loatx data,f loat xresponse,f loat xwork, int  n)

This is a time-domain version of the previous function freq-inject-chirpO which injects
chirps in the time.domain (after deconvolving them with the detector's response function). This
routine injects artificial signals into the time-domain strain h(t). The plane of the binary system
is assumed to be normal to the line to the detector.

The arguments are:

c0: Input. The coefficient of the 0-phase template to inject.

c90: Input.  Thecoeff ic ientof the90o-phasetoinject.  Notethat 3o+{oshouldbe1.

off set: Input. The offset number of samples at which the injected chirp starts, in the time
domain.

invMpc: Input. The inverse of the distance to the system (measured in Mpc).

chirpO: Input. The time.domain phase'0 chirp (strain units) at a distance of 1 Mpc.

chirpgO: Input. The time-domain phase'9O chirp (strain units) at a distance of 1 Mpc.

data: Output. The detector response in time that would be produced by the specified binary
inspiral. Note that this routine add,s i.nto and increments this array, so that if it contains
another "signal" like IFO noise, the chirp is simply super-posed onto it.

response: Input. The function A(/) that specifies the response function of the IFO. This is
produced by the routine normalize€wO.

work: Output. A working array.

a :  Input .  Def ines the lengthsof thevar iousar raysch i rpO[0 . .n - f ] , ch i rp9O[0 . .n -1 ] ,da ta [0 . .4 -1J ,
work[0..n-1],  and response[0..n+1] (note that this "*" s ign is notatypo!).

Note that in making use of this injection routine, you must determine the level of the quantiza-
tion noise of the ADC, and be careful to inject a properly dithered version of this signal when it's
amplitude is smail compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: A short look at the time-domain signal which is injected shows that it has a low-
amplitude spike at the very start. This may be an un-avoidable Gibbs phenomenon associated
with the turn-on of the waveform. A second interesting point is that for many interesting
signals, the amplitude of the injected signal in the time domain is below the level of the
quantization noise. Thus, a sensible injection scheme would be to add it into an appropriately
dithered (float) version of the integer signal stream, then cast that back into an integer. This
should be tried.
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5.18 Vetoing techniques

In an ideal world, the output of an interferometer would be a stationary signal described by Gaussian

statistics (with very rare superposed binary inspiral chirps and other gravitational-wave signals).

This is unfortunately not the case, as can be quickly determined by simply listening to the raw

(whitened) interferometer output. Typically the output is a stationary-sounding hiss, interupted

every few minutes by an obvious irregularity in the data stream. These are f,ypically "pops",

"bumps", "clicks", "howlers", "scrapers" and other recognizable categories of noises. In at least

some cases, there are "suspects" for these events. For example the pops and bumps might be

problems in any of the hundreds of BNC cable connectors used in the instrument.

It is an unfortunate fact that the output of an optimal filter strongly reflects these events. As

you have seen in the previous section, a delta-function-like impulse signal in the IFO ouput can

cause a large signal in the optimal filter. And in practice, this happens all of the time - the outputs

of optimal chirp filters are frequently triggered by identifiable events in the IFO data stream that

are clearly not binary inspiral chirps. Distinguishing these events from real inspiral chirps is called

uetoing. We have found that two vetoing techniques work particularly well-

The first technique operates in the time domain, and is documented in the routine is-gaussianO.

The idea is straightforward: if a chirp detector (optimal filter) is triggered, then we look in the

data stream for an impulse event that might be responsible. Such events can be found by looking

at the statistical distribution of the points in the time domain. If this distribution is significantly

non-Gaussian then it indicates that some large transient event caused the filter to trigger, and the

event is rejected.
The second technique is described here, and operates in the frequency domain. It is a very

stringent test, which determines if the hypothetical chirp which has been found in the data stream

is consistent with a true binary inspiral chirp summed with Gaussian interferometer noise. If this is

true, it should be possible to subtract the (best fit) chirp from the signal, and be left with a sigrral

stream that is consistent with Gaussian IFO noise. One of the nice features of this technique is

that it can be statistically characterized in a rigorous way.

Suppose that one of our optimal chirp filters Q is triggered with a large SNR at time te. We

will denote the signal value at this time by ,S:

(5.18.1)

(Here, "fNy denotes the Nyqist frequency, one.half of the sampling rate.) The chirp template 7 is

normalized so that the expected value (l/') : 1,

,:,/* *ffiu-2rirto

lo'*".,#li :' (5.18.2)

We are going to investigate if this signai is "really" due to a chirp by investigating the way in which

,5 gets its contribution from different ranges of frequencies. To do this, break up the integration

region in this integral into a set of p disjoint subintervals A.fi, "',A,fp whose union is the entire

range of frequencies from DC to Nyquist. Here p is a small integer (for example, p - 8). This

splitup can be performed using the GRASP function sp1itupO. The frequency intervals:

A f i  :  { / 1 0 <  f  < f t }
L f z :  { f  l h < f  < f z }

L f p :  { f  l f o - r < " f  < " f w v } ,
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a.re defined by the condition that the erpected signal contribut'ions 'in eaclt, frequency band from a
chirp are equal:

(5.18.4)

Because the filter is optimal, this also means that the expected noise contributions in each band
from the chirp is the same. The frequency subintervals Afi are fairly narrov/ in regions of frequency
space where the interferometer is quiet, and they are fairly wide in regions where the IFO is noisy.

Now, define a set of p signal values, one for each frequency interval:

Io,,o,Wr:;1,^"drffi

su: I df hq)T"=!!) "-2nirto for i : r,. . . ,p.'  
J-af iuat. i  "  Sa(l / l )

P(4S1, - . -, ASr) : ft{zn o)- r / 2 e- ̂ s? / 20 : (%r o)-n /2e- (as?+"'+ a's}) / zo

(5.18.5)

W'e have included both the positive and negative frequency subintervals to ensure that the .9; are
real. If the detector output is Gaussian noise plus a true chirp, then the expected value of each of
these signal values is (S,) : S/p. In this case the values of A^91 : St- S/p arc independent normal
random variables with a mean value of zero and a variance a determined by the expected value of
the noise-squared. Because of our choice of template normalization this is:

o : (AS?) : (N2) /p : I/p. (5.18.6)

Hence, in the presence of a true chirp and interferometer noise, the probability distribution of the
ASI is given by

z = L

Thus, if our optimal chirp fiiter is triggered by an elzent, we can check the contributions to the
signal in each of p frequency subintervals, to determine if the distribution of frequency and the
arrival times in the p distinct subintervals is consistent with "chirp * Gaussian noise".

Because the ASI are independent random variables with zero mean and variance L/p, the sum
of their squares is described by u X2 probability distribution. Define the statistic

7z:l(asr,)2. (s.18.8)
i : t

Then one can easily compute the probability distribution of r. The probabiiity that r ) I in the
presence of a true chirp signal is

P(r > .R) : (2rf l-n/zgo-, [* ,N-r"-r2/2o4,"  - J R

: ::- [* ,n/2-ru-26,
t(plz) Jpzpo

: Q@l2,R2lZo),

where Oo is the p-volume of a unit-radius p-sphere ^9p. The incomplete gamma function Q is the
same function that describes the likeiyhood function in the traditional 12 test.

In practice (based on CIT 40-meter data) breaking up the frequency range into p: 8 intervals
provides a very reliable veto for rejecting events that trigger an optimal filter, but which are not
themselves chirps. The value of Q(4,10.0) : 0.0103. . ' so if. r2 > 2.5 then one can conclude that
the likelyhood that a given trigger is actually due to a chirp is less than ITo; rejecting or vetoing

(5.18.7)

(5.18.e)

(5.18.10)

(5.18.11)
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:

such events will only reduce the "true event" rate by L%. However in practice it eliminates almost
all other events that trigger an optimal filter; a noisy event that stimulates a binary chirp fllter
typically has 12 = 100 or larger!

Note that this technique is probably a computationally-efrcient and simple version of the
maximum-Iikelyhood statistical test. This test is probably obtained in the limit where the number
of frequency bins equals p.

i
i . r
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5.19 Function: splitupo

void spl i tup(f1oat *working,f loat tereplate,f loat *r , int  n, f loat total , int  p, int  * ind. ices)

This routine takes as inputs a tempiate and a noise-power spectrum, and splits up the frequency :
spectrumintoasetofsub. intervalstousewiththevetoingtechniquejustdescribed.

The arguments a,re:

working: Input. An array working[0. .n-1] used for working space.

tenplate: Input. The array tenplate[0..n-1] contains the positive frequency (/ > 0) part

of the complex function f(/). The packing of f into this array follows the scheme used ,.

by the Numerical Recipes routine rea1ft O, which is described between equations (12.3.5)

and (12.3.6) of [t]. The DC c_omponent f1O; ir real, and located in template [01. The
Nyquist-frequency component 7(.fr,{vq"irt) is also real, and is located in ternplate [1] . The
array elements tenplate [2] and template [3] contain the real and imaginary parts, respec-
tively, of f(A/) where A"f : 2fNycui"tln: (nLt)-L. A_rray elements tenplatel2j3 and
tenplateiZS+11 contain the real and imaginary parts otf( j  A/)  for j : I , " ' ,nf2-1' .

r: Input. The array rl0. -n,/2f contains the values of the real function f which is twice the
inverse of the receiver noise, as in equation (5.10.13), so that f(f) : ZlSnQfD. The array
elementsarearrangedinorderof increasingfrequenc5fromtheDCvalueatsubscript0,to
the Nyquist frequency at subscrip t n 12. Thus, the j 'th array element r I j ] contains the real
value i(j A/), for j :0,1,"' , nl2. Lgatn it is assumed that F(-f) : F*(f) : f(f). 

,
n: Input. The total length of the complex axrays tenplate and working, and the number of

points in the output array s. Note that the array r contains n/2* 1 points. n must be even. 
I

+a+ql ' r-^"+ rFL;s is the total value of the integrated template squared over ,S;r; the frequencyuv ue f  .  r r rPu! .  r  ru

subintervals are choose so that each ofthe p subintervals contains L/p of this total.

p: Input. The number of frequency bands into which you want to divide the range from DC to

.fNyquist.

ind.ices : Ouput. The frequency bins of the first frequency band are i=0. . indices [0] . The next

frequency band is i=indices [0] +1 . . indices [1] . The p'th frequency band is i=indices [p-2J +1 . . ind:--,

Note that indices [p-1] =n-t.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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! 5.2O F\rnction: splitup-freqo

f loat spl i tupJreq(f1oat c0,f loat c90,f loat *chirPO, f loat *chirPg0,f loat norm' f loat*

tv ice- inv--uoise, int  n, int  of fset, int  p, int* indices,f loatx stats,  f loat* working,f loat*

htilde)
This routine returns the value of the statistic ,' : Dl:r(65)2. This is a less-efficient version,

which internally constructs filters for each of the different frequency subintervals, and then filters

the metric perturbation through those filters. It is useful to understand how the diferent frequency

components behave in the time domain, after filtering'
The arguments are:

c0: Input. The coefficient of the 0-phase template.

c90: Input. The coefficient of the 9Oo-phase template. Note that "?o+4o should be 1.

chirpo: Input. An array chirpO[0..n-1] containing the FFT ofthe O-phase chirp.

chirpg0: Input. An array chirpgO[0..n-1] containing the FFT of the 90o-phase chirp.

no:rn: Input. The normalization of the 0-phase chirp.

twice-inv-noise: Input. The array twice-inv-aoise[O . .n/2] contains 2lSnff), as described

previously.

n: Input. Defines the lengths of the previous arrays.

offset: Input. The offset of the moment of maximum signal in the filter output-

p: Input. The number of frequency bands p for the vetoing test.

indices: Output. An array indicest0..p-1J used for internal storage of the frequency subin-

tervals (see splitupO.

stats: Output. An array statsiO..p-1J containing the values of the ^9t for i:L,

working: Output. An array working[0. .n-1] used for internal storage.

htilde: Input. An array htilde [0. .n-1] containing the positive frequency part of [(/).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

I

i-'

t.

! : ! " '

t i

' j

t P '
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Notethattheinputarraysh[ ]  andc[ ]  canbethesamearray. Forexamplecorrelate(s,c,c,r ,n)
calcuiates the discrete equivalent of

(5.11.4)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: For the sake of efficiency, this function does not include the contribution from either
DC or Nyquist frequency bins to the correlation (these are negligible in any sensible data).

s(t): 
; l:df 

g(112r(f) s-2rirt.
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5.72 F\rnction: avg-inv-speco

void avg-inv-spec(fIoat flo,,float srate,int n,double decay,double *norm, float *btiIde,

f l-oat* 6srn -pow-spec, f loat * twi ce-inv-no ise )
This function maintains an auto.regressive moving average (see avg-spec O of the power spectrum

Sn(/), and an array contairnng 2lSt (/), which can be used for optimal filtering. This latter array

is set to zero below a specified cuff-off frequency fio-.
The arguments are:

f 1o: Input. The low frequency cut-off fio., inHz.

srate: Input. The sample rate, in Hz.

n: Input. The number of points in the arrays.

decay: Input. The quantity exp(-o) as defined in avg-specO. Sets the characteristic decay

time for the auteregressive average.

aortn: Input/Ouput. Used for internal storage. Set to 0 when you want to begin a new auto-

regressive average. Must not be altered otherwise.

htilde: Input. The array htilde[0..n-1] contains the positive frequency FFT of the metric

perturbation.

treen-powspec: Output. The array mean-Polr-sPec 10. .il27 contains the mean power spectrum'

Should be zeroed when resetting to begin a new average.

twice-inv-noise: Output. The array twicejnv-noise[0..n/27 contains ZlSnff). It is set to

zero for  f  < f i ^o .

Author; Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: We assume here that the "correct" thing to do is the average the spectrum, then

invert it. There may be a better way to construct the weight function for an optimal filter,

however.
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5.2L F\rnction: splitup-freq2o

f loat spl i tupJreq2(f loat c0,f Ioat c90,f1oat *chirp0, f loat *cbirpgo,f loat norn, f loat*
twice- inv-noise, int  a, int  of fset, int  p, int* indices,f loatx stats,  f loat* working,f loat*
htilde)
This routine returns the value of the statistic ,2 : D!:r(nS)2. This is a more computationally-
efficient version, which does not frIter lt, through each of tle p ind.ependent time domain filters. The
arguments are identical to those of splitupJreqO.

The arguments are:

c0: Input. The coefficient of the O-phase template.

c90: Input. The coefficient of the 9Oo-phase tempiate. Note that "3 + 4o should be L.

chirpO: Input. An array chirpO[0..n-1] containing the FFT of the 0-phase chirp.

chirpgO: fnput. An array cbirpgO[0. .n-1] containing the FFT of the 90"-phase chirp.

nontr: Input. The normalization of the O-phase chirp.

twice-inv-noise: Input. The array twice-inv-noise[0. .t/2f contains 2156ff), as described
previously.

n: Input. Defines the lengths of the previous arrays.

off set: Input. The offset of the moment of maximum signal in the filter output.

p: Input. The number of frequency bands p for the vetoing test.

indices: Output. An array indices[0..p-11 used for internal storage of the frequency subin-
tervals (see splitupO.

s ta ts :  Outpu t .  Anar rays ta ts t0 . .p -1J  conta in ing theva luesof  theS; fo r  i :L , . . . ,p .

working: Output. An array working[0. .n-1] used for internal storage.

htilde: Input. An array htilde[0. .n-1] containing the positive frequency part of [(/).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.22 Example: optinal program

This program reads the 40-meter data stream, and then filters it though a chirp template corre.
sponding to a pair of inspiraling 1.4Mg neutron stars.

The correspondence between different arrays in this program, and the quantities discussed
previously in this section, is given below. In these equations, Lt: I/srate is the sample time in
seconds, and A/ : (nAt)-l : srate/npoint is the size of a frequency bin, in Hz. Here n : nPoint
is the number of points in the data stream which are being optimally -filtered in one pass.

Chirp templates (in frequency space) for the two polarizations are related to the arrays chirpO I J
and chirplt J by

where the elements chirpOt2jl and chirp0lZi+11 are the real and imaginary parts at frequency

f : jAf (with the exception of the Nyquist frequency, stored in chirp0hj). Note that to ensure
that quantities within the code remain within the d5'namic range of floating point numbers, we
have scaled up the template strain by a constant factor HSCALE; we also scale up the interferometer
output by the same factor, so that all program output (such as signal-to.noise ratios) is independent
of the value of HSCALE. If you're not comfortable with this, go ahead and change HSCALE to 1. It
won't change anything, provided that you don't overflow the dynamic range of the floating point
variables! The scaled interferometer response function is

response[ I : HSCALf/.l,nUrellCttt x R(f), (5.22.3)

where the function E(/) is defined by equation (3.12.3). The Fourier transform h of the dimen-
sionless strain is obtained by multiplying Ai and the FFT of g[enngf .0 by response [ ] , yielding

t^rn : at chirpo[J.U\J, ,  
HSCALE

n^f f)  :  
At 

chirpl f  I
HSCALE

nU):ff iortrde[].

The one-sided noise power spectrum Srr(/) is the average of

sr , ( / ) :4f iU) | ' : *#|ht i Ide[1| , : f f i lh t i1de[ ] |2.

2 n HSCALE2

il6 
: 

ff 
twice_inv_noise[ ].

The expected noise-squared for the plus polarization is given by equation (5.10.8):

(ti') : lrO,Al

(5.22.1)

(5.22.2)

(5.22.4)

(5.22.5)

The power spectrum SnU) is averaged using the same exponential averaging technique described
for the routine avg-spec. This average is stored as

s a ( / ) : = = ? ? ! = = ( | n t i r a e [ ] | , ) : * ' e a n - p o w - s p e c [ l F . 2 2 . 6 )
n HSCALEZ n HSCALEZ

Twice the inverse of this average is stored in the array twice-inv-noise [ ] , so that

: ; l : r ,w
726

(5.22.7)



:  i  1 ,. trT:r [_gri '  . ,"nHScALE2I I

2 nLt- - - u 
1nscfu 

lchirpo[ ]l"Titwice-inv-noisel 1]

|r rr;' 
ll 
"ni'no I J l' ]r"i ""-inv-ao ise [ ]]

where,i,",,,u,",i, "ff": ;;, --i ;::- [", il:::: ";""J;T:
call to the function f'. We have chosen a distance for the system producing the "chirp" 

4/) ro
that the expected value of (Nt) : t.

In similar fashion, the signal ^9 at lag ts is given by

n -
s  :  \ 1 ,4 )

: [* ar h(f)Ti!il 
"-2trirto

J -*- '  sn(/)
1  - r f  a t . . . - . , 1  A f  , - .  ^ . . , * n H S C A L E 2  1 .  , , . |:  , -FFT,- r  |  

- -  
hr l ' l  r tc l l  

-"  (cbirpOl l ) '
nat" 

-' - 

LHSc-ALEnrlroellHsclts At tEwlce-r'nv-nolsetl.J

. r  1  I: FFT;r 
fntirael] 

chirpoll 
i t" i""-inv-aoise[]J

--) correlate(. . - , htitae[ ], cbirpO[ ], twice-inv-aoise[ ], npoint),

where now the subscript on the FFT means "at lag t: i Lt" .

(5.22.e)

You might wonder why we have been so careful - after all, both the signal and the noise, as
we've defined them, are dimensionless, so it's not surprising that all of the factors of At drop out
of the final formulae for the signal and the expected noise-squared. The main reason 'we've been so
long winded is to show exactly how the units cancel out, and to demonstrate that there aren't any
missing dimensionless constants, like npoint, left out of the prograrn. Some sample output from
this program is shown in the next section.
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/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

#define NPOTNT 73!072 /* The size of our segments of data (13.1 secs) x/
#define FLO 120.0 /x The lowfrequencycutoffforfi l tering x/
#define ARMLENGTH 40.0 /* Armlength of the IFO, in meters */
#define HSCALE 1.e21 /x A convenient scaling factor; results independent of it */
#define MIN-INT0-L0CK 3.0 /x Number of minutes to skip into each locked section x/
#define SAFETY 1000 /x Padding safety factor to avoid wraparound errors x/

int naino {
void realft(ffoatx,unsigned long, int) ;
in t  i ,code,npoint , renain=O,naxi ,ch i rp len,needed,d l f f , inpulseof f ,ch i rppoints, indices[8] ;
f loat distence,sorlnax,srate=9969.4208984375,tstart,var,*neaJr-pow-spec,tirseoff,t inestart;
f loat xdata,xhti lde,xoutputg0,xoutput0,xchirpO,'rchirp9O,xchOtilde,xchg0tilde,*response;
float n0,ngO,inverse-dj-stence-scale,decaytine,xtwi-ce-inv-noise,datastart,tc;
f loat 1in0, rin90, invMpc-inj ect, varspli.t , stats [8] , gatnnq(float , f loat) ;
double decay,norm,prob ;
short *datas;
FILE xfp l fo,  * fpss,xfp lock;

/x open the IFO output file, lock file, and swept-sine file */
fpi.f o=grasp-open( "GMSP_DATAPATH'| 

, " c[:nneI .0" ) I
f plo ck=grasp-open ( " GRASP_DATAPATH',, t' challnel . 1 0,' ) ;
f pss=grasp-opea ( " GRASP_DATAPATII'|, t' sirept-s ine . as c i i', ) ;

/'r. number of points to sample and fft (power of 2) x/
needed=npoint=NP0INT ;

/* stores ADC data as short integers x/
datas= ( short * ) roalloc (s izeof ( short ) xapoint ) ;

/x stores ADC data in time & freq domain, as floats x/
data= (f loat x) nalIoc (sizeof (f loat) xnpoint) ;

/* The phase 0 and phase pi/2 chirps, in time domain */
chirpO= (f loat x)nalloc (sizeof (f loat),r.npoint) ;
chirp9O= (f loat x ) nal1oc ( sizeof (f loat) xnpoint ) ;

/,r Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain x/
chOtilde= (float x)naLloc (sizeof (f loat) xnpoinr) ;
ch90t i.]de= (f loat x)nalloc (s izeof (f loat) *npoint) ;

/x The response function (transfer function) of the interferometer x/
response= (float *)na1loc (sizeof (f loat) x (npolsl+2) ) ;

/x The gravity wave signal, in the frequency domain x/
hti lde= (float *)roalIoc (sizeof (fLoat) *npoint) ;

/tr The autoregressive-mean averaged noise power spectrum x/
tne.en-pow-spec= (f 1-oat r.)roal1oc (sizeof (f loat) * (npolnt/2+1) ) ;

/x Twice the inverse of the mean noise power spectrum x/
twice-inv-noise= (float x)nalloc (sizeof (f loat) i. (npoint/2+1) ) ;
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/* Ouput of matched filters for phaseO and phase pif2,in time domain, and temp storage */

output0= (float x)nalloc (sizeof (f loat) *npoint) ;
outputg0= (f1oat x)rnalloc (sizeof (f loat) xnpoint) ;

f * get the response function, and put in scaling factor *f

norroalize-gu(fpss ,npoint , srate, response) ;
for  ( i=0;  i (npoint+2;  i++)

respons e [i] *=HSCALE/AMLENGTH ;

/x manufacture two chirps (dimensionless strain at 1 Mpc distance) */

nake-f i l ters ( 1 . 4, 1 . 4, chirpO, chirpgO, FLO, npoint, srate, &chirppo j-nts, &tc, 0) ;
inverse-dista.nce-s cale=2 . 0xHSCALE* (TS0LAR*CJIGHT/MPC) ;
f or (i=0; i(cbirppoints ; i.++) {

chOt ilde [i] =chirpO [i] *=inverse-distance-sca1e ;
ch90ti1de Ii] =chirp9O Ii] x=inverse-distance-s cale ;

l
I

/x and FFT the chirps x/

realft (choti lde- l,npoint , 1) ;
realf t (ch90ti1de- 1, npoint, 1) ;

/x set length of template including a safety margin x/
chirplea=chirppo lnts+SAFETY ;
if (chirplen)npoint) abortO ;

/x This is the main program loop, which aquires data, then filters it x/

wh1le (1)  {
/x Seek MIN-INTO-LOCK minutes into a locked stretch of. data xf

vhile (remai-n<needed) {
seds=get-data(fpifo,fplock,&tstart,MIN-fNT0-L0CK*60*srate,datas,&renain,&srate,1);
if (code==O) return 0;

')

/*. ifjust entering a new locked stretch, reset averaging over power spectrum x/

if (code==1) {
n n r m = O  O '

clear (neaa-pow-spec , npoi.nt/2+1 , 1) ;

f * decay time for spectrum, in sec. Set to 15x length of npoint sample x/

de cayt ime= 1 5 . Oxnpoint/srate ;
de cay= exp ( - 1 . O*Dpo int/ ( srat exde cayt ine ) ) ;

)

/x Get the next needed samples of data x f
diff=npoint-needed;
code=get-data (fpifo , fplock, &tstart , needed, datas+diff , &renain, &srate, 0) ;
datastart=tstart -dif f / srate ;

fx copy integer data into floats x/
for  ( i=0; i (npoint ; i++)  data[ i ]=datas[ i ]  ;

/x inject signal in time domain (note outputOf] used as temp storage only) x/

invMpc-inject=O.O; /x To inject a signal at 10 kpc, set this to 100.0 x/

tirae-inj ect-cbirp ( 1 . O, O . O, L2345 ,invMpc-inj ect , chirpO, chirp90, data, resPonse , output0, npoint) ;
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:

/* find the FFT ofdatax/
realft (data-1,npoint, 1) ;

/x normalized della-L/L tilde x/
product (ht iIde, data, response, np oirrrt f 2) ;

/x inject a signal in frequency domain, if desired x/
iavMpc-inject=0.0; /* To inject a signal at 10 kpc, set this to 100.0 */
freq-inj ect-chirp (-0.406,0. 9135,23456 , lnvMpc-inj ect, ch0ti lde, chg0tilde ,hti lde,npoint) ;

/x update the inverse of the auto-regressive-mean power-spectrum x/
avg-iuv*spec(FtO,srate,npoint,decay,&norm,hti lde,mearr'-pow-spec,tlr ice-inv-noise);

/i. orthogonalize the chirps: we never modify chOtilde, only chg0tilde x/
orthonormalize (chOtilde, ch90ti1de , twi.ce-inv-noise , npoint, &n0, &nBQ) '

/x distance scale Mpc for SNR:1 */
dista"nce=0 . 5/n0+0. 5/a90 ;

/x find the moment at which SNR is a maximum */
find-chirp (hti1de, ch0ti lde , cb90tilde , twicejnv-noise , n0,n90, outputO, output90,

npoint , chirplen, &uaxi. , &snr-.nax, &1i10, &1in90, &var) ;

/x identify when an impulse would have caused observed filter output x/
inpulseof f = (naxi+chirppoi-nts ) T.npoint ;
t irne of f =datastart+ixopul seof f /srat e ;
t irnestart=datastart+roaxi / srat e ;

/x if SNR greater than 5, then print details, else just short message x/
if (snr-nax<s.0)

pr int f ( "max snr :  ' / , .2 f  of fset :  7 .d data star t : . ' / , .2 f  sec.  var ience;  %.Sf \n"
snrrnax,tnaxi, datastart, var) ;

e tse {

/x See if the nominal chirp can pass a frequency-space veto test */
varsplit=splitupJreq2 (Iln0xnO/sqrt (2. 0) ,1iD90*D90/sqrt (2 . 0) , chOtilde, ch90ti1de,2 .0/ (n0xu0)

twice-inv-noise, apoint, &axi, 8, indi ces, stats, outPuto, hti lde) ;
prob=ganmq (4.0 ,4.O*varsplit) ;
printf ("\nilax SNR: 7..2f (offset 7.d) variance 7of\n",srlrJnax,naxi,var);
printf (" If inpulsive event, off set 7"d or t iroe 7".2f \n",inpulseoff ,t i-rneoff );
pri.ntf (" If inspiral , tenplate start offset 7.d (tine '/,.2t) coalescence tine 7..2f\n"

naxi, t imestart , t imestart+tc) ;
pr in t f ( "  Norrnal izat lon:  S, /N=1 at  %.2f  kpc\n" ,1000.0xdistaace)  ;
printf(" Linear corobination of max Sl{R: 7..4f x phase-0 +'/,.4t x phase-pi,/2\n",1in0,1in9(
i f  ( p rob (O .01 )

printf (" Less tha-E 7'/"7, probabil ity that this is a cbirp (p=7"f).\n",prob);

e lse
prj-ntf (" P0SSIBLE CHIRP ! with > Ly,'A probabili.ty (p=7.f ) . \n" ,prob) ;

/x See if the time'domain statistics are unusual or appears Gaussian x/
if ( is-gaussiaa (datas, npoint, -2048, 2047, L) )

pr in t f ( "  Dist r ibut ion does not  appear to have out l iers.  .  . \n \n") ;
e lse

pr int f ( "  Dist r ibut ion has out l iers!  Reject \n\n") ;
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/x shift ends of buffer to the start x/
needed=npo int - chirplen+ 1 ;
for (i=0; i(chlrplen-1 ; i++)

datas [i.] =datas [1+needed] ;

/x reset if not enough points remain to fill the buffer x/

if (renain(needed)

needed-npoint;
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5.23 Some output from the optinal program

Some output from the optinal program follows:

max snr :  3 .11  o f fse t
rnax  snr :  2 .91  o f fse t

max snr:  2.53 offset
nax s!.r :  2.98 offset

23623 data start :  180.00 sec. var iance: 0.94044

3311 data start :  185.17 sec. var iance: 0.84484

19041 da ta  s ta r t :  309.26  sec .  var iance:  0 .70333

357!t  data start :  314.43 sec. var iaace: 0.67523

Max SNR: 8.71 (offset 42L09) var iance 0.805030
If impulsive event, offset 55624 or tine 325.23
If inspiral, tenplate start offset 42t09 (tine 323.86) coalescence tine 325.23

Nornal izat ion: S/N=1 at 116.75 kpc
Linear combination of nax SNR: 0.9315 x phase-0 + 0.3638 x phase-pi/2

Less tha:: 1% probability that this is a chirp (p=0.000000).

Distr ibut ion: s= 23, N)3s= 12 (expect 176),  N)Ss= 0 (expect 0)

Distr ibut ioa does not appear to have out l iers. . .

max snr :  2 .57  o f fse t :
max sr lr :  2.56 offset:

max snr :  2 .82  o f fse t :
max snr :  2 .61  o f fse t :

31183 data start :  324.77 sec.
49909 data start :  329.94 sec.

35080 data start :  3002.03 sec.
33141 da ta  s ta r t :  3007.20  sec .

var iance: 0.63028
variaace: 0.66853

variaace: 0.77306
varia-nce: 0.74268

Max SNR: 89.75 (offset 16678) var iance 82.54700s
If  inpulsive event,  of fset 30193 or t ime 3015.43
If  inspiral ,  tenplate start  of fset 16678 (t ine 3014.06) coalescence t ine 3015.43

Nornalization: S/N=1 at 128.49 kpc
Linear conbiuat ion of max SNR: -0.3955 x phase-O + 0.9185 x phase-pi /2

Less tha:r 17. probability that this is a chirp (P=0.000000).

Distr ibut ion: s= 29, N)3s= 157 (expect 176),  N)5s= 30 (expect 0)

Distr ibut ion has out l iers!  Reject

max snr:  3.24 offset:  22412 data start :  3017.54 sec.
max saar: .  2.73 offset:  37777 data start :  3022.7L sec.

max snr :  2 .80  o f fse t :  5893 da ta  s ta r t :  4 t40 .89  sec .
max snr: .  2.75 offset:  46932 data start :  4L46.06 sec.

var ia.nce: 0.99474
variaace: 0.75325

variaace: O.73240
variance: 0.69654

Max SNR: 6.08 (offset 30002) var iarce 0.883380
If irnpulsive event, offset 43517 or time 4155.64
If  inspiral ,  tenplate start  of fset 30002 (t i roe 4754.27) coalescence t ine 4155.64

Norrnalizatios: S/N=1 at 113.04 kpc
Linear conbination of nax SNR: -0.4773 x phase-0 + 0.8787 x pbase-pi/2

POSSIBLE CHIRP! with > 1% probability (P=O-024142).

Distr ibut ion: s= 31, N)3s= 399 (expect tT6),  N)Ss= 53 (expect 0)

Distr ibut ion has out l iers!  Reject



nax
rna)c

< n r .

snr:
2 .77  o f fse t :  15985 da ta  s ta r t :4156.40  sec .  var iance:  0 .72095
2.69  o f fse t :  47338 da ta  s ta r t :  4161.57  sec .  var iance:  0 .69708

This output shows three events that triggered an optimal filtering routine. The first and second
of these events were rejected for different reasons. The first was rejected because if failed the
frequency-distribution test. The second was rejected because it had 30 outiier points. The third
faiied for the same reason: it had 53 outlier points.

Next, we show some output when a fake chirp signal is injected into the data stream. This can
be done for example by modifying optinal to read:

invMpc-inject=100.0; /*  To inject a signal at  10 kpc, set this to 100.0 */

t ime-inject-chirp(1.0,0.0,!2345, invMpc-inject,chirpO,chirp9O,data,response,output0,npoint)

This produces the following output:

Max SNR: 9.96 (offset 12345) var iance 0.872624
If inpulsive event, offset 25860 or time 187.79
If inspiral, teroplate start offset 72345 (tine 786.42) coalesceace time 187.79
Nornalization: 5/19=1 at 752.17 kpc
Linear conbination of nax SNR: 0.9995 x phase-O + -0.0304 x phase-pi/2
P0SSIBLE CHIRP! with > 1% probability (p=0.42L294).

Distr ibut ion: s= 23, N)3s= 12 (expect t76),  N)Ss= 0 (expect O)
Distr ibut ion does not appear to have out l iers. . .

Max SNR: 12.84 (offset L2345) variance 0.834527
If impulsive event, offset 25860 or tine 792.96
If  inspiral ,  tenplate start  of fset 1.2345 (t ine 191.59) coalescence t i roe L92.96
Norrnalization: S/N=1 at 132.47 kpc
Linear conbinat iou of max SNR: 0.9953 x phase-O + 0.0973 x pbase-pi /2
P0SSIBLE CIIIRP! with > 1% probability (p=0.949737).

Distr ibut ion: s= 22, N)3s= 28 (expect !76),  N)5s= 0 (expect 0)
Distr ibut ion does not appear to have out l- j .ers. . .

Max SNR: 14.86 (offset L2345) var ience 0.801640
ff  impulsive event,  of fset 25860 or t i .ne 198.13
If  inspiral ,  tenplate start  of fset L2345 (t ime L96.76) coalescence t ime 198.13
Norual izat ion: S/N=1 at 127.90 kpc
Linear conbination of nax SNR: 0.9993 x phase-0 + -0.0372 x phase-pi/2
POSSIBLE CHIRP! with > 1/.  probabi l i ty (p=0.999236).

Distr ibut ioD: s= 22, N)3s= 35 (expect 176),  N)Ss= 0 (expect 0)
ut ion does not appear to have out l iers. . .

The code is correctly finding the chirps, getting the distance and phase and time location of the
chirps about as accurately as one would expect given the level of the IFO noise.
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Figure 26: This shows the event that triggered the 2 x L.4 solar mass binarv inspiral filter witb
a SNR of 8.71 (see the first set of sample output from the optimal filtering code above, at time
325.23). This same "event" can also be seen in Figure 7. The horizontal axis is sample number,
with samples s 10-a seconds apart; the vertical axis is the raw (whitened) IFO output. The event
labeled "drip" can be heard in the data (it sounds like a faucet drip) and is picked up by the
optimal filtering technique, but it is NOT visible to the naked eye. This event is vetoed by the
splitup technique described earlier - it has extremely low probability of being a chirp plus stationary
noise.

There are several interesting lessons that one can learn from this optimal filtering experience.
The first is that (roughly speaking) the events that trigger an optimal filter (driving the output to
a value much larger than would be expected for a colored-noise Gaussian input) can be broken into
two classes: those which can be seen in the raw data stream, and those which can not. Here, by
"seen in the raw data stream", we mean "visible to the naked eye upon examination of a graph".
Shown in the following two figures are examples of each type of spurious event.
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Figure 27: This another event that triggered the 2
SNR of 17.33. This event sounds like a "bump"; it
can be easil;r seen (and yetoed) in the time domain.

x 1.4 solar mass binary inspiral fllter with a
is probably due to a bad cable connection. It
A close-up of this is shown in the next flgure.
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Figure 28: A close-up of the previous graph, showing the structure of the "bump".
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Figure 29: This another event that triggered the 2 x 1.4 solar mass binary inspiral filter with a
SNR of 32.77. This event sounds lil<e a shovel scraping on the ground; its origin is unknown. It
can be easily seen (and vetoed) in the time domain,
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Figure 30r A close-up of the previous graph, showing the structure of the "scrape".
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5.24 Structure: struct Tenplate

The structure used to describe the "chirp" signals from coalescing binary systems is: struct
Tenplate {

int nun: In order to deal with templates "wholesale" it is useful to number them. The numbering

system is up to you; we typically give each template a number, starting from 0 and going up
to the number of templates minus one!

float f-Io: This is the starting (low) frequency fo of template, in units of sec-l.

f loat f -hi: This is the ending (high) frequency of the template, in units of sec-l

float tauO: The Newtonian time rs to coalescence, in seconds, starting from the moment when
the frequency of the waveform is f-Io.

f loat taul: First post-Newtonian correction 11 to rs.

float tau15: 3/2 PN correction

float tau20: second order PN correction

f loat pha0: Newtonian phase to coalescence, radians

f loat phal: First post-Newtonian correction to pha0

float pha15: 3/2 PN correction

float pha2O: second order PN correction

f loat ntotal: total mass rnt * rrr2, in solar masses

float nchirp: chirp mer;s pr7-2/5, in solar masses

f f oat rared: the reduced mass p, : mtmz/(mt * mz), in solar masses

float eta: reduced mass/total mass n:rn{n2/(^r+mz)2 , dimensionless

f loat n1 : the smaller of the two masses, in solar masses.

f loat n2: the larger of the two masses, in solar masses.

h
One may use the technique of matched f,ltering to search for chirps. The (noisy) signal is

compared with templates, each formed from a chirp with a pa.rticular values of m1, m2, and a
"start frequency" /6 of the waveform at the time that it enters the bandpass of the gravitational

wave detector. Several theoretical studies [4, 5] have shown how the template filtering technique
performs when the detector is not ideal, but is contaminated by instrument noise.

In the presence of detector noise, one can never be entirely certain that a given chirp (determined

by *t,rn2) will be detected by a particular template) even one with the exact same mass parameters.

However one can make statistical statements about a template, such as "if the masses rm1 and m2
of the chirp lie in region E of parameter space, then with 97To probability, they will be detected
if their ampiitude exceeds value h". Thus, associated with each chirp, and a specified level of
uncertainty, is a region of parameter space.
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It turns out that if we use the correct choice of coord.inates on the parameter space (m1,m2)
then these regions ft are quite simple. If we demand that the uncertainty associated with each
template be fairly small, then these regions are ellipses. Moreover, to a good approximation, the
shape of the ellipses is determined only by the noise power spectrum of the detector, and does not
change significantly as we move about in the parameter space. These "nice" coordinates (ro,"t)
have units of time, and are defined by

5 1G114\-s1t -1 ,ro : t# (-F) n-'(nfo)-'/'

5  ( M  \ - ; l :  - 1 ' �  ' \: 
ffi lT6) rlr(nfo)-8/3l^=5t3
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-  
4  ) \ t r l o )  

- 1 o '

The symbol

M : m t * m z

denotes the total mass of the binary system, and

(5.24.r)

(5.24.2)

(5.24.3)

fTLtTfLcq= 
Ontiffi 6.24.4)

is the ratio of the reduced mass to M. Notice that 4 is always (by definition) less than or equal to
u4.

We are generally interested in a region of parameter space correspond.ing to binary systems, each
of whose masses lie in some given range, say from Il2 to 3 solar masses. The region of parameter
space is determined by a minimum and maximum mass; v/e show an example of this in Figure 31.
Since we may take rnz {rn1 without loss of generality, the region of interest is triangular rather
than rectangular. The three lines on this diagram a.re:

(1) The equal mass line. Along this line T : I14.

(2) The minimum mass line. Along this line, one of the masses has its smallest value.

(3) The maximum mass line. Along this line, one of the masses has its largest value.

This triangular regio-n is mapped into the (ro,r) plane as shown inFigure 32In this diagrarn, the
lower curve 11 x rl/3 is the equal mass line (1). The upper curve, to the right of the ,,kink', is the
minimum mass line (2). The upper curve, to the lefi of the "kink" is the maximum mass line (3).
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5.25 Structure: struct Scope

The set of tempiates is described by a structure struct Scope. This structure specifies a set of
templates covering the mass range in parameter space described above and shown in Figure 32.
The fields of this structure are:
struct Scope {

int n-tnplt: This integer is the total number of templates needed to cover the region in param-

eter space. This is typically computed or set by tenplategridO.

f loat ro-mn: The minimum mass of an object in the binary system, as described above, in solar
masses.

f loat n-mx: The maximum mass of an object in the binary system, as described above, in solar
masses. Together with the I 'n',, this describes the region in parameter space covered by the

set of templates.

f loat theta: The angle of the major axis of the constant ambiguity ellipses, in radians counter-
clockwise from the 16 axis.

f loat dp: The dia.meter along the minor axis of the eilipse (in sec). This is twice the radius drs
given in Table 7.

f loat dq: The diameter along the major acis of the ellipse (in sec). This is twice the radius dz1
given in Table 7.

float f-start: The frequency /s used in the definitions of rs and 11 (5.24.L,5.2a.\; this is

tlpically the frequency at which a binary chirp first enters the usable bandpass of the detector.

struct Templatex tenplates: Pointer to the array of templates. This pointer is typically set

by tenplate-gridO, when it allocates the memory necessaxy to store the templates, and
creates the necessarv temolates.

l .
l t
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5.26 F\rnction: tau-of-masso

void tau-of-mass(f1oat m1, f loat n2, f loat pf ,  f loat * tau0, f loat * tau1)

This function calculates the coordinates (ro, rr) associated with particular values of the masses of

the objects in the binary system, and a particular value of frequency /s.
The arguments are:

n1: Input. The first mass (in solar masses).

n2: Input. The second mass (in solar masses).

pf : Input. The value z'16. Here /e is the frequency used in defining the r coordinates (see below).

It is often chosen to be at (or below) the frequency at which the chirp first enters the bandpass

of the gravitational wave detector.

tauO: Output. Pointer to r0 (in seconds).

taul: Output. Pointer to 11 (in seconds).

Although one carl think of "e and T1 as coordinates in the parameter space defined by (5.24.1)

and (5.24.2) they have simple physical meanings. rs is the time to coalescence of the binary

system, measured from the time that the waveform passes through frequency -fo, in the zeroth

post-Newtonian approximation. 1 is the first-order post-Net'tonian correction to this quantity, so

that to this order the time to coalescence is 19 * 1.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.27 F\rnction: n-aad-etao

int n-aad-eta(float tauO, float taul , float xM, float *etd, float l ' lmin, float Mna:c,

f loat pf)
This function takes as inputs the coordinates (re, 11 ) . If these correspond to individual masses

rn1 and rn2 each lying in the range from M,,,i,, to M^* then the function sets the total mass

M : rm1 * mz and. sets 4 : m1m2f (mt * m2)2 and returns the value 1. Otherwise, the function

reJurns 0 and does not change the values of mass M or q.

The arguments are:

tauO Input. The value of rs (positive, sec).

taul Input. The value of 1 (positive, sec).

M Output. The total mass M (solar masses). Unaltered if no physical mass values are found in

the desired range.

eta Output. The value of 4 (dimensionless). Unaltered if no physical mass values are found in

the desired range.

l,Lnin Input. Minimum mass of one object in the binary pair, in solar masses (positive).

l,lnax Input. Maximum mass of one object in the binary pair, in solar masses (positive).

pf : Input. The vaiue zrls. Here /s is the frequency at which the chirp first enters the bandpass

of the gravitational wave detector.

The algorithm followed by n-and-etaO is as follows. Eliminate 4 from the equations defining re

(5.24-l) and 11 (5.24.2) to obtain the foilowing relation:

(5.27.t)

with the constants given by:

c1 : 1155 "o

c2 : 47552 (trfsT.)a/srt

ca : 16128 (nfsT6)2r1.

(5.27.2)

Given ("o,rt) our goal is to find the roots of equation (5.27.1). It is easy to see that the function

on the ths of (5.27.L) has at most two roots. The function is positive at M:0 but decreasing for

small positive M. However it is positive and increasing again x M -, oo. Hence the function on

the lhs of (5.27.7) has at most a single minimum for M ) 0. Setting the derivative equai to zeto

and solving, this minimum lies at a value of the total mass M".11 which satisfies

c'�*cz(#)' ' '  - "(#):o'

Mcrit /3 cal3/z

M6 \5  cz )
(5.27.3)

Hence the ths of (5.27.i) has no roots if its value is positive at M : Msyil or ii has two roots if that

value is negative. (The "set of measure zero" possibitity is a single root at M.rit-)

If 2Mmin 1 Mcrit I 2M^"* then no-ald-etaO searches for roots 2M^in < M < Mseil and

Mcrit 1M <2M^., separately, else it looks for a root M inthe range 2M^in< M <zM^d<. If.
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the ths of (5.27.1) changes sign at the upper and lower boundaries of the interval, then the Numerical
Rec'ipes routine rtsaf e O is used to obtain the root with a combination of "safe" bisection and
"rapid" Newton-Raphson.

If a root M is found in the desired range, then 4 is determined by (5.24.1) to be

5 ( A'f \ -5l3 
'a1zTa,7: fu (%) ("ford- ro

If q < 714 then the smaller and larger masses are calculated from

(5.27.4)

(5.27.5)

(If both roots for M correspond to q < 114 then an error message is generated and the routine
aborts.) If both ?77,1 and Tn2 are in the desired range Mmio I IrLL,trL2 I M^o then n-and-etao
returns l and sets M arrd 4 appropriately, else it returns 0, leaving M and 4 unaffected.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

* , :#Q-1=-+f  * , :Y(+,m)
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5.28 Function: tauspace-areao

float tauspace-area(struct Scope *Grj-d)
This function computes the area of the enclosed region of parameter space shown in Figure 32.

The arguments are:

Grid: Input. This function uses only the minimum mass, macimum mass and the cut-offfrequency

/o fields of crid.

the numerical value of the area in units of sec2. See the example in theThe function returns
following subsection.

The function uses
(5.24.t,5.24.2) for rs
region bounded above

an analltic expression for the area obtained by integration of formulae
and 11 given earlier. For example, to obtain the area of the trapezoidai
by the maximum-mass curve and below by the z6 axis, we integtate

41 : I:::r7(m^in'*)ry0*
: ,^ f rn-i"l 8/s 

[ 
-13 + 2(4 + za)u + (5 + 9a)u21

'" 
l, Mo J t 2u2(1,*u)z/s

.  9a  -  L  l t  +2( t  +  u ) ' / t1
+ _T axcran 

L___=_1
,  9a -1 ,  I  r + ( r  * u ) r / s+ (1+  u ) z / z l l u= t
+  6  t " s l r y ) l u = ^ ^ , n 1 * ^ o

Here a :9241743 and Ae is a quantity with dimensions sec2 given by

A3: l:::,,1*,*1ff!a*
6o8zb MA |fye_la/z _1 u"ys/zl

2064384 (trfsMdAl3 l\rn*i",i \nz*o./ J

These three results can be combined to give the total area enclosed

. 18575 MA /cal 
sus

a o : T s f f i C f f i d t r \ d )

The area A2 under the minimum-mass curve can be obtained from the formula above by in-
terchanging ?rzpin drrd n'Lm,u<. (If you wish to use geomtrized units in which the solar mass is
4 .92x  10-6secs imp lyse t  G =c :1 . )  Theareaunder theequa l -masscurve  Ascan beobta ined
by performing a similar integration along the equal-mass curve

(3)"'

Atotut:  At *  42 -  A3 ' (5.28.1)

Equation (5.28.1) is the basis of tauspace-areaO;the next example shows an application of this
function.

Author: Alan Wiseman, agw@tapir.caltech.edu

Comments: None.
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5.29 Example: area prograrn

This example uses the function tauspace-areaO described in the previous section
area of the specified parameter space. The parameters specifying the region are
and maximum mass in solar masses and the cut off frequency in seconds-l. The
of the area is returned and printed.

/x GRASP: Copyright 1997, Bruce Allen x/
#incl-ude "grasp.h"

int nainO {
struct Scope GrJ.d;
float area;
float tenplate-area(struct Scope x) ;

/x Specify the parameter space 'i/

G r i d 'm  nn=g 'g '
Gr id.n--mx=50.0;
Grid. f-start=140 . 0:

/x find area of parameter space x/
area=t emplat e-area ( &Grid) ;

l* and print it */
printf("Tbe area in parameter space is 7.f\n",area);
return 0;

)

I 4D

compute the
the minimum

ical value
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5.30 F\rnction: tenplate-grido

void tenplate-grid(struct Scope xGrid)

This function evolved from grid4. f , a FOR|RAN routine written by SathyaprakashThis function
the distortedlays down a grid of templates that cover a particular mass range (the region insi

triangle shown in Figure 32).
The arguments are:

Grid: Input/Output. This function uses as input all of the fields of Grid except for Grid.n-tnp1t
and Grid.tenplates. On return from tenplate-grid these latter two are set. The
function uses roallocO to allocate storage space and creates in this space an axray con-

memory, calltaining Grid.n-troplt objects of type Tenplate. If you wish to free
f ree (Gri-d.  tenplates).

It is easy to cover the parameter space shown in Figure 32 with eilipses. each eliipse
represents a filter, and filtering takes computer time and memory, so the real is to cover the
parameter space completely, using the smallest possi,ble number of templates. This
packing problem; while our solution is certainly not optimal, it is quite close.

The algorithm used to place the templates is as follows. We work in coordinates (ro,rt) which
are rotated versions of (rs, 11), aligned along the minor and major axis of the temp
input angle Grid.theta is the counterclockwise angle through which the (re,11)
in order to produce the (ze,z1) axes.

ellipses. The

Although each template is an ellipse, the problem of packing templates onto parameter

space can be more easily described in terms of a more familiar packing problem: penrues

on the plane. One can always transform an ellipse into a circle by merely scaling coordinate
uniformly while leaving the other coordinate unchanged. So we introduce coordi 11 along

the major diameter and ro along the minor diameter of the ellipse, and then ;" the 11

coordinate by the ratio of major to minor diameters. In this way the ellipses are
circles.

Figure 33: Covering a plane with a square lattice of pennies (or templates) leaves
exoosed

16. These templates are staggered up and down in the 11 direction. After layrng
templates, the remaining part of parameter space is covered with additional temp

First. a template is laid down at the point where the equal mass line intersects maxlmum

mass line. Then additional templates are placed along the equal mass line, at i values of

a non-trivial

are rotated

into

To of. the area

this set of
in columns

starting at each of the previously determined template locations. These columns
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value of 16 as the previously determined templates but increasing values of c1. The columns are
continued until the "leading edge" of the final template lies outside the parameter space.

We can describe the packing (and the "efficiency") of the packing in terms of the penny-packing
problem. Suppose we start by setting pennies of radius L/2 on all points in the plane with integer
coordinates, as shown in Figure 33. It is easy to show that the fraction of the plane (i.e., parameter
space!) which is not covered by any pennies is e : L-nl4:0.214... or about2LYo.

Figure 34: Staggering the pennies (or templates) decreases the uncovered fraction of the plane to
9.3%

Now suppose that we "stagger" the pennies as shown in Figure 34. In this case, the fraction
of area not covered is e : L- #s:0.093-..or about 9.3%. It we wish to completely cover the

missing bits of the plane, then we can do so by increasing the radius of each penny by 1ffi @r,
equivalently, by moving the points at which the pennies lie closer together by that same factor).
The resulting diagram is shown in Figure 35. By increasing the number-density of pennies on the
plane by 25To we have successfully covered up the remaining 9.3% of the area.

Figure 35: Decreasing the spacings of the pennies (or templates) by a factor of (5/+)t/z : 1.118.. .

then covers the entire plane.

Now it is not possible to implement this algorithm exactly because we are not attempting to
cover the entire plane, but rather only a finite region of it. You might think that we could just

start laying down templates in the same was as for Figure 35 and stick in a few extra ones for any
parts of the parameter space which were not covered, but unfortunately this would then lead us
to place templates centered at points in (re,z1) space that do not correspond to rl < 114, and for
which the very meaning of a "chirp" is ill-defined.

L47



r
t
i

Author Detector folil, drsf msec dqf msec 0llL
Sathyaprakash Caltech 40m (Oct 94)
Sathyaprakash Caltech 40m (Nov 94)
Sathyaprakash Caltech 40m (Nov 94)

120
720
L40
200
70

2.27
2.55
2.73
0.162
0.352

35.2
33.2
32.0
2.109
3.970

0.978
1.025
0.964
0.5066
0.4524

Owen
Owen

Initial LIGO
Advanced LIGO

Table 7: Orientation and dimensions of 0.97 ambiguity tempiates.

The code in tenplate-gridO thus uses a heuristic method to place templates, trylng whenever

possibie to stagger them in the same way as Figure 35 but then shifting the center locations when

necessary to ensure that the template corresponds to physical values of the mass parameters rrzl

and m2. This is often referred to as "hexagonal packing". In practice, to see if this placement has

been successful or not, the function plot-tenplateO can be used to visually examine the template

map.
Table 7 gives information about the appropriate template sizes, spacings and orientations as

found in the recent literature. Note that the quantities dzs and dq are the radii or semi-minor

and semi-major a><es of the constant-ambiguity ellipses, along the us and rl1 dxes as defined earlier.

Equation (3.1e18) of reference [5] do not appear to agree with Table 7, but that is because the

d.ri of. [5] are defined by (dc;)e-un: dhltE The dI,; are the edge lengths of a hypercube in

dimension N, chosen so that if templates are centered on its vertices, then the templates touch in

the center of the cube, so that (dz1)gwen : dtil\/4. In our N :2 dimensional case, this gives

d,r; : (d,x)o*.nf rt. Note also that in this tabie, Owen and Sathyaprakash use different definitions

of /6, so that their results may not be directly compared. In Owen's case, /s refers to the frequency

of maximum sensitivity of the detector, whereas in Sathyaprakash's case it refers to the frequency

at which the chirp first enters the bandpass ofthe detector. In the case ofthe November 1994 data

set, we quote two different sizes an orientations for the ellipses, depending upon the choice of /s-

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine evolved from grid4. f , which was written by Sathyaprakash. The method

used to stagger templates is heuristic, and could perhaps be improved. Very small regions of

the parameter space along the equal-rnass line (4 : ll4) may not be covered by any templates-
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5.31 tr\rnction: plot-tenplate o

void plot-tenplate(char xfilenane,struct Scope Grid,int npages,int nr:nber)
This function generates a PostScript (tm) fiie that draws a set of templates on top of the region of
parameter space which they cover.

The arguments are;

f ilename: Input. Pointer to a character string. This is used as the name of the output file,

into which postscript output is written. We suggest that you use ".ps" as the final three

characters of the filename. These fiIes are best viewed using GhostView.

Grid: Input. The mass range specified by Grid is used to draw an outline of the region in (16, z1)
parameter space covered by the mass range, and an ellipse for each template included in Grid

is then drawn on top of this outline.

npages: Input. If there are more than a few templates (and there can be thousands, or more)

it is impossible to view this graphical output unless it is spread across many pages. npages

specifies the number of pages to spread the output across. We suggest at least one page per

hundred templates.

nurober: Input. Each template specified in Grid is numbered by the field Grid.n-trnplt. If nu:nber

is set to 1, then when each ellipse is drawn in parameter space, the number of the template is
placed inside the ellipse so that the particular template associated with each ellipse may be

easily identified. If number is set to 0, then the templates are not identified in this way; each

template is simply drawn as an empty ellipse.

Figure 36: Part of some sample output from plot-template O.

Note that the output postscript file is designed to be edited if needed to enable clear viewing of

details. Each file is broken into pages. At the beginning of each page are commands that set the
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magnification scale of each page. and determine if the page will be clipped at the boundaries of the
paper or not. You can edit these lines in the postscript file to enable you to "zoom in" on part of
the parameter space, if desired. By turning off the clipping, you can easily move off the boundaries
of a given page, if desired. Some sample output from plot-tenplate O is shown in Figure 36. (In
fact, this is part of the output file produced by the example prograrn, showing a small number of
the total of 1001 tempiates required).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Another option should be added, to print out at the center of each template, the mass
parameters m1 and ?22 associated with the template.

|'-:

{
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5.32 Example: tenplate program

This example lays down an optimai grid of tempiates covering parameter space. It also outputs a
postscript file (best viewed with GhostView) which shows the elliptical region of parameter space

covered by each template.

/* GRASP: Copyright 1,997, Bruce Allen x/
#include "grasp.h"

i n +  m : i n / l  I
t

struct Scope Grid;

/x Set parameters for the inspiral search */
Gr id ' n  mn=g '3 '

Gr i .d .n- :ox=50.0;
Gr id. theta=0.964;
Gr id ' dP=2a0 '00213 ;
Gr id 'dq=lao '0320;
Gr id.  f -s tar t=140.0;

/x construct template set covering parameter space x/
teroplate-grid (&Grid) ;

f '* create a postscript file showing locations of templates x/
plot-tenplate ( "temp-list. ps " , Grid, 15, 1) ;
return 0;

)

Part of a typical picture contained in the output file tempJist . ps is shown in Figure 36 (though

for different parameters than those shown above).
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5.33 Example: nultifilter program

This example implements optimal filtering by a bank of properly-spaced templates. One could do
this with trivial modifications of the example optinal program given earlier. Here we have shown
something slightly more ambitious. The roultif ilter program is an MPl-based parallel-processing

code, desigled to run on either a network of workstations or on a dedicated parallel machine. It is
intended to iilustrate a particularly simple division of labor among computing nodes. Each segment
of data (of length NPOINT) is broadcast to the next available node. That node is responsible for
fiitering the data through a bank of templates, chosen to cover the mass range from MMIN to Ml'tAX.
The output of each one of these filters is a set of 11 signals, which measure the foilowing quantities:

L. The largest signal-to-noise ratio (SNR) at the output of the filter, for the given segment of
data,

2. The distance for an optimally-oriented source, in Mpc, at which the SNR would be unity.

3. The amplitude a of the zero-degree phase chirp matching the observed signal.

4. The amplitude B of. the ninety-degree phase chirp matching the observed signal.

5. The offset of the best-fit chirp into the given segment of data

6. The offset of the impulse into the given segment of data, which would produce the observed
output.

7. The time of that impulse, measured in seconds from the start of the data segment,

The time (in seconds, measured from the start of the data segment) at which an inspiral, best
fitting the observed filter output, would have passed through the start frequency FLO.

The time (in seconds, measured from the start of the data segment) at which an inspiral, best
fitting the observed filter output, would have passed through coalescence.

The observed average value of the output SNR (should be approximately unity).

The probability, using the splitup technique described earlier, that the observed filter output
is consistent with a chirp plus stationary detector noise.

For completeness, we give this code in its entirety here. We also show some typical graphs
produced by the MPE utility nupshot which iliustrates the pattern of communication and compu-
tation for an analysis run. For these graphs, the analysis run lasted oniy about four minutes, and
analyzed about three minutes of IFO data. We have performed an identical, but longer run, which

analyzed about five hours ofIFO ouput injust over three hours, runningon a network ofeight SUN
workstations. The data is analyzed in 6.5 second segments, each of which is processed through a set

of 66 filter templates completely covering the mass range from 1.2 to 1..6 solar masses. For the run

that we have profiled here, STORE-TEMPLATES is set to 1. This means that each slave allocates mem-

ory internally for storing the Flourier-transformed chirp signals; the slaves only compute these once.
However this does place demands on the internal storage space required - in the run illustrated
here each individual process allocated about 34 Mbytes of internal memory. Another version of the

code has also been tested: in this version the siave nodes compute the filters and Fourier transform

them each time they are needed, for each new segment of data. This code has STORE-TEMPLATES
set to 0. This is less efficient computationally, but requires only a small amount of internal storage.

8.

o

10.

1 1 .
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Figure 37: Output of the nupshot profiling tool, showing the behavior of the nultif ilter program
running on a workstation network of B machines (the fastest of these are Sparc-20 class processors).
This shows the first 8 seconds of operation (time on the horizontal axis). The gray segments show
the slave processes receiving the template list. During the orange segments, the slave processes are
waiting for data; the blue segments show the master transmitting data to each slave. During the
light gray segments, the slaves are computing the templates, during the green segments they are
computing the FFT's of those templates, and during the purple segments they are correlating the
data against the templates. During the brown segment, the master is waiting to receive data back
from the slaves.

For a given hardware configuration, the optimal balance between these extremes, and between the
amount of redundant broadcasting of data, depends upon the relative costs of communication and
computation, and the amount of internal storage space available.

Based on these figures, it is possible to provide a rough table of computation times. These are
given in tabular form in Table 8.

Author: Bruce Allen, ballen@dirac.phys. uwm. edn

Comments: There are many other ways in which this optimal filtering code could be parallelized.
This program illustrates one of the possibilities. Other possibilities include: maintaining dif-
ferent templates on different processes, and broadcasting identical IFO data to these different
processes, or parallelizing across both data and templates.

Task Color Approximate time Processing done
data -+ slaves
data -+ master
correlate
splitup (iikeiyhood)
real FFT (one phase)
compute template
orthonormalize templates

dark blue 350 msec
yellow L msec
purple 500 msec
light biue 330 msec
green 150 msec
gray 350 msec
wheat 25 msec

transfer 384 kbytes
transfer 3 kbytes
2 ffts of 64k floats, and search
several runs through 64k floats
1 fft of 64k floats
compute 2 arrays of r: 18k floats
several runs through 64k floats

Table B: Approximate computation times for different elements of the optirnal-filtering process.
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Figure 38: This is a continutation of the previous figure. Slave number t has completed its com-
putation of the templates, and during the orange segment, waits to make a connection with the
master. This is followed by a (very small) vellow segment, during which the slave transmits data
back to the master, and a blue segment during which the master transmits new data to slave
number 1. Immediately a,fter this, slave number 1 begins a new (purple) sequence of correlation

Figure 39: This is a continutation of the previous figure, and represents the "long-term" or *steady-
state" behavior of the multiprocessing system. In this state, the different processors are spending
all of their time doing correlation measurements of the data, as indicated by the purple segments,
and the master is waiting for the results of the 

lrylrsis 
(brown segments).



Figure 40: This is a continuation of the previous figure, and shows the termination of some of the
slave processes (all the data has been analyzed, and there is no new data remaining). The blue
segments (data being sent to slaves) are actually termination messages being sent to the different
processes 2,3,4 and 6. Processes 5 and 7 are still computing. In the case of process 7, tbe data being
analyzed contains a non-stationary "spurion" which triggered most of the filters beyond a pre-set
threshold level. As a result, process 7 is performing some additional computations (the split-up
likelyhood test, shown as light blue segments) on the data.
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/* GRASP: Copyright 1997, Bruce Allen */
/x multifilter.c
This code is intended for machines where computation is cheap,
and communication is expensive. The processsing is organized as
master/slaves (or manager/workers!). The master process sends out data
chunks to individual slave processes. These slave processes analyze
the data against all templates, then return the largest signal values
obtained for each template, along with other parameters like the time of
coalescense and the phase of coalescence, They then get a new data chunk.
If STORE-TEMPLATES is set to 1, then the fi"lters are computed once,
then stored internally by each slave. This is the correct choice if each
slave has Iots of fast memory available to it. If STORE-TEMPLATES is set
to 0, then the slaves recompute the templates each time they use them.
This is the correct choice if each slave has only small amounts of fast
memory available.

#include "Dpi.h"

#include ttmpe. htt
#iuclude "grasp.bt'

#define NPOINT 65536
#def ine FLO 120.0
#define ARI,ILENGTH 40.0
#define HSCALE 1.e21
#define MIN-INTO-L0CK 3.0
#define SAFETY 200
#define CHIRPLEN 18000
*def ine MMIN 1.2
#define MMAX 1.6
#define DATA-SEGMENTS 25
#define NSIGNALS 11
#define ST0RE-TEMPLATES 1

/x The size of our segments of data (6.5 secs) */

/x The low frequency cutoff for filtering x/

/* Armlength of the IFO, in meters x/

/x A convenient scaling factor; results independent of. it x /
/* Number of minutes to skip into each locked section x/

/* Padding safety factor to avoid wraparound errors x/

/x length of longest allowed chirp */

/x min mass object, solar masses ,i/

/x max mass object, solar masses x/

/x largest number of data segments to process x/

/x number of signal values computed for each template x/

/x 0: slaves recompute templates. 1: slaves save templates. */

l

) ,

void shi f tdataO;
void realft(f loatx,unsigaed long,int) ;

struct Saved {
float tstart;
int gauss;

short xdatas;
int npoiat, remain=0, D.eeded, dif f , gauss-test, num-sent=O, f i l l_buf f er O ;
float *twice-inv noise,xhti lde, xdata,xmean_pow_spec,tstart ;
f loat srate=9868.4208984375, decaytine , datastart , *response;
doubl-e norm,decay;
FILE * fp i fo ,x fpss,  x fp lock;

1nt nain(int argc,char xargv[])

{

int xlchirppoints,num-stored ;
f loat xltc, x1chOti1de, x1ch90tilde ;
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int nyid,numprocs, i, j  ,maxi., inpulseoff, *chirppoints, indlces [8] ,num-ternplates;
int slave,more-data,temp--no,num-recv=O,na.roelen,completed=O,1ongest-tenplate=0;
f loat  x tc , ro l  ,u2,xtemplate l is t ,xs ig-buf fer ,d is ta lce,snr l t rax,var , t ineof f , t i t restar t ;
f loat n0,n90,iuverse-dist:nce-scale,xoutputg0,xoutPut0,xchOtilde,*cb90tilde;
f loat t inO, 1in90, varsplit, stats [8], ga:uoq (f ]oat, f loat ) ;
double prob;
FILE *fpout;
MPI-Status status;
cbar processorrra$e[upr-u.lx-pR0cESS0R-NAME] ,logf ile narne[64] ,naroe[64] ;
struct Scope Gri.d;
struct Saved *savelue;

/x. start MPI, find number of processes, find process number x/

MPl-Init (&argc, &argv) ;
MP I -C omm-s i ze ( MP I -C0}'1M-W0RID, &nunpr o c s ) ;
MP f -Conn-ralk (MPI-C0MM-I'I0RLD, &myid) ;
MPI-Get-proces s ourame (pro ces s orrrane, &. amel en) ;
MPE-Init-IogO;

/x number of points to sample and fft (power of.2) * /
ne eded=npo int=NP0 INT ;

/x Gravity wave signal (frequency domain) & twice inverse noise power x/

hti l-de=(fl-oat *)malloc(sizeof(f1oat)*npoint+sizeof(fIoat)*(npoirrt/2+1));
tni ce-lnv-no 1 s e=ht ilde+npo int ;

/x Structure for saving information about data sent to slaves x/

""u"rg=(struct Saved x)malloc(sizeof (struct Saved)xnumprocs) ;

/x MASTER x/
if (nyid==O) {

MPE-Describe-state ( 1, 2, "Templates->S1aves ", "red : vlines3" ) ;
MPE-Describe-state(3,4, "Data-)Slaves", "blue : gray3r') ;
MPE-Describe-state (5,6, "Master Receive", "brovn: l igbt-gray") ;
MPE-Des cribe-state (7, 8, "Data-)Master", "ye1low : dark-gray" ) ;
MPE-Descri.be-state(9, 10, ttSlave Receive", "oraJlge :whitet') ;
MPE-Describe-state (13,14, "Slaves<-templates" , "gray: black") ;
MPE-Describe-state ( 15, 16, " couput e template ", " lavender : b1ack " ) ;
MPE-Describe-state(17,18, "rea1 fft" , "lawn' greeu:black") ;
MPE-Describe-state ( 19 ,20, I 'correlate't , "purple : bIack" ) ;
MPE-Describe-state (2 L ,22 ," orthoaormallze" , rtwheat : b1ack" ) ;
MPE-Describe-state (23,24, " l ikelyhood test t '  , " l ight sky blue: b1ack" ) ;

/x Set parameters for the inspiral search *,/
Grid.m nn=YY111 '

Grid.ro-rnx=MMAX;
Grid. theta=O . 964;
Gr id.  dp=la0 .00213;
Gr j -d.  dq=2x0 .0320;
Gr id.  f -s tar t=140.  0:

/x construct template set covering parameter space, m1 m2 storage x/

telaplate-grid (&Grid) ;
num-templat es=Gr id . n-tnp1t ;
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printf("The number of tenplates being used i.s 7.d\n",num-ternplates);
tenplate-1ist= (f loat x ) na1lo c (sizeof (f loat ) *2xouro-tenplates) ;

/x put mass values into an array ,rf
for  ( i=0;1<Grid.n- t ropl t ;  i++)  {

tenplate-l ist [2*i] =6rid. tenpl-ates [i] .n1 ;
teroplate-list [2xi+1] =Grid . teroplates Ii] . n2 ;
printf ("Mass values are m1 = 7.f ro2 = 7.f\n",Grid.teroplates[i].ra1 ,Grid.teroplates[iJ

)
f f lush(stdout) ;

/x storage for returned signals (NSIGNALS per template) x/
s i g-buf f er= ( f loat x ) nal1o c ( s izeof (f loat ) xnum-t enplat e s *NSIGNALS ) ;

/* broadcast templates x/
MPE-Log-event (1,nyid, " send" ) ;
MPI-Bcast (&nnm-tenplates , 1 , MPf-fNT, O, UPI-C0MU-LI0RLD) ;
MPI-Bcast (tenplateJist , 2xnum-teroplates ,lutPI-FL0AT, O, MPI-C0MM-WORLD) ;
MPE-Log-event (2,royid,'1 seat tt ) ;

/'r number of points to sample and fft (power ot 2) * I
needed=npo int=NP0f NT ;

/* stores ADC data as short integers x/
datas= (shortx)malloc (sizeof (sb.ort) xnpoi.nt) ;

/* stores ADC data in time & freq domain, as floats ,r/
data=(float x)malloc (sJ-zeot (f loat)xnpoint) ;

/x The response function (transfer function) of the interferometer */
response= (float x)ualloc (sizeof (fIoat) x (npoint+2) ) ;

/x The autoregressive-mean averaged noise power spectrum x/
nea!-pos-spec= (float x)na}}oc (si-zeof (f loat) x (npoint/2+1) ) ;

/x Set up noise power spectrum and decay time x/
norm=O.0;
clear (nean-potrr-spec,npo itt f 2+t, L) ;
decaytiroe=10 . Oxnpoiat/srate ;
decay=exp(- 1 .O+npoiat/ (sratexdecaytiroe) ) ;

/x open the IFO output file, lock file, and swept-sine file ,r/
fpifo=grasp-open ( "GRASP_DATAPATH'r , I channe} . 0rr) ;
f plock=grasp-opeu ( "GRASP_DATAPATII" , " cha.D.ne1 . 10" ) ;
f pss=grasp-open ( " GRASP_DATAPATH ", " swept- s i-ne . asc li " ) ;

/* get the response function, and put in scaling factor *f
nornalize-gw (fpss , npoj.nt , srate, response) ;
f or (i.=0; i(npoint+2; i++)

resPonse IiJ x=115gOtt/lnUfEllCtH ;

/x while not finished, loop over slaves x/
for (slave=1;slave<numprocs;s1ave++) {

if (get-calibrated-dataO ) {

ts
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/x if new data exists, then send it (nonblocking?) xl

fprintf (stderr, "Master broadcasting data segnent 7od\n",num-seut+1) ;
MPE-Log-event (3,uyid, " send") ;
MPI_Sead (htilde, NPoINT+NP0INT/2+1, MPIJL0AT, s1ave, ++nun-seDt, MPT-C0MM-hIORLD) ;
MPE-Log-event (4,royid, " sent " ) ;
saveme [s1ave- 1J . gauss=gauss-test;
saveme [slave- 1] . tstart=datastart ;
sh i f tdataO;

l

"r"" {
l* tell remaining processes to exit x/
MPE-Log-event (3,nyid, " send" ) ;
MPI-Sead (hti1de, NPOINT+NP0INT/2+1 , MPIJLOAT, slave ,0 , MPI-C0MI{-W0RLD) ;
MPE-Log-event (4,royid, " se!.t " ) ;

)
)

/x now loop, gathering answers, sending out more data */

while (nr:m-sent !=nr:m-recv) {
more_data=get_calibrated-data ( ) ;

/x listen for answer x/
MPE-Log-event(5,royid, rrreceiving. . . ") ;
MP I -Re cv ( s i g-buf f e r, NS I GNAtSxmuo-t enplat e s, MP I JLOAT, MP I -ANY-S 0URCE,

MP I-ANY-TAG, MP I -COM},I-WORLD, &st atus ) ;
MPE-Log-event (6,nyid, "received" ) ;
num_recv++;

/x store the answers.. . */
sprintf (name, " sig'nals .7.05d" , status .I{PI-TAG- 1) ;
fpout=f open(name, t 'w" ) ;
if (fpout==NULL) {

fprintf (stderr,"Multif i ]ter: can't open outPut f i le /.s\att,name);
MPl-Final izeO;
r o t r r r n  ' 1  .

)
fprintf (fpout, "# Gaussia-n %d\nu, saveule [status . MPIJ0URCE- 1J . gauss) ;
fprintf (fpout,"# tstart 7of \n",saverne[status.]'lPIJ0llRCE-11 .tstart);
fprintf(fpout,"# snr distaace phaseO pbase90 roaxi\

inpulseoff inpulsetine startinspiral coalesce variance prob\a");

for (i=0;i<Bun-templates;i++; 1
for (j=0 ; j <NSIGNALS-1 ; j++)

fprintf (fpout, "7og\t" , sig-buffer [ ixNSIGNALS+jJ ) ;
fpri-ntf (fpout, uTof\n" , sig-buffer I ixNSIGNALS+j] ) ;

lxlf datastream has no obvious outliers, and chirp prob is high, print x/

if (sig-buffer[1*NSIGNALS+10]>0.03 && saveroelstatus.MPIJ0URCE-1].gauss) {
priatf("P0SSIBLE CHIRP: signal f i le 7.d, tenPlate 7.d, SNR = 7"f , prob = o/of\n"

status . MPI-TAG- 1 , i. , sig-buffer [ixNSIGNALSI , sig-buffer [ixNSIGNALS+10] )

f f lush(stdout) ;

)

I

r crose (rpout,,r ;
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/x if there is more data, send it oft ,r l
if (nore-data) {

fprintf (stderr, "Master broadcasting data sega.ent 7.d\n", aum_sent+1) ;
MPE-Log-event (3,nyid, "send" ) ;
MPI-Send (htilde , NPoINT+NPoINT l2+t, MPI_FL0AT, status .l,lplJoURCE, ++Dun_seDt,!,{PI_C0MU_WORLD) ;
MPE-Log-event (4,nyid, "sent ") ;
savene [status . MPIJOURCE- 1J . gauss=gauss-test;
savene lstatus . MPIJOURCE- 1] . tstart=datastart;
sh i f tdataO;

1

/* o, "lr" tell the process that it can pack up and go home x/
e lse {

printf ( " Shutti.ng down sLave process 7"d\a" , status . MPIJ0URCE) ;
MPE-Log-event (3,nyid, "send") ;
MPI-Send(hti lde,NPOTNT+NPOINT/2+I,MPIJLOAT,status.MPI-SoURCE,o,MPI-COM},I.IJORTD);
MPE-Log-event (4,nyid, "sent',) ;

)

/,r when all the answers ale in, print results x/
printf("Tbis is the naster - all rns$rers are in!\n");

]

/x SLAVES x/
else {

printf ("Slave 7.d (%s) just got started. . .\u",myid,processor--name) ;
fflusb. (stdout) ;

/x allocate storage space x/

/x Ouput of matched fi.lters for phase0 and phase pif 2, in time domain, and temp storage x/
output0= (f loat *) nalLoc (sizeof (f loat) xnpoint ) ;
output90= (f loat x) nalloc (sizeof (f loat ) xnpoiat ) ;

/* get the Iist of templates to use x/
MPE-Log-event(13,nyid, "receiving. . . ") ;
MPf-Bcast (&num-tenplates , 1 , MPf-INT, O, MPI-C0MM-W0RLD) ;
si.g-buf f er= (f loat x)roalloc (sizeof (f loat) xmrn-tenplates*NSfGNALS) ;
t ernplate-list= (f loat x) nalLoc (sizeof (f loat) x2*num_tenplates ) ;
MPI-Bcast (tenplatelist ,2,r.num-teroplates , MPI-FL0AT,0, MPI-COMU-!rI0RLD) ;
MPE-Log-event ( 14,nyid, , 'received,,) ;
printf ("Slave 7,d (7.s) just got tenplate l ist. . .\n",nyid,processor--name);
f f lush(stdout) ;

/x Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain */
num-stored=STORE-TEMPLATESx (nru-tetrplates- 1 ) +1 ;
Lch0tilde= (float x)rnalloc (sizeof (fIoat) xupointxnum_stored) ;
1ch90tilde=(float x)nalloc (sizeof (f loat) xnpointxnum_stored) ;
lchirppoints= (int x)roalloc (sj.zeof (f loat) xnuro_stored) ;
1tc= (float *)ua]loc (sizeof (f loat) xnum-stored) ;

i.f ( lch0ti lde==NUll l l  1chgOtilae==NULL ll
fprintf(stderr,"Node 7.d on machine 7"s:

nyid, processor-naoe) ;

lchirppoi.nts==NlJl,l ll ltc==NULL) {
could not  mal locO memory! \n" ,
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abort O ;

)

/x now enter an infinite loop, waiting for new inputs x/

whi le  (1)  {
/x listen for data, parameters from master */
MPE-Log-event(9,rnyid, rtreceiving. . . ") ;
MPI-RECV(ht1]-dE , NPOINT+NPOINT/2+1 , MPI-FLOAT, O, MPI-ANY-TAG, MPI-COUM-WORLD, &StAtUS) ;
MPE-Log-event ( 10,nyid, "recei.ved" ) ;
printf(',S1ave %d ('/,s) got htilde (aad noise spectrum) for segnent %d \n"

myid, processorrlane, status . MPI-TAG) ;
f f lush(stdout) ;

/* if this is a termination message, we are done! *./
i-f (status.MPI-TAG==0) break;

/x compute signals x/
for (tenp-no=0; temp-ao(num-tenplates ; tenp--no++) {

chOtilde=1 chOt ilde+npo intxtemp--o.oxST0RE-TEMPLATES ;
cb.90tilde=1ch90ti1de+Dpo intxtenp-uoxST0RE-TEMPLATES ;
chirppo ints=1 chirppo iDts+t exopio*STORE-TEMPLATES ;
tc=Itc+temp-aoxST0RE-TEMPLATES ;

/x Compute the template, and store it internally, if desired x/

if (conpleted!=num-tenplates) {
/x manufacture two chirps (dimensionless strain at 1 Mpc distance) x/

m1=templateli.st [2xtenp-aoJ ;
n2=teroplate-1i.st [2xtenp-.:c.o+1J ;

MPE-Log-event ( 15 ,nyid, " computing" ) ;
nake-fi l ters (n1 ,n2, ch0ti lde , cb90ti1de, FLO,npoint, srate , chirppoints , tc,4000) ;
MPE-Log-event ( 16,myid, " computed" ) ;

if ( x chlrppo ints ) longest-t etrPlat e ) longe st-tenplat e='r' chirPPo int s ;

if (xchirppoints)CHlRPlEN) {
fpriatf (stderr,"Chirp m!=l,t m2='/,f length 7"d too long!\n",m!,m2,

xchirppoints);
fprintf (stderr, "Maxi.num a]lowed length is 7.d\n",CHIRPLEN) ;
fprintf (stderr,"Please reconpile ulth larger CHIRPLEN value\n") ;
ff lush(stderr) ;
abort O ;

)

/x normalize the chirp template ,r/

inverse-dista.n'ce-s cale=2 . O*HSCALE* (TSOLAR*C-IIGHT/MPC) ;
for (i=0; i(xchirppoints ; i.++){

ch0t ilde Ii] *=inverse-distal'ce-s cale ;
ch90t j.lde Ii] x=invers e-di.sta!ce-s cale ;

)

/x and FFT the chirps */
MPE-Log-event (17,nyid, r 'starting fft") ;
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real f  t  (cbOt i . lde-1,npoint ,1)  ;
MPE-Log-eveat (18,nyid,',ending fft") ;
MPE-Log-event (17,myid, " starting f ft ' ,) ;
realft (ch9OtiLde-1 ,npoint, 1) ;
MPE-Log-event(18,myid, ' tending f f tu)  ;

if (ST0RE-TEI,IPLATES) completed++;

/x print out the length of the longest template x/
if (conpleted==num-tenplates)

printf("Slave 7.d: templates conpleted. Longest is 7"d points\n",
nyid, J-ongest_tenpl-ate) ;

f f lush(stdout) ;

) /x done computing the tempiate x/

/x orthogonalize the chirps: we never modify chOtilde, only chgOtilde x/
MPE-Log-eveDt (21,nyid, "starting" ) I
ortbonornaLize (ch0t11de, ch90ti1de, tvice_inv_noise, npoint, &n0, &n90) ;
MPE-Log-evett (22, myid, " done', ) ;

/,r distance scale Mpc for SNR:I x/
distance=O. 5/n0+0. 5 /r9O;

/x find the moment at which SNR is a maximum x/
MPE-Log-event (19 ,myid, " searchlng" ) ;
f iad-chirp (hti lde , choti lde, chgotilde, twicejnv_noise,n0,n90, outputo , output90,

npoint , CHIRPLEN, &naxi , &snr_max, &1in0, &lin90, &var) ;
MPE-Log-event (20,nyid, "done" ) ;

/* identify when an impulse would have caused observed filter output x/
fuopulseof f = (rnaxi+x chirppoints) T.npoint ;
t imeof f =inpulseof f /srate ;
t inestart=naxi/ srate ;

/x collect interesting signals to return x/
s ig-buf f er [tenp-noxNSIGNALS] =sDrrnax ;
s i.g-buf f er [tenp-noxNSI GNALS+ 1] =dista:rce ;
s 1g-buf f er [t enp--a.oxNSIGNALS+2] =1 inO ;
sig-buf f er [tenp--noxNSIGNALS+3] =1i.u90;
sig-buf f er [tenp-no*NSIGNALS+4] roaxi;
s ig-buf f er [t enp-:ro*NS I GNALS+5] =1npu1s eof f ;
sig-buf f er [tenp--noxNSIGNALS+6] =tirneof f ;
s ig-buf f er [t enp--noxNS IGNALS+7] =t itrest art ;
s ig-buf f er [t enp-noxNS IGNALS+8] =t inest art+*t c ;
s ig-buf f er [t enp-no*NSIGNALS+9] =var ;

p rob=O.0 ;
if (snr--nax>s.0) {

MPE-Log-event (23 ,myid, "testing,') ;
varsplit=splitupJreq2 (Iin0xn0/sqrt (2.0) ,1ia90xn90/sqrt (2 .0) , cboti lde,

ch90tilde ,2 .0/ (n0xn0) , twice-inv-noise ,Dpoint,maxi,8,
indices, stats, output0, hti lde) ;

prob=gammq (4. 0, 4.Oxvarsplit) ;
MPE-Log-event (24,nyid, "doDe" ) ;
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sig-buf f er [temp-aoxNSIGNALS+10] =prob ;

) /x end of loop over the templates x/

/x return signals to master x/
MPE-Log-event (7,nyid, " send" ) ;
MPI-Send(si.g-buffer, NSIGNALSxuun-teroplates , MPI-FLOAT,0, status . MPI-TAG, MPI-C0MM-W0RLD) ;
MPE-Log-event (8,nyid, "sent" ) ;

] /+ end ofloop over the data *f

)

/x both slaves and master exit here x/
printf ("7.s prepariag to shut down (process 7"d)\n",processorrrame,nyid) ;
spri.atf (logf l}e-:raroe, "xoultif i l ter.7.d.7.d.1og" ,numprocs,DATA-SEGMENTS) ;
MPE-Finish-l og ( logf ile-naroe) ;
MPI-Final izeO;
printf ("7.s sbutting doun (process 7.d) \nu,processor--name,nyid) ;
? a t r r r h  n  .

)

/* This routine gets the data set, overlapping the data buffer as needed x/
int get-calibrated-dataO {

i n t  i , code ;

if (num-sent )=DATA-SEGI,IENTS)
raf  rrrn l l  .

while (remain(needed) {
q64s=get-data (f pif o, f plock, &tstart, MIN-INTO-L0CK*60xsrate,

datas , &renain, &srate, 1) ;
if (code==O) return 0;

)

f x Get the next needed samples of data xf
diff:npoint-needed;
seds=get-data (fpifo , fplock, &tstart , Deeded, datas+diff , &reroain, &srate,0) ;
datastart=tstart-dif f /srate ;

/* copy integer data into floats x/
for (1=g' i(npoint; i++) data[i]=datas [i] ;

/* find the FFT of datax/
realft (data-1,npoint, 1) ;

/x normalized delta-L/L tilde x/
product (hti lde, data, response, npoint/2) ;

/x update the inverse of the auto-regressive.mean power-spectrum */
avg-inv-spec(FLO,srate,npoi.nt,decay,&norn,hti lde,nea!-polr-spec,twice-inv-noise);

/r. see if the data has any obvious outliers x/
gaus s-t est=i s-gauss iaa ( datas, npo int, - 2048, 20 47, 0) ;
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/x this function shifts data by CHIRPLEN points in bufier x/
vold shiftdataO {

in t  i ;

/x shift ends of buffer to the start x/
needed=npo iat -CHIRPLEN+ 1 ;
for (1=0; I<CHIRPLEN-1;i++) datas[i]=datas l i+needed] ;

/x reset if not enough points remain to fill the buffer x/
if (remain(needed) needed=npoint;

return;

J
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5.34 Optimization and computation-speed considerations

The previous subsection describes the rnultif ilter program, which fiiters data through a bank

of templates. We have experimented with the optimization of this code on several platforms, and

here recount some of that experience.
The first comment is that the Numerical Reci,pes routine realft O is not as efficient as possible.

In order to produce a production version of the GRASP code, we suggest replacing this function

with a more.optimal version. For example, on the Intel Paragon, the CLASSPACK library pro'

vides optimized real-FFT functions. To replace the realf t O routine, we provide a replacement

routine by the same name, which calls the CLASSPACK library. This routine may be found in the

srcloptinization/paragon directory of GRASP. By including the object file for this routine in

the linking path, beforethe Numerical Recipes library, it replaces that the realftO routine.

The second comment is related to inspiral-chirp template generation. The binary inspiral chirps

may be saved in the multifilter program, but one is then limited by the available memory space,

as well as incurring the overhead of frequent disk accesses if that memory space is swapped onto

and off the disk. Tlo avoid this, it is attractive to generate templates "on the fly", then dispose of

them after each segment of data is analyzed. This corresponds to setting ST0RE-TEMPLATES to 0 in

roultif ilter. In this instance, the computational cost of computing binary chirp templates may

become quite high, relative to the cost of the remaining computation (FFT's, orthogonalization,

searching for the maximum SNR).
To cite a specific example, on the Intel Paragon, we found that the template generation was

almost a factor of ten more time-consuming than the rest of the searching procedure. Some profiling

revealed that the two culprits were the cube.root operation and the calculations of sines and cosines.

Because the floating point hardware on the Paragon only does add, subtract and multiply, these

operations required expensive library calls. In both ca.ses, a small amount of work serves to eliminate

most of this computation time. In the case of the cube root function, we have provided (through

an ifdef INLINE-CUBEROOT in the code) an inline computation of cuberoot in 15 FLOPS, which

only uses add, subtract and multiply. This routine shifts r into the range from I n 2, then uses

a fifth-order Chebyshev approximation of r-2/3 then make one pass of Newton-Raphson to clean

up to float precision, and returns xL/3 - r-2/3r. In the case of the trig functions we have provided

(through an ifdef INLINE-TRIGS in the code) inline routines to calculate the sine and cosine

as weil.After reducing the range of the argument to r € l-n,nl, these use a 6th order Chebyshev
polynomial to approximate the sine and cosine. These techniques speed up the template generation

to the point where it is approximately as expensive as the remaining computations. While there

is some small loss of computational accuracy, we have not found it to be significant. Shown in

Figure 41 is a timing diagram illustrating the relative computational costs of these operations.
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Figure 41: This shows the performance of an '(on the fly" template search on the Intel Paragon,
with different levels of optimization. The top diagram uses the Numerical Reci,pes FFT routine
realft O, and takes about 4.2 seconds to process 6 seconds of data. The middle diagram shows
identical code using the CLASSPACK optimized FFT routine, and takes about 2.1 seconds. Note
that the template generation process is now becoming expensive. The bottom diagram shows
identical code which includes inline functions for cube-root and sine/cosine functions to speed up
the template generation process. The template generation takes about 325 msec, and the entire
search procedure (including template generation) tal<es 780 msec per template per processor per 6-
second stretch of data. Relative to the top diagram, this represents a speed-up factor of more than
5. Running on 256 nodes, it is possible to filter 5 hours of data through 66 templates (representing
the mass range from 1.2 to 1.6 solar masses) in Sx36OOx66x(0.780)lQ56x6) seconds: 10.1 minutes.
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GRASP Routines: Black hole ringdown

Stellar-sized black hole binaries are an important source of gravitational radiation for ground-based
interferometric detectors. The radiation arises from three phases: the inspiral of the two black hole
companions, the merger of these two companions to form a single black hole, and the ringdown
of this initially distorted black hole to become a stationary Kerr black hole. The gravitational
radiation of the black hole inspiral has been discussed in section 5; caicuiations of the late stages
of inspiral, the merger, and the early stages of the ringdow'n have not yet been completed; the
radiation produced in the late stages of black hoie ringdown is the topic of this section.

At late times, the distorted black hole will be sufficientiy "similar to" a stationary Kerr black
hole that the distortion can be expanded in terms of "resonant modes" of the Kerr black hole. By
'tesonant modes" we refer to the eigenfunctions of the Teukolsky equation-which describes linear
perturbations of the Kerr spacetime-with boundary conditions corresponding to pureiy ingoing
radiation at the event horizon and purely outgoing radiation at large distances. These resonant
modes are also called the quasinormal modes: thev are described in the next subsection.
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6.1 Quasinormal modes of black holes

Gravitational perturbations of the curvature of Kerr black holes can be described by two components
of the Weyl tensor: iV6 and Va. Because these are components of the curvature tensor, they have
dimensions of [L-2]. Of particular interest is the qua,ntity \tra since it is this term that is suitable
for the study of outgoing waves in the radiative zone. The formalism for the study of perturbations
of rotating black holes was developed originally by Teukolsky 117] who was able to separate the
differential equation to obtain solutions of the form

(r - ipra)aV 4 : e-i't -2Ra^Q) -252^0i"n*9 (6 .1.1)
where -zRm(r) is a solution to a radial differential equation, and -2Sp*(p) i. a spin-*eighted
spheroidal wave function (see [17], equations (4.9) and (4.10)). The black hole has mass M and,
specific angular momentum a : cJlM (which has dimensions of length) where -I is the angular
momentum of the spinning black hole. We shall offen refer to the dimensionless angular momentum
parameter, a : &alGM : c3 J lGM2. Fbr a Kerr black hole, 6 must be between zero (Schwarzschild
limit) and one (extreme Kerr limit). The observer of the perturbation is located at rad.ius r,
inclination & : cosr, and azimuth B (see figure 42). The perturbation itself has the spheroidal
eigenvalues (. and rn, and has a (complex) frequency o. The constants G and c are Newton's
gravitational constant and the speed of light.

axis of
perurbadon

Figure 42: The polar angle, l, and the azimuthal angle, B, of.the observer relative to the spin axis
of a black hole and the (somewhat arbitrary) axis of perturbation.

The important physical quantities for the study of the gravitational waves arising from black
hole perturbations can be recovered from the field Va. In particular, the "*" and "x" polarizations
of the strain induced by the gravity waves are found Uy [tZ]

)"2
h+ - ihx - -::: \tr/4 .

P l '
The quantity h* : h;; is the metric perturbation that iepresents ihe linear polarization state aiong
e; and e6, while the quantity h, : htb represents the linear polafization state along er + er. The
power radiated towards the observer (per unit solid angle) is

- t -  ,  i

d ' - b  . .  c ' r '  ,  _  , u
:  l l m  -  r \ . ! / r l '

dtdQ ;;A 4rclal2 '  -  a '

(6 .1.2)
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Thus, in order to compute the relevant information about gravitational waves emitted as pertur-
bations to rotating biack hole spacetimes, one needs to calculate the value of Va at large radii from
the black hole.

The quasinormal modes are resonant modes of the Teukolsky equation that describe purely
outgoing radiation in the wave-zone and purely ingoing radiation at the event horizon. The quasi-

normal modes are described by a spectrum of complex eigenvalues (which include the spectrum of
eigenfrequencies r,.rrr), and eigenfunctions -zRm(r) and -2Sa^(p) for each mlue spheroidal mode
(. and m. These eigenvalues and functions also depend on the mass and angular momentum of
the black hole. We shall only consider the fundamental (n : 0) mode since the harmonics of
this mode have shorter lifetimes. For the sarne reason, we are most interested in the quadrupole
((. : 2 and m: 2) mode. The observer is assumed to be at a large distance; in this case, one can
approximate the perturbation as follows:

V a * 4 "-iuttet -2Srrn(1")"n^9 .
r

L :L 4c (  - Imu\t /z 1681t/z
hq -  ?,hy

)
c-T : (*#t) : z'oso x 1ole(#rt)

(6.1.4)

Here t."1 - t - r* f c represents the retarded time, where r* is a "tortoise" radial parameter. For
large radii, the tortoise radius behaves as r - ralog(rf ra) where r.. is the "radius" of the black
hole event horizon. Thus, rile see that the tortoise radius is nearly equal to the distance of the
objects surrounding the black hole, and we shall view it as the "distance to the black hole." The
parameter ,4 represents the amplitude of the perturbation, which has the dimensions of [Z-1].

Given the asymptotic form of the perturbation in equation 6.L.4, we can integrate equation 6.1.3
over the entire sphere and the interval tret € [0, *) to obtain an expression for the total enerry
radiated in terms of the amplitude A of the perturbation. Thus, we can characterize the amplitude
by the total amount of energy emitted: A2 : 4Gc-7 n1u121-tmc..'). The gravitational waveform is
found to be

u- iutret _2 S t^(ti "o^0 . (6.1.5)

In order to simulate the quasinormal ringing of a black hole, it is necessary to determine the complex
eigenvalues of the desired mode, and then to compute the spheroidal wave function Sa*fu,). The
routines to perform these computations are discussed in the following sections.

Rather than computing the actuaf gravitational strain waveforms at the detector, the routines
will calculate the quantity H+-iHx : (c2rf GM6)(h+-ihx); the normalization of these waveforms
to the correct source distance is left to the calling routine. The distance normalization can be
computed as follows:

GMo Tsc
(6.1.6)

where To - 4.89L28 p,s is the mass of the sun expressed in seconds (see equation 5.0.2). It will
be convenient to write the time dependence of the strain as the complex function H(lr.t) so that
H+ - iVx :77(LJr.t)-r9iry.(Dlta. The dimensionless eigenfrequency, a : GMal&, depends only

on the mode and the dimensionless angular momentum of the black hole. In terms of this quantity,

the function 7l(U..1) is

H(u*t )  =-A€*/€cIg,^ ' ) t / ' /  t ' t \  i  ' ^ /u ' " t \ (  M \ - - t
t  t-|M)exnl-)atf i)\*.) I 

(6 17)

where e is the fractional mass loss due to the radiation in the excited quasinormal mode.
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6.2 F\rnction: qn_eigenvalueso

void qn-eigenvalues(f Ioat eigenvalues[] ,  f loat a,  int  s,  int  1,  int  n)

This routine computes the eigenvalues associated with the spheroidal and radial wave functions for
a specified quasinormal mode. The arguments are:

eigeuvalues: Output. An array, eigenvalues[0..3], which contains, on output, the real and
imaginary parts of the eigenvalues O and ,4. (see below) as follows: eigenvalues [0J : ReO,
eigenvarues[1] : Imo, eigenvalues[2] : ReA, and eigenvarues[s] : ImA.

a: Input- The dimensioaless angular momentum parameter of the Kerr black hole, lal ( 1, which
is negative if the black hoie is spinning clockwise about the r : 0 axis (see figuie 42).

s: Input- The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation
("'g., u scalar field perturbation), *1 for a vector perturbation (e.g., an electromagnetic field
perturbation), or i2 for a spin two perturbation (e.g., a gravitational perturbation).

1: Input. The mode integer 1 > l"l.

m: Input. The mode integer lrl < f.

For a Kerr black hole of a given dimensionless angular momentum parameter, d, with a pertur-
bation of spin-weight s and mode !. and' rn, there is a spectrum of quasinormal modes which are
specified by the eigenvalues 6',, and .4rr. As discussed in the previous subsection, the eigenvalue An
is associated with the separation of the time dependence of the perturbation, and it specifies thf
frequency and damping time of the radiation from the perturbation. The additional complex eigen-
value ,4.r, results from the separation of the radial and azimuthal dependence into the spheroidal
and radial wave functions. Both of these eigenvalues will be necessary for the computation of the
spheroidal wave function (below).

. The routine qn-eigeavalues O can be used to compute the eigenvalues of the fundamental
(n : 0) mode. To convert the dimensionless eigenvalue ci., to the (complex) frequency of the
ringdown of a Kerr biack hole of mass M, one simply computes u : c3alGU. tn"eigenfrequency
is computed using the method of Leaver [14]. Note that Leaver adopts units in which 2M - I, so
one finds th-1t A : i,r".^,", and d : 2aL""u., in our notation. The eigenvalues satisfy the following
symmetry: if. p^ : -i6^ and A* are the eigenvalues for an azimuthal index rn, then p-^ : pi
and A-^: Ah are the eigenvalues for the azimuthal index -rn.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comment: For simplicity, we require that the spin-weight number, s, be an integer. Thus, the
spinor perturbations X0 and X1, associated with t:*i respectively [t7], are not allowed.
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6.3 Example: eigenvalues prograrn

This example uses the function qn-eigenvaluesO to compute the eigenvalues sclhn and sAhn
for the s spin-weighted quasinormal mode specified by (. and nx, and for a range of values of the
dimensionless angular momentum parameter, 6. To invoke the program, type:

eigenvalues s {. m

for the desired (integer) values of s,1,, and rn. Make sure thal [.2 lsl and 0 I m < I (the eigenvalues
for negative values of rn can be inferred from the symmetries discussed in subsection 6.2). The
output of the program is flve columns of data: the first column is the value of d running from just
greater than -1 to just less than 1 (or between 0 and I if m: 0), the second and third columns
are the real and imaginary parts of the eigenfrequencv cl, and the fourth and fifth columns are
the real and imaginary parts of the angular separation eigenvalue .4. For the values of d < 0,
the eigenvalues correspond to the mode with azimuthal index -nl so that the real part of the
eigenfrequency is positive. A plot of the eigenfrequency output of the program eigenvalues for
several runs with s : -2 is shown in figure 43. The blue curves in figure 43 can be compared to
figure 5 of reference [15] keeping in mind the conversion factors between Leaver's convention (which
is also used in [t5]) and the convention used here (see subsection 6.2).
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-0.07

1 . 00.80.6o.4
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Figure 43: The real and imaginarv parts of the eigenfrequencies, O, as computed by the program
eigenvalues with s : -2. Each curve corresponds to a range of values of d from -0.9 (left)
to *0.9 (right) for a single mode (. and lrnl. The open circles are placed at the values d : -0.9,
-0.6, -0.3, 0, +0.3, *0.6, and *0.9 except when rn :0 in which case there are no negative values
of d plotted. The blue curves correspond to the !.:2 modes and the red curves correspond to the
/: 3 modes.
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/x GRASP: Copl'right 1992, Bruce Allen x/
#incLude "grasp.h"

naiu(int argc,const char xargvIJ)
)(

f loat  a,da=0.  l ,e igen[4J ;
i n t  s , 1 , m ;

/* process the command line argumehts x/
if (argc==D { lx correct number of arguments x/

s  =  a to i (a rgv l r ] ) ;
L  = ato i (argvL2)) ;
m  =  a to i (a rgv [3J ) ;

) else { /x incorrect number of arguments */
fprintf (stderr,, 'usage: qn_eigen_values s 1 n\u") ;

. 
return 1;

)

/x scan through the range of a *f
for  (a=1-4a;a)-1;a-=da) {

/x compute the eigenvahu, *)
i f  (a<0)  {

if (n==0) break;
qn-eigenvalues (eigen, a, s, I, -m) ;

)  e lse {
qn-eigenvalues (eigen, a, s, l,m) ;'l

)
/x print the eigenr.alues x/
printf (',%f \t%f \t%f \t%f \t|.f \n" , a, eigen [0] , eigen [1] , eigen [2J , eigeu [31 ) ;]

return 0;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.4 F\rnction: sw-spheroido

void sw-spheroid(f1oat *re, f loat * im, f loat mu, int  reset,
f loat a,  int  s,  int  I ,  int  m, f loat eigenvaluesl])

This routine computes the spin-weighted spheroidai wave function ,Sp*Q-t). The arguments are:

re: Output. The real part of the spin-weighted spheroidal wave function.

iro: Output. The imaginary part of the spin-weighted spheroidal wave function.

rnu: Input. The independent variable, p : cos r. with r being a polar angle, of the spin-weighted

spheroidal wave function; -1 ( rou < L.

reset: Input. A flag that indicates that the function should reset (reset : 1) the internally
stored normalization of the spin-weighted spheroidal wave function. The reset flag should be
set if any of the following five arguments are changed between calls; otherwise, set reset : 0
so that the routine does not recompute the normalization.

a: Input. The dimensionless angular momentum parameter, -L < a ( 1, of the Kerr black hole
for which the spin-weighted spheroidal wave function is associated.

s: Input. The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation

(".g., u scalar field perturbation), *L for a vector perturbation (e.g., an electromagnetic field
perturbation), or *2 for a spin two perturbation (e.g., a gravitational perturbation).

1: Input. The mode integer 1 > l"l.

m: Inpi:t. The mode integer lrl < f.

eigenvalues: Input. An array, eigenvalues [0. .3] , which contains the real and imaginary parts

of the eigenvalues O and,4 (see below) as follows: eigenvalues [0] : ReO, eigenvalues [1] :

Im6', eigenvaluesL2) : ReA, and eigenvalues[3] : ImA. These may be calculated for

a quasinormal mode using the routine qn-eigenvalues O.

The spin-weighted spheroidal wave function is also computed using the method of Leaver [14].
We have adopted the following normalization criteria for the spin-weighted spheroidal wave func-

tions "^97-(p). First, the angle.averaged value of the squared modulus of. "52^Q-r) is unity: trlrSr^1r)l'dp:
1. Second, the complex phase is partially fixed by the requirement that ",Sz-(0) is real. Finally,

the sign is set to be (-;l-ma*(-'t) for the real part in the limit that p, ---+ -L in order to agree with

the sign of the spin-weighted spherical harmonics ,Ye^(1t,0) (see [13]).
It is sufficient to compute the spin-weighted spheroidal wave functions with s ( 0 artd aa :

AA > 0 because of the following symmetries [L6]:

,St*(l",au) : "52^(-p,,au) with -.Ez*(arr) : "Ea-(ao)

aJrd

,St*(1",-a'.,) - "Sa,-^(-p,,au) with ,Ezrr'(-a-) : sEl,-m(al,,')

where ,Ee^ : ,At* * s(s + 1).

Author: Jolien Creighton, jolien@tapir.caltech.edu

(6.4.1)
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I 6.5 Example: spherical program

The program spherical is an example implementation of the routine sw-spheroidO to compute
the standard spin-weighted spherical ha.rmonics [13]. The program also computes these functions
using equation (3.1) of 113] for comparison. According to the normalization convention stated
in subsection 6.4, the relationship between the spin-weighted spheroidal harmonics and the spin-
weighted spherical harmonics is:

,Ym(O,61 : Qr)-1/2 "54*("or?)ei*Q

with or.r : 0 and A : (! - s)(!+ s + 1).
To invoke the program, type:

spherical s (. rn

(6.5.1)

for the desired (integer) values of s, {., and m (/ > l"l and lrnl < /). The output is three columns
of data: the first column is the independent variable p between -L and *1, the second column
is the value of (2n)-r/2rSa-(p), and the third column is the value of ,Yt*(p,0) as computed
from equation (3.1) of [13]. A comparison of the results produced by the program spherical for
l: m: -s :2 with the exact values of. _2y22(1_t,0) : (Sl6aflr/t0 + p,)2 is shown in table 9.

u Goldberg sw-spheroidO exact
-0.99 1.576955 x L0-5 1.576955 x 10-5 1.576958 x 10-
-0.95 3.942387 x 10-a 3.942387 x 10-a 3.942395 x 10-a
-0.75 9.855968 x t0-3 9.855967 x 10-3 9.855986 x 10-3
-0.55 3.193334 x 10-2 3.193333 x L0-2 3.193340 x 10-2
-0.35 6.662639 x t0-2 6.662639 x 10-2 6.663647 x 10-2
-0.15 1.139351 x 10-1 1.139351 x 10-1 1.139352 x 10-r
+0.15 2.085525 x 10-i 2.095525 x 10-1 2.085527 x t0-1
+0.35 2.874004 x 10-1 2.974005 x t_0-1 2.974006 x L0-1
+0.55 3.788640 x 10-r 3.788639 x 10-1 3.788641 x 10-1
+0.75 4.829430 x t0-1 4.829430 x t0*1 4.829433 x 10-r
+0.95 5.996378 x 10-1 5.996379 x 10-1 5.996382 x 10-1
+0.99 6.244906 x 10-1 6.244906 x 10-1 6.2449t1x 10-1

L:

Table 9: A comparison of the values of the spin-weighted spherical harmonic -zYzz(p,O) calculated
by equation (3.1) of Goldberg [13], the values of. (2T)-r/2-zSzz}i using routine sw-spheroidO,
and the values of the exact result (5l64dr/2 (I + D2. The three methods give excellent agreement.
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/x GRASP: Copyright 1997, Bruce Allen +/

#incl-ude 'r grasp , h'r

#def ine TWOPI 6.28318530718
#define F0URPI 12.5663706144
static iDt itraxargl,inaxarg2;
#define IMAX(a,b) (inaxargl=(a),imaxarg2=(b), (inaxargl) > (inaxarg2) ?\

(1naxarg1) : (inaxarg2))

static int ininargl,ininarg2;
#define IMIN(a,b) (ininargl=(a),ininarg2=(b), (iniaargl) < (ininarg2) ?\

(ini-nargl) : (iroinarg2) )

f loat sw-spb.erica](float nu, int s, iat 1, int n)

/x Computes the spin-weighted spherical harmonic (with phi:0) using
equation (3.1) of Goldberg et al (7967). xl

t
f loat  fact r l ( in t ) ;
f loat  b ico( int ,  in t ) ;
f loat  sum,coef ,x ;
int sigB,r,rnin,rmax;

if (mu==-1 .0) {
fprintf(stderr,"error ia sv-spherlcalO : dj.vlsion by zero") ;
return 0;

)  e lse {
x  =  (1  +  nu ) / (1  -  nu ) ;

)
coef = factrf (L+n) *factrl- (1-rn) x (2xI+1) / (tactrt (l--s) 'rfactrt (t+s) *FOURPI) ;
rmin = IMAX(0,n-s) ;
rinax = IMIN(I-s,1+ro) ;
sum = 0;
for (r=rmin;r<=1'1nax;r++) {

( ( (1 - r+s )%2)==0 )  ?  ( s i gn  =  11  :  ( s i gn  =  -1 ) ;

sun += s igoxbico(1-s, r )xb ico(1+s,r+s-m)xpow(x,0.  5x(2xr+s-n))  .

sqr t (coef  )  xpow(0.  5x (1-nu) ,1)  ;

? o t l t r h  q t t h .

)

nain(int argc, char xargvlJ)
r
I

f loat Sre, Sim, Y, norm=1 . 0/sqrt (TWQpf ), nu=0, dmu=O . 02 ;
f loat eigenvaLues [4] ;
i n t  s , 1 , m ;

/x process arguments x/
if (argc==Q { lx correct number of arguments x/

s  =  a to i (a rgv l1J ) ;
1  =  a to i (a rgv [2J ) ;
n = ato j , (arev[3] ) ;

) else { /x incorrect number of arguments x/

)
sun *=
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fpri,ntf(stderr,"usage: spherical_ s I n\n") ;
returD 1;

)

/x set the eigenvalues to produce spin-weighted spherical harmonics x/
eigenvalues[0] = eigenvalues[1] = eigenvaluesi3l = 0;
e igenvalues[2]  = (1 -  s)x(1 + s + 1)  ;

/x reset the normalization xf
sw-spheroid(&Sre,  &Sim,nu,  1,  O.  O,  s ,  l ,n ,  e igeuvalues)  ;

for (mu=-1+0. Sxdmu;nuq1 ;nru+=drou) {
/x compute the spin-weighted spheroidal harmonic x/
sw-spheroid (&Sre, &S j"m, mu, 0, 0 . 0, s, 1, m, eigeD.values) ;
/'r compute the spin-weighted spherical harmonic x/
Y = sv_spher ica l ( rou,s, I ,m) ;
f x print results with correct normalwation for the spheroidal harmonic rn/

- 
printf (, '%e\t7.e\t7"e\n",mu,DonoxSre,y) ;

J

r a * r r r n  A .

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.6 Example: spheroid program

This is a second implementation of the function sw-spheroidO which is used to compute the spin-
weighted spheroidal wave function associated with a quasinormal ringdown mode of a Kerr black
hole with a certain (specified in the code) dimensionless angular momentum parameter. To invoke
the program, type:

spheroid s {. m,

for the desired (integer) values of s,l, and rn (/ > lul and lrnl < l) of the desired mode. The output
is three columns of data: the first column is the independent variable p between -1 and *1, the
second column is the value of the real part of ,Su"(tt), and the third column is the value of the
imaginary part of "Sa.jt). Figure 44 depicts the output for the spin-weighted spheroidal wave
function -zSzz(tr).

- real part
- 10 * imaginary part

0
cosine of polar angle, p

Figure 44: A plot of the real and imaginary parts of the [.:m: -s:2 spin-weighted spheroidal

wave function, -zSzzj.t), associated with a black hole with dimensionless angular momentum pa-

rameter d : 0.98. The imaginary part is scaled by a factor of ten.
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/* GRASP: Copyright 1997, Bruce Allen */

#include "grasp.htl

#def ine sPrN 0 .98 /* the dimensionless angular momentum parameter */

nain(int argc, char xargvlJ)

float xe, iro,Du=O,dmu=O. 02, a=SPIN;
float eigenvalues [4] ;
i n t  s , 1 , n ;

/* process arguments x/
if (argc==D { /x correct number of arguments x/

s  =  a to i (a rgv l l J ) ;
1  =  a to i (a rgv [2 ] ) ;
n  =  a to i (a rgv [3 ] ) ;

) else { /x incorrect number of arguments */
fpriatf(stderr,"usage: spheroid s I rn\n") ;
retura 1;

)

f * get the eigenvalues for the appropriate quasinormal mode x/
qn-elgenval-ues (eigenvalues , a, s, I,m) I

/x reset the normalization x/
sw-spb.eroid (&re, &in,mu, 1, a, s, 1, B, eigenvalues ) ;

for (mu=-1+0. Sxdmu;nu<1;nu+=dnu) {
/x compute the spin-weighted spheroidal harmonic x/
sw-spheroid (&re,  &in,mu,  0,  0.  0,  s ,  I ,m,  e igenvalues)  ;
/x print results */
pr j.ntf ( "%e\t7,e\t7.e\n" 

,mu, re, im) ;
)

return 0;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.7 trhnction: qn-ringo

int qn-ring(float iota, float beta,
f loat eps, f loat M, f loat a,  int  l ,  int  m,
float dt, float atten, int nax,
f loat x*plusPtr,  f loat *+crossPtr)

This routine is used to compute the "+" and "x" polarizations of the gravitational waveform,
H(trut), produced by a black hole ringdown at a distance GMsf c2 : Toc - 1.47661<l:rr. To obtain
the waveforms at a distance r, multiply the result by GMqlc2r:Tac/r. The a,rguments are:

iota: Input. The polar angle (inclination), I (in radians), of the sky position of the observer with
respect to the (positive) spin axis of the black hole, 0 ( iota ( n.

beta: Input. The azimuth, B (in radians), of the sky position of the observer with respect to the
axis of the perturbation at the start time. (0 ( beta 32".)

eps: Input. The fraction of the total mass lost in gravitational radiation from the particular
mode. (0 < eps ( 1.)

M: Input. The mass of the biack hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, l,il ( 1, which
is negative if the black hole is spinning clockwise aboui the r : 0 axis (see figure 42).

l: Input. The mode integer (.. (I > 2)

n: Input. The mode integer rn. (lrnl { f)

dt: Input. The time interval, in seconds, between successive data points in the returned waveforms.

atten: Input. The attenuation level, in dB, at which the routine will terminate calculation of the
waveforms. I.e., the routine will terminate when the amplitude, A: Aeexp(-Imr,rt."1), falls
below the level /cutoff : ,46 alogls(-0.1 x atten).

nax: Input. The maximum number of data points to be returned in the waveforms.

plusPtr: Input/Output. A pointer to an array which, on return, contains the waveform II1
sampled at intervais dt. If the array has the vaiue NIILL on input, the routine allocates an
amount of memory 16 *plusPtr to hold nax elements.

crossPtr: Input/Output. A pointer to an array which, on return, contains the waveform Hx
sampled at intervals dt. If the array has the value NIJLL on input, the routine allocates an
amount of memory to xcrossPtr to hold na:r elements.

The routine qn-ringo returns the number of data points that were written to the arrays
(*plusPtr) [] and (*crossPtr) []; this is either the number specified by the input parameter nax
or the number of points computed when the waveform was attenuated by the threshold atten. The
eigenvalues are obtained from the function qn-eigenvalues O. The waveform is then computed
using f! - iHr: ?l(u."t)-.520(p)l)SB with ?l(u."1) given by equation (6.1.7). The spheroidal
wave function is obtained from the function sw-spheroidO.

Author: Joiien Creighton, jolien@tapir.caltech.edu
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6.8 Example ringdown program

This example uses the function qn_ringO to compute the black hole quasinormal ringdown wave_
form for a preset mode and inclination. The waveform as a function of time is written to standard
output in three columns: the time, the plus polarization, and the cross polarization. A plot of the
quasinormal ringdown waveform data is shown in figure 45.

tlme (ms)

Figure 45: A plot of the plus and cross polarizations of the gravitational wave strain, at a (unphys-
ical!) distance GMs/3 : Toc - L.47661cm, for the fundamental I: rn :2 mode of a black hole
with mass M :50Mo, dimensionless angular momentum parameter 0.98, and fractional mass loss
e : 0.03, with inclination and azimuth r : 0 and 0 :0. The data was produced by the program
ringdown.
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/x GRASP: Copyright 1997, Bruce Alien x/

#i.aclude "grasp.h"

#deflne I0TA 0.0 /* inclination (radians) x/
#def ine BETA 0.0 f x azimuth (radians) x/
#define EPS 0.03 f x fractional mass loss x/
#def ine MASS 50.0 /x mass (solar masses) x/
#defioe SPIN 0.98 /* specific angular momentum x/
#define M0DE-L 2 /" mode integer i x/
ltdef ine MODE-M 2 l* mode integer m x f
#def ine SRATE 16000.0 /x sampling rafe (Hz) *l
fdefine ATTEN 20.0 /x aitenuation leven (dB) x/
#def ine MLX t024 f ', max number of points in waveform x/

naino

t
f loat  xp lus,  xcross, t ,d t=1/SRATE;
in t  i , n ;

/* set arrays to NULL so that memory is allocated in called routines x/
p l u s = c r o s s = N U L L ;

/x generate the waveform function data *f
a = qn-ring ( I0TA, BETA, EPS, MASS, SPIN, MoDEl., M0DE-M, dt, ATTEN, MAX, &plus, &cross) ;

/* output the data x/
f o r  ( i =0 , t=0 ; i ( n ; i ++ ,1+=d t )  p r i n t f ( "7 .e \ t 7 .e \ t 7 ,e \n " , t , p l us [ i ] , c ross [ i ] ) ;

r o t r r r n  O '

)

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.9 F\rnction: qn-qringo

int qn_qring(float psi0, fl_oat eps, float M, float a,
float dt, float atten, int nax, float **strainptr)

The routine qn-qringO is a quick ringdown generator which constructs a damped sinusoid with a
frequency and quality approximately eQual to that of the [ : m: 2 quasinormal mode of a Kerr
black hole and an amplitude approximately equal to angle.averaged strain expected for black hole
radiation at a distance GMsf-c2 :Toc - 1.4766km. To obtain the waveforms at a d.istance r,
multiply the result by GM6/&r : Toc/r.The arguments to the routine are:

psiO: Input. The initial phase (in radians) of the waveform (see below).

eps: Input. The fractional mass loss in quadrupolar ({. : m:2) radiation. (0 < eps << 1.)

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, ldl S 1, which
is negative if the black hole is spinning clockwise about the a : 0 axis (see figure 42).

dt: Input- The time interval, in seconds, between successive data points in the returned waveform.

atten: Input: The attenuation level, in dB, at which the routine wili termin ate calculation of the
waveforms.

nax: fnput. The maximum number of data points to be returned in the waveforms.

strainPtr: Input/Output. A pointer to an array which, on return, contains the angle.averaged
waveform sampled at intervals dt. If the array has the value NULI on input, the routine
allocates an amount of memory to *strainptr to hold max elements.

The routine qn-ringO returns the number of data points that were written to
(*strainPtr) []; this is either the number specified by the input parameter nax or
ber of points computed when the waveform was attenuated bv the threshold atten.
contains the angle aueraged waueform

the array
the num-

The array

(6.e.1)f/..," (r."t) : 
**" 111(u*r)l){,1,

where T{(Ur*) is given by equation (6.1.7), sampled at time intervals d,t. The consta,nt ty'6 defines
the initial phase of the waveform. The amplitude factor is set by the following argument: The
gravitational strain (at a distance GMsf c2 : Toc - I.4766km) that would be observed by an
interferometer is given by ff(t*1) : F+(g,d,rDH+(t*r,L,B) + Fr(0,,d,/t)H*(t,.t,L,B) where Fa
and & represent theantenna patterns of the interferometer. When averaged. over 0, @, and {, one
finds ({) : (.F':) : $ and (F'+&) :0. Thus,

(H2(t,ut))e,6,.,,,,,e:il:i:;jjrri:,r:l;ii;,,,:rr,,u

= H-t

182

(6.e.2)



where the overbar indicates a time average over a single cycle; approximate equality becomes exact
in the limit of a high quality ringdown. It is in this sense that the quantity fIu,o"(fr"r) can be viewed
as an angle.averaged waveform.

Rather than compute the eigenfrequency using the routine qn-eigenvalues O, this routine uses
the analybic fits to the eigenfrequency found by Echeverria [12]. These expressions are:

a-  f@)G- i ls@)) (6.e.3)

with

f (a)  :  1-0.63(1 -d)z/ro

s@) :  G-a)e/20.

(6.e.4)
(6.e.5)

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: Since this routine does not need to compute the spheroidal wave function and uses an
analyiic approximation to the eigenfrequency, it is much simpler than the routine qn-ringO.
The approximate eigenfrequencies are typically accurate to within - SVo, so this routine is
to be preferred when computing quadrupolar ((. : m: 2) quasinormal waveforms unless
accuracv is critical.
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6.10 F\rnction: qnJiltero

int qn_filter(float freq, float qua1,
float dt, float atten, int nax, float **filterptr)

Quasinormal ringdown waveforms are characterized by two parameters: the central frequency of
the waveform, and the quality of the waveform. The parameter space is most easiiy described in
terms of these va.riables (rather than the mass a4d the angular momentum of the corresponding
black hole), so ii is useful to "o*trtr"t filters for quasinormal ringdown waveform searches in terms
of the frequency and quaiity of the waveform. This routine constructs such a filter, with a specified
frequency and quality. The routine returns the number of filter elements computed before u rou"ifi"d
attenuation level was reached. The arguments are:

freq: Input. The central frequency, in Hertz, of the ringdown filter.

qual: Input. The quality of the ringdown filter.

dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atten: Input: The attenuation level, in dB, at which the routine will terminate calculation of the
waveforms.

nax: Input. The maximum number of data points to be returned in the waveforms.

filterPtr: Input/Output. A pointer to an array which, on return, contains the filter sampled
at intervals dt. If the array has the value NULL on input, the routine allocates an amount of
memory to *f ilterPtr to hold nax elements.

The constructed filter, g(t), is the function

q(t) : e-rft/Q cos(2rft) (6.10.1)

where / is the centrai frequency and Q is the quality. The routine qnJilterO performs no
normalization, nor does it account for different possible starting phases. The latter is not important
for detection template construction. Normalization is achieved using the function qn-aorrnalize O,
which is described later.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.11 Function: qurorslallzeo

void qn-normalize(float *u, float *q, float *r, int n, float *norn)

Given a filter, 4(/), arrd twice the inverse power spectrum, r(/), this routine generates a normalized

template A(f) for which t : (N2) * ]correlate(. . .,u,u,r,rI). The arguments are:

u: Output. The array u[0..n-1] contains the positive frequency part of the complex template

function d(/), packed as described in the Numerical Recipes routine realftO.

q: Input. The array q[0..n-11 contains the positive frequency part of the complex filter func-

tion q(/), also packed as described in the Numerical Recipes routine realftO.

r: Input. The array rlO . .n/2f contains the values of the real function r(f) : 2lSn(lf l) used as a

weight in the normalization. The array elements are arranged in order of increasing frequency

from the DC component at subscript 0 to the Nyquist frequency at subscript nl2.

n: Input. The total length of the arrays u and q. Must be even.

norn: Output. The normalization constant, a, defined below.

Given a filter, q(t), this routine computes a template, u(t) : aq(t), which is normalized so that

(u,u):2, where (-,.) ir the inner product defined by equation (5.10.9). Thus, the normaiization

constant is given by

(6 .11.1)1  1 ,  .
7 :  , \ 4 ' e ) '

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.L2 Function: find-ringo

void f ind_ring(f loat *h, f loat xu, f loat *r ,  f loat +o,
int n, int len, int safe, int +off,
float *snr, float *nean, float *var)

This optimally filters the strain data using an input template and then finds the time at which the
SNR peaks. The arguments are:

h: Input. The FFT of the strain d.ata h(1).

u: Input. The normalized template AU).

r: Input. Twice the inverse power spectrum Z/SnilfD-

o: Output. Upon return, contains the filter output.

n: Input.  Def ines the lengths of the arrays h[0..n-1],  u[0..n-1J, o[0..n-1],  and rto. .a/2)-

len: Input. The number of time domain bins for which the filter t^c(t) is non-zero. Needed in order
to eliminate the wraparound ambiguity described in subsection 5.14.

safe: Input. The additional number of time domain bins to use as a safety margin. This number
of points a.re ignored at the beginning of the filter output and, along with the number of
points len, at the ending of the filter output. Needed in order to eliminate the wraparound
ambiguity described in subsection 5.14.

off : Output. The offset, in the range safe to a-1en-safe-1, for which the filter ciutput is a
maximum.

snr: Output. The maximum SNR in the domain specified above.

neaYr: Output. The mean value of the filter output over the domain specified above.

var: Output. The variance of the filter output over the domain specified above. Would be unity
if the input to the filter were Gaussian noise with a spectrum defined by Sa.

Author: Jolien Creighton, jolien@tapir.caltech.edu

j
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6.13 F\rnction: qn-inj ect ( )

void qn-inject( f loat *strain,  f loat *siglal ,  f loat *response, f loat *work,
float invMpc, int off, int n, int 1en)

This routine injects a signal s(t), normalized to a specified distance, into the strain data h(t), with
some specified time offset. The arguments to the routine are:

strain: Input/Output. The array strain[0..n-1] containing the strain data on input, and the
strain data plus the input signal on output.

signal: Input. The array sigaal[O..1en-1] containing the signal, in strain units at 1 Mpc
distance, to be input into the strain data stream.

response: Input. The array response[0..n+1] containing the response function R(/) of the
IFO.

work: Output. A working array work [0 . . n-1] .

invMpc: Input. The inverse distance of the system, measured in l/Mpc, to be used in normalizing
the signal.

off : Input. The offset number of samples (in the time domain) at which the injected signal starts.

n :  Input .  Def ines the lengtho f  thearayss t ra in [0 . .n -1 ] ,work [0 . .n -1 ] ,andresponse[0 . .n+1] .

len: Input. Defines the length of the array signat [0. .1en-1] .

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: See the description of the routine tine-injectO.
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6.74 Vetoing techniques for ringdown waveforms

Vetoing techniques for binary inspirals have already been described in subsection 5.L8; these tech-
niques are equaliy applicable to searches for ringdown waveforms. However, since ringdown wave-
forms a,re short lived and have a narrow frequency band, it is much more difficult to distinguish
between a ringdown waveform and a purely impulsive event. Furthermore, since the ringdown
waveform will be preceded by some unknown waveform corresponding b a black hole merger, one
should not be too selective as to whjch events shouid be vetoed.

Nevertheless, the Caltech 40 meter interferometer data has many spurious events that will
trigger a ringdown filter, and we would expect that other instruments wili have similar properties.

These spurious events will (hopefully) not be too common, and most will be able to be rejected if
they are not reported by other detectors. At present, however, we have only the Caltech 40 meter
data to anaJyze, so we must consider every event that is detected by the optimal filter. The single
vetoing technique that we will use at present is to look for non-Gaussian events in the detector
output using the routine is-gaussiaaO. Since the expected ringdown waveforms will be only
bareiy discernible in the raw data, such a test has no chance of accidentally vetoing an actual
ringdown, but it will veto the obvious irregularities in the data.
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6.15 Example: qn-optinal program

This program is a reworking of the program optinal to be run on simulated 40-meter data. Instead
of searching for binary inspiral, qn-optinal searches for an injected quasinormal ringdown wave-
form. Refer to the sections on optimal filtering and the optiroal prograrn for a detailed discussion.

The program is setup to inject a quasinormal ringdown, produced by the routine qn-qringO,

due to a biack hole of mass M : 50Mo, dimensionless angular momentum parameter d : 0.98,
and fractional mass loss of e : 0.03. The injection occurs at a time of 500 s and the source distance
is set to L00kpc. The filter is constructed from the same waveform.

The following is some sampie output from qn-optimal:

max snr:  3.74 (offset 30469) data start :  466.77 var lance: 0.72L59
max sar:  4.03 (offset 50156) data start :  479.80 var iance: 0.78550

Max SNR: 9.26 (offset 70785) var iance 0.796263
If  r ingdor,rn, est imated distance: 0.114364 Mpc, start  t ime: 499.999968
Distr ibut ion: s= 40, N)3s= 0 (expect 3S3),  N)Ss= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not aPpear to have outliers

max snr:  3.58 (offset 70974) data start :  505.86 var iance: 0.77432

max snr:  3.62 (offset 123006) data start :  1339.81 var iance: 0.70885

Max SNR: 67.0L (offset 726t29) variance 4.637304
If  r ingdown, est imated distancel.  0.009777 Mpc, start  t ime: 1365.618108
Distr ibut ion: s= 40, N)3s= 320 (expect 3S3),  N)Ss= 780 (expect 0)
Distr ibut ion has out l iers!  Reject

Max SNR: 93.03 (offset 1295) varience 4.444335
If  r ingdown, est imated dista-nce: 0.005934 Mpc, start  t ine: 1365.998780
Distr ibut ion: s= 40, N)3s= 109 (expect 3S3),  N)Ss= 280 (expect 0)
Distr ibut ion has out l iers!  Reiect

nax snr:  2.77 (offset 127389) data start :  1378.90 var iance: 0.29810

max snr:  4.85 (offset 118137) data start :  2!52.18 var iaace: 0.91870

Max SNR: 12.74 (offset 69426) variaace L.332324
If  r ingdown, est i rnated dista-nce: 0.081144 Mpc, start  t ine: 2172.249524
Distr ibut io! . :  s= 39, N)3s= 0 (expect 3S3),  N)5s= 0 (expect 0)
POSSIBLE RINGD0WN: Distribution does not aPPear to have outliers

malt

nax

Q n r .

srlr:
3 .65  (o f fse t  35976)  da ta  s ta r t :  2 t78 .24  var iance:  0 .77820
3.76 (offset L22854) data start :  2!97.28 var iance: 0.67849

As can be seen, qn-optinal is able to find the ringdown and correctly estimates its distance
and time of arrival.
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/x GRASP: Copyright 1997, Bruce Allen */

#include "grasp.h"

#define NPOINT 73t072
#define HSCALE L.0e2t
#define ARMLENGTII 40.0
#define FLO 120.0
#define MIN_INT0_L0CK 3.0
#define THRESH0LD 6.0
#define ATTEN 30.0
#define SAFETY 1000
#define DATA-SEGI'IENTS 3000

/x number of data points x/

/* convenient scaling factor *f

/r. armlength (meters) x/

/x low frequency cutoff for filtering x/

/* time (minutes) to skip into each locked section x/

/x detection threshold SNR x/

/x attenuation cutoff for ringdown waveforms */

/x padding safety to avoid wraparound errors x/

/x maximum number of data segments to filter x/

double datastart;
f loat respoase [NPOINT+2] , srate=9868 .4208984375;
short datas[NP0INT];
int needed-NP0fNT;

roaino

{
void realft(f loat x, unsigned long, iat);

double aonn;
float data [NP0INT] ,htilde INP0INT] , output INPOINT] ;
f I oat oeaa-pow-spe c INPO INT/2+ 1], tui ce jnv-noise INPO INT I Z+t) ;
f loat *ri!.g, ringtilde INPOINT], template INPOINT] ;
f loat decaytine, decay, scaIe, snr,Eea!, var, tmpl-nonn, dist ;
f l oa t  nass=S0 .0 , sp in=O.98 ,eps=O.03 ,ps i0=0 .0 , i nvMpc=1O.0 , r i ngs ta r t=SOO.0 ;
int i, code, len,saf e=SAFETY,diff , off ,a=NP0INT;

/r, manufacture quasinormal ring data; obtain length of signal *./
riug = NIILL;
Len = qn-qriag (psi0, eps,mass, spi.n, 1 . 0/srate, ATTEN, n, &ring) ;

/x normalize quasinormal ring to one megaparsec x/
scale = HSCALE*M-S0LAR/MPC;
for  ( i=0; i ( Ien; j .++)  r lngt i lde[ i ]  = r ing[ i ]  x= scale;
for  ( i= Ien; i -<n; i++)  r ingt j . lde[ iJ  = r ing l i ]  =  0;

/x FFT the quasinormal ring waveform x/
realf t (riugti lde- 1, n, 1) ;
if (n<1en+2xsafe) abortO ;

whi le  (1)  {

/x fill buffer with number of points needed x/
code = f i l l -buf ferO;

/x if no points left, we are done! */
if (code==O) break;

/x ifjust entering a new locked stretch, reset averaging over power spectrum x/
i f  (code==1) {

191



norm = 0;
clear(roean-pon-spec,n f 2+1 ,!) ;

f ,r decay time in seconds: set to 15 x length of NPOINT sample 'r/

decaytirne = 15.Oxn/srate;
decay = exp (-1.Oxn/ (srate,idecaytj.ne) ) ;

]

f x copy data into floats x/
for  ( i=0; I<NPOINT; i++)  data l i ]  =  datas[ i ] ;

/x inject a time-domain signal before FFT (note output is used as temp storage only) x/

qn-inj ect (data, ring, response, output , iavMpc, (int) (sratex (ringstart-datastart) ) , n, len) ;

/x compute the FFT of data x/
rea l f t  ( da ta -1 ,n ,1 )  ;

f x normalized dLlL tilde */
product (hti lde, data, respouse, n/2) ;

/* update auto-regressive mean power spectrum x/

avg-inv-spec (FL0 , srate,D, decay, &norm, htilde ,EearLPorr-spec, twice-inv-noise) ;

/x normalize the ring to produce a template x/
qn-normalize (tenplate, ringtilde, tEice-inv-noise , n, &tnpl-norn) ;

/x calculate the filter output and find its maximum x/

f ind-rlng (htilde , tetrplate, twi.ce-iav-noise , output , n,IeD, saf e , &of f , &snr, &mean , &var) ;

/x perform diagnostics on filter output x/
if (snr<THRESH0LD) { /x threshold not exceeded: print a short message x/

pr in t f  ( I 'max snr :  ' / , .2 f  (of fset  7.6d)  " ,snr ,of f ) ;

pr in t f  ( "data star t : ' / , ,2 f  var iaace: . ' / , .Sf \n" ,datastar t ,var)  ;

) else { /x. threshold exceeded x/

/* estimate distance to signal (template distance [Mpc] : 1 / tmpl-norm) *'/

dist = 2/(tnp1-:corzxsnr) ;
printf ("\nMax SNR: 7..2f (offset 7"d) variaace 7.f\n",snr,off ,var) i
pr in t f ( "  I f  r ingdown, est imated d is tance:  7. f  MPc,  " ,d is t ) ;

printf ("start t ine: 7.f\nrr ,datastart+off/srate) ;

/x See if time domain statistics are non-Gaussian x/

if ( is-gaussi.an(datas,a, -2048, 2047,D >
printf(" POSSIBLE RINGD0WN: Distribution does not appear to have outl iers\n\4");

e lse
pr int f ( "  Dist r ibut ioa has out l iers!  Reject \n\n") ;

)

/x shift ends of buffer to the start x/
d i f f  = lea + 2xsafe;  / *safety isappl iedatbeginningandendof  buf fer* /

n e e d e d = N P 0 I N T - d i f f ;
for  ( i=0; i (d i f f  ; i++)  datas[ i ]  = datas[ i+needed]  ;

)

return 0;
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/x this routine gets the data, overlapping the data buffer as needed x/
int f i l l-buffero

{
stat ic  FILE * fp i fo ,* fp lock;
static i!.t f irst=1,remain=O,num-sent=0;
float tstart;
int i , ternp, code=2, diff=NP0INT-needed;

if (first) { /x on first call only x/
FILE xfpss;
f i . rs t  = 0;
d i f f  = 0;

/x open the IFO output file, lock file, and swept-sine frle x I
fpifo = grasp-opeo("GRASP_DATAPATH", "channel.0'r) ;
fplock = grasp-open(I'GRASP-DATAPATH", rrch:nnel. 10") ;
fpss = grasp-open('GRASP-DATAPATII", rtswept-si-ne.ascii") ;
f * get the response function and put in scaling factor *f
normal ize-gp (f pss, NP0INT, srate, response) ;
for (i=0;i<NP0INT;i++) response[i] x= HSCALE/ARMLENGTH;
f c l ose ( fpss ) ;

)

if (nun-sent==DATA-SEGMENTS) return 0;

/x if new locked section, skip forward */
whil-e (rerqain<Deeded) {

fprintf(stderr,"\nEntering Dew locked set of data\n");
temP = get-data(fpi-fo,fp1ock,&tstart,MIN-INT0-L0CK*60*srate,datas,&renaia,&srate;1);
if (teroP==o) return 0;

/* number of points needed will be full length x/
needed = NP0INT;
di f f  = 0;
code = 1;

)

f * get the needed data and compute the start time of the buffer x/
tenF = get-data( fp i fo , fp lock,&tstar t ,needed,datas+di f f ,&remain,&srate,0) ;
if (tenP==g) return 0;
datastart = tstart - diff/srate:

num-sent++;
return code;
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6.1-6 Structure: struct qnTemplate

The structure that will hold the filters for quasinormal ringdown waveforms is: struct

int num: The number of the particular filter.

f loat f req: The central frequency of the filter template.

float qual: The quality of the fiIter template.

I '

qnTenplate{

The actual fiiter data that corresponds to the parameters set by the fields freq and qual is
generated by the routine qnJilterO above.

; ' ,
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6.77 Structure: struct qnScope

The structure struct qnScope specifies a domain of parameter space and contains a set of tem-
plates that cover this domain. The fields of this structure are: struct qnScope{

int n-tnpIt: The total number of templates required to cover the region in parameter space.
This is typically set by qn-te!0plate-grido.

float freq-rnin: The minimum frequency of the region of parameter space.

float freq-max: The maximum frequency of the region of parameter space.

float gual-nin: The minimum quality of the region of parameter space.

fl-oat qual-max: The maximum quality of the region of parameter space.

struct qnTenplate *tenplates: Pointer to the array of templates. This pointer is usually set
by qn-tenplate-gridO when it allocates the memory necessary to store the templates and
creates the necessarv temolates.

) ;
Although we are interested in the physical parameters, such as the mass and angular mo-

mentum, of the black hole sources of gravitational radiation, it will be more convenient to work

with the frequency and quality parameters of damped sinusoids when creating detection templates.
For the fundamental quadrupole quasinormal mode, there is a one-to-one correspondence between
the mass and angular momentum parameters and the frequency and quality parameters which is

approximately given by Echeverria [12].
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6.18 F\rnction: qn-tenplate-grido

void qn-tenplate-grid(f1oat d1, struct qnScope *grid)

This function is responsible for allocating the memory for a grid of templates on the parameter

space and for choosing the location of the tempnates. The arguments are:

dl: Input. The length of the 'sides' of the square templates. This quantity should be set to d.t. :

1/(2ds!6,nyo16) (see the discussion below).

grid: Input/Output. The grid of templates of type struct qnScope. On input, the fields that

relate to parameter ranges should be set. C)n output, the field a-tnp1t is set to the number of

templates generated, and these templates are put into the array field tenplates [0 . . n-traPtt-1]
(which is allocated by the function).

The function qn-tenplate-gridO attempts to create a set of templates, {uu(t)}, which "cover"

parameter space finely enough that the distance between an arbitrary point on the parameter space

and one of the templates is small. A precise statement of this goal, and how it is achieved, can be

found in the paper by Owen [5]. We hilight the relevant parts of reference [5] here.
The templates {21(t)} are damped sinusoirls with a set of frequency and quality parame-

ters {(/,Q)i}. They are normalized so that (ulut): L where ('l') it the inner product defined

by Cutler and Flanagan [11]. Since we are most interested in the high quality region of parameter

space, it is a good approximation that the value of the one'sided noise power spectrum is approx-

imately constant, Si,(/) = Sn(f), over the frequency band of the tempiate. This approximation

simplifies the form of the inner product as the noise power spectrum appears in the inner product

as a weighting function.
In order to estimate how close together the templates must be, we define the distance func-

tiondsl, -1- ("01") correspondingtothemisrnatchbetweenthetwotempiates uiand 27. This

interval can be expressed in terms of a metric as d,sz - gopdradnp where ro: (f ,Q)o are coor-

dinates on the two dimensional parameter space. Such an expression is only valid for sufficiently

close points on parameter space. In the limit of a continuum of templates over parameter space,

the metric can be evaluated by gog : -|(ul}"Dpu) where do is a partial derivative with respect

to the coordinate zo. We find that the mismatch between templates that differ in frequency by df

and in quality by dQ is given by

ds2 : t{;ffi dez -'dffid'Qd'r *tf u'}
= *#-i#+*a's:r"

(6 .18.1)

(6.18.2)

In the approximate metric of equation (6.18.2), we have kept only the dominant term in the limit

of high quality. The minimurn number of templates, -A/, required to span the parameter space

such that there is no point on parameter space that is a distance larger than dsf1.""1ro14 from the

nearest template can be found by integrating the volume element ,/ det gqp over the parameter

space. Using the approximate metric and the parameter ranges Q < Q^ * and f € [-f*in,.f*r*], *e

flnd that the number of templates required is

N = 
ft@r?n *r,ora)-1Q** los("f-o/"f*i,,)
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The issue of template placement is more difficult than computing the number of templates
required. Fortunately, for the problem of quasinormal ringdown template placement, the metric
is reasonably simple. By using the coordinate Q - log/ rather than "f, we see that the metric
components depend on Q alone. We can exploit this property for the task of template placement
as follows: First, choose a "surface" of constant Q: Qmin, and on this surface place templates
at intervals in @ of dd : dl/566 for the entire range of @. Here, dl : ,/(2dsl,oreshotd). Then
choose the next surface of constant Q with dQ: d(lgeO and repeat the placement of templates
on this surface. This can be iterated until the entire range of Q has been covered; the collection of
templates should now cover the entire parameter region with no point in the region being farther
than dsfu.o5o16 from the nearest template.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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7 GRASP Routines: Stochastic background detection

7.L Data Fi le:  detectors.dat

This fi1e contains site location and orientation information, a convenient name for the detector, and

filenames for the detector noise power spectrum and whitening filter, for 1,1 different detector sites.

These site are:

(1) Hanford, Washington LIGO site,
(2) Livingston, Louisiana LIGO site,
(3) VIRGO site,
(4) GEO-600 site,
(5) Garching site,
(6) Glasgow site,
(7) MIT 5 meter interferometer,
(8) Caltech 40 meter interferometer,
(9) TAMA-300 site,
(10) TAMA-2O site,
(11) ISAS-100 site.

As explained below, information for additionaf detector sites can be added to detectors.dat as

needed.
The data contained within this file is formatted as follows: Any line beginning with a # is

regarded as a comment. All other lines are assumed to begin with an integer (which is the site

identification number) followed by five floating point numbers and three character strings, each

separated by white space (i.e., one or more spaces, which may include tabs). The first two floating

point numbers specify the location of the central station (the central vertex of the two detector arms)

on the earth's surface: The first number is the latitude measured in degrees North of the equator;

the second number is the longitude measured in degrees West of Greenwich, England. The third

floating point number specifies the orientation of the first arm of the detector, measured in degrees

counter-clockwise from true North. The fourth floating point number specifies the orientation of

the second arm of the detector, also measured in degrees counter-clockwise from true North. The

fifth floating point number is the arm length, in cm. The three character strings specify: (i) u

convenient name (e.g., VIRGO or GEO-600) for the detector site, (ii) the na.me of a data file that

contains information about the noise power spectrum of the detector, and (iii) the name of a data

file that contains information about the spectrum of the whitening filter of the detector. (We will

say more about the content and format of these two data files in Secs. 7.3 and 7.4.) The information

currentlv contained in detectors. dat is shown below:

#
# Haaford, Washington LIGo Site (init ial detector)
# Fred Raab fjr@ligo.caltech.edu
t  46.45236 119.40753 36.8 126.8 4.e5 Haaford- in i t laL noise- in i t .dat  whi ten- in i t .dat
+

# Livlugston, Loui.sialla LIGo Site (init ial detector)
# Fred Raab fjr@li.go.caltech.edu
2 30.56277 90.77425 108.0 198.0 4.eS L iv iogston- j .n l t ia l  noise- in i t .dat  l th i ten- in i t .dat
+

# VIRGO Site
# Bip1ab Bhawal biplab@iucaa.iucaa.ernet.in
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#  3  4 3 . 3  - 1 0 . t  7 1 . 5  3 4 1 . 5
# Raffaele Flaminio flaminio@lapphpO. in2p3. fr
# Carlo Bradaschia BRADASCHIA@VAXPI.A.PI. INFN. IT
# Rosa Poggi.ani POGGIANI@pisa. infn.it
3  43 .6333  -10 .5  71 .5  341 .5  3 .e5  V IRGO XXXXX XXXXX
+

# cE0-600 as of April 1995
# Albrecht Ruediger atr@npg.npg.de
4 52.2467 -9.82167 26.0 292.5 6.e4 GE0-600 XXXXX XXXXX
+

# Garcbing 30 Meter Interferometer
# Albrecht Ruediger atr@npq.npg.de
5 48.244 -11.675 329.0 239.0 3.e3 Garcbing-3O XXXXX XXXXX
*

# Glasgow 10 Meter Interferometer
# Albrecbt Ruediger atr@npq.npg.de
#  6  5 5 . 8 6  4 . 2 3  7 7 . 0  t 6 7 . 0
# Jin Hough hougb@pbysics.gla.ac.uk
6 55.8667 4.28333 62.0 752.0 1.e3 Glasgow-10 XXXXX XXXXX
+

# MIT 5 Meter Interferoneter
# Gabriela Gonzal-ez gg@tristan.roit.edu
7 42.3667 7t . t  3+.5 304.5 5.e2 MIT-S XXXXX XXXXX
*

# Cattech 40 Meter Interferometer NEEDS C0RRECTION
# Fred Raab f j r@l igo.cal tech.edu
8 34.1667 118.133 180.0 270.0 4.e3 Cal tech-40 40noise.dat  4Owhi ten.dat
+

# TAMA 300 Meter
# Masa-Katsu Fujinoto fujinoto@gravity.ntk.nao.ac. jP

9 35.6766 -139.536 90.0 180.0 3.0e4 TAMA-300 XXXXX XXXXX
+

# TAMA 20 Meter
# Masa-Katsu Fujinoto fujinoto@gravj.ty.ntk.nao. ac.iP
10 35.6751 -139.536 45.0 315.0 2.0e3 TAMA-2O XXXXX XXXXX
+

# ISAS 100 Meter delay l ine
# Hide Mizuno h ide@plei .ades.sc i . isas.ac. jp
11 35.5678 -139.467 42.0 135.0 1.0e4 ISAS-100 XXXXX XXXXX
+

Site information for new (or hypothetical) detectors can be added to detectors - dat by simply

adhering to the above data format. For example, as the noise in the LIGO detectors improves, one

can accommodate these changes in detectors.dat by adding additional lines that have the same

site Iocation and orientation information as the "old" detectors, but refer to different noise power

spectra and whitening filter data files. The only other requirement is that the site identification

numbers for these "new and improved" detectors be different from the old site identification num-

bers, so as to avoid any ambiguity. Explicitly, one could add the following lines to detectors. dat

to include information about the advanced LIGO detectors:

+

# Ha:rford, Wasb.ington LIG0 Site (adva:rced detector)
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# Fred Raab f j r@l igo.cal tecb.edu
t2 46.45236 119.40753 36.8 126.8 4.e5 Ha:rford-advanced noise-adv.dat whiten-adv.dat

# Livingston, Louisiana LIGO Site (advanced detector)
# Fred Raab f j r@l igo.cal tech.edu
13 30.56277 90.77425 108.0 198.0 4.e5 Livinsston*advaaced noise-adv.dat wh.i.ten-adv.dat
* -

The file detectors. dat currently resides in the paraneters subdirectory of GRASP. In order for

the stochastic background routines and example programs that are defined in the following sections

to be able to access the information contained in this file, the user must set the environment variable

GRASPJARAMETERS to point to this directory. For example, a command like:

set env GRASPJARAMETERS /usr/I o c a1lGRASP/paraneters
should do the trick. If, however, you want to modify this file (e.g., to add another detector or

to add another noise curve), then just copy the detectors.dat file to your own home directory

modify it, and set the GRASPJARAMETERS environment variabie to point to this directory.

Comment: If you happen to find an error in the detectors. dat file, please communicate it to the

caretakers of GRASP.
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7.2 F\rnction: detector-site o

void detector-si te(char *detectorsj i le,  int  s i te-choice, f loat s i te-parameters[9],
char *siterlame, char *noisejile, char *whitenjile)

This function calcuiates the components of the position vector of the central station, and the com-
ponents of the two vectors that point along the directions of the detector arms (from the central
station to each end station), for a given choice of detector site, using information contained in an
input data file. This function also outputs three character strings that specifu the site name, the
narne of a data file containing the detector noise power information, and the name of a data file
containing information about the detector whitening filter, respectively.

The arguments of detector-siteO are:

detectorsJile: Input. A character string that specifies the name of a data file containing
detector site information. This file is most likely the detectors.dat data file described in
Sec. 7.L. If the file is different from detectors.dat, it must have the sarne data format
as detectors.dat, and it must reside in the directory pointed to by the GRASPJARAI'IETERS
environment variable (which you may set as you wish). If you want to use the detectors . dat
file distributed with GRASP, use a command like:
set env GRASP-PARAMETERS / ust / Io callcRAsP/paramet ers
to point to the directory containing this file. If you want to modify this file (e.g., to add
another detector or to add another noise curve), then just copy the detectors.dat file to
your orvn home directory, modify it, and set the GRASPJARAMETERS environment variable to
point to this directory.

site-choice: Input. An integer value used as an index into the input data file. The value of
site-choice shouid be chosen to match the site identification number for one of the detectors
contained in this file.

site-parameters: Output. site-parameters [0. .8] is an array of nine floating point irariables
that define the position of the central station of the detector site and the orientation of its
two arms. The three-vector site-parameterstO..2l are the (r,A,") components (in cm) of
the position vector of the central station, as measured in a reference frame with the origin
at the center of the earth, the z-axis exiting the North poie, and the r-axis passing out the
iine of 0' longitude. The three-vector site-para.neterst3..5l are the (r,y,") components
(in cm) of a vector pointing along the direction of the first arm (from the central station to
the end station). The three.vector site-parameters [6. .8] are the (r,A, ") components (in
cm) of a vector pointing along the direction of the second arm (from the central station to
the end station).

site-naroe: Output. A character string that specifies a convenient name (e.g., VIRGO or GEO-
600) for the chosen detector site.

noiseJile: Output. A character string that specifies the name of a data file containing informa-
tion about the noise power spectrum of the detector. (See Sec. 7.3 for more details regarding
the content and format of this data file.)

whitenJile: Output. A character string that specifies the name of a data file containing in-
formation about the spectrum of the whitening fiIter of the detector. (See Sec. 7.4 for more
details regarding the content and format of this data file.)
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detector-siteo reads input data from the file specified by detectors*file. This file is
searched (linearly from top to bottom) until the value of site-choice matches the site identification
number for one of the detectors contained in this file. The site location and orientation information
for the chosen detector site are then read into variables local to detector-siteO. The values
contained in the array site-parameters [] are calculated from these input variables using standard
equations from sphericai analytic geometry. (A correction ds made, however, for the oblateness of
the earth, using information contained in Ref. [21].) The site-na.e, noiseJile, and whitenJile
character strings are simply copied from input data file. If site-choice does not match any of the
site identification numbers, detector-siteO prints out an error message and aborts execution.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.3 F\rnction: noise-powero

void noise-power(char +noisej i le,  int  n,  f loat del taj ,  double *power)

This function calculates the noise power spectrum P(/) of a detector at a given set of discrete
frequency values, using information contained in a data file.

The arguments of noise-powerO are:

noiseJile: Input. A character string that specifies the name of a data file containing infor-
mation about the noise pov/er spectrum P(f) of a detector. Like the detectors. dat file
described in Sec. 7.1, the noise power data file should reside in the directory pointed to by
the GRASPJARAMETERS environment variable (which you may set as you wish). If you want
to use the noise poril/er spectrum data files distributed with GRASP, use a command like;
s et env GRASP JARAMETERS / usr / Io ca]-� / GRASP / para.met ers
to point to the directory containing these files. If you want to use your own noise power

spectrum data fiIes, then simply set the GRASPJARAMETERS environment variable to point to
the directory containing these files. Note, however, that if a program needs to access bofh
detector site information and noise power spectrum data, then all of the files containing this
information should reside in the same directory. (A similar remark applies for the whitening
filter data files described in Sec. 7.4.)

n: Input. The number N of discrete frequency values at which the noise pov/er spectrum P(/) is
to be evaluated.

deltaJ: Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/ ::

J X + L  J Z .

power: Output. power[O..n-1] is an array of double precision variables containing the values

of the noise power spectrum P(f). These variables have units of strain2/Hz (or seconds).
power [i] contains the value of P(f) evaluated at the discrete frequency fi : iAf , where

f  :  0 , 1 , . ' .  , } f  -  1 .

The input data file specified by noiseJile contains information about the noise pov/er spec-
trum P(/) of a detector. The data contained in this file is formatted as follows: Any line beginning

with a # is regarded as a comment. All other lines are assumed to consist of two floating point num-
bers separated by white space. The first floating point number is a frequency f (inHz); the second
floating point number is the square root of the one-sided noise po$/er spectrum P(f), evaluated at

f . P(f) is defined by equation (3.18) of Ref. [20]:

(7.3.r)

Here ( ) denotes ensemble average, and n(/) is the frequency spectrum (i.e., Fourier transform)

of the strain n(t) produced by the noise intrinsic to the detector. P(/) is a non-negative real

function, having units of strain2 fHz (or seconds). It is defined with a factor of Ll2 to agree with

the standard definition used by instrument builders. The total noise power is the integral of P(/)

over all frequencies from 0 to oo (not from -oo to oo). Hence the name one-si'ded.
Since the frequency values contained in the input data file need not agree with the desired fre'

quencies ft.: iAf , noise-powerO must determine the desired vaiues of the noise power spectrum
by doing an interpolation/extrapolation on the input data. noise-poverO performs a cubic spline

interpolation, using the Numerical Recipes in Croutines splineO and splintO. aoise-powero
assumes that the length of the input data is ( 65536, and it uses boundary conditions for a natural

@"ff)r,,U)r:,*ur, - f ') P(f)
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spline (i.e., with zero second derivative on the two boundaries). noise-powerO also squares the

output of the spliatO routine, since the desired values are P(f)-and not their square roots

(which are contained in the input data file).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations to P(/)

that are not contaminated by spurious DC or low frequencY (e.g., approximately 1 Hz) com-

ponents, it is important that the input data file specified by noiseJile contain noise power

information down to, and including, zero Hz. This information can be added in "by hand,"

for example, if the experimental data for the noise power spectrum only goes down to 1 Hz.

In this case, setting the values of {{fl at 0.0,0.1,0.2,..',0.9 Hz equal to its 1 Hz value

seems to be suficient. (See Sec. 7.4 for a similar comment regarding whitenO.)

!

i
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7.4 F\rnction: whiteno

void whiteu(char *lthitenjile, int n, float de1taj, double*whiten-out)
This function calculates the real and imaginary parts of the spectrum W(f) of the whitening filter

of a detector at a given set of discrete frequency values, using information contained in a data file.

The arguments of whitenO are:

whitenJile: Input. A character string that specifies the name of a data file containing informa-

tion about the spectrun W (f) of the whitening filter of a detector. Like the detectors . dat

and noise power spectrum data files described in Secs. 7.1 and 7.3, the whitening filter data

fiie should reside in the directory pointed to by the GRASPJARAMETERS environment variable

(which you may set as you wish). If you want to use the whitening filter data files distributed

with GRASP, use a command like:
set env GRASP JARAMETERS / usr / I o cal /GRASP/param et ers
to point to the directory containing these files. If you want to use your own whitening flI-

ter data files, then simply set the GRASPJARAMETERS environment variable to point to the

directory containing these files. Note, however, that if a program also needs to access either

detector site information or noise power spectrum data, then all of the files containing this

information should reside in the same directory.

n: Input. The number .lf of discrete frequency values at which the real and imaginary parts of

the spectrumW(f) of the whitening filter are to be evaluated.

d.el-taJ: Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/ ::

J i + r  -  J i .

whiten-out: Output. whiten-out [0. . Z*n-t] is an array of double precision variables containing

the values of the real and imaginary parts of the spectrum W (f) of the whitening filter. These

variables have units rHz/strain (or seg-1/2), which are inverse to the units of the square

root of the noise power spectrum P(f). whiten-out [2*i] and whiten-out [2*i+1J contain,

respectively, the values of the real and imaginary parts of W17; e"Auated at the discrete

frequencY f; : iLf , where i : 0, 1, "',1,r - 1.

The input data file specified by whitenJile contains information about the spectrum W(f) "t

the whitening filter of a detector. The data contained in this file is formatted as follows: Any line

beginning with a # is regarded as a comment. All other lines are assumed to consist of three floating

point numbers, each separated by white space. The first floating point number is a frequency / (in

Hz). The secon_d and third floating point numbers are, respectively, the real and imaginary parts of

the spectru*W(f),evaluated at /. These last two numbers have units of rHz/strain (or sec-1/2;.

This is because the whitening filter is, effectively, the inverse of the amplitude ,/P(f) of the noise

pos€r spectrum.
Since the frequency values contained in the input data file need not agree with the desired

frequencies fi : iLf ,, whiteno must determine the desired values of the real and imaginary parts

of the spectrum of the whitening filter by doing an interpoiation/extrapolation on the input data.

Similar to noise-powerO (see Sec. 7.3). whitenO performs a cubic spiine interpolation, using the

splineO and splintO routines from Numerical Rec'ipes'in C. Like noise-powerO, whiteno

assurnes that the length of the input data is < 65536, and it uses boundary conditions for a natural

spline. Unlike noise-powerO, whiteno does not have to square the output of the sPlinto

routine, since the data contained in the input file and the desired output data both have the same

form (i.e., both involve just the real and imaginary parts of Wftn
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations to i7(/)

that are not contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) com-

ponents, it is important that the input data file specified by whitenJile contain information

about the whitening filter down to, and including, zero Hz. This information can be added in
"by hand," for example, if the experimental data for the spectrum of the whitening filter only

goes down to LHz In this case, setting the values otW(f) at 0.0,0.1,0.2,'",0.9 Hz equal

to their L Hz values seems to be sufficient. (See Sec. 7.3 for a similar comment regarding

noise-power ( ) .)

Also, for the initiai and advanced LIGO detector noise models, the spectra Wftl of the

whitening filters contained in the input data files were constructed by simply inverting the

square roots of the corresponding noise power spectra P(/). The spectra of the whitening

filters thus constructed are real. Although this method of obtaining information about the

spectra of the whitening filters is fine for simulation purposes, the data contained in the

actual whitening filter input data fiIes will be obtained i,ndependentlg from that contained in

the noise pov/er spectra data files, and the spectra W11; *itt in general be complex. The

function r.rhitenO described above-and ail other stochastic background routines-allow for

this more general form of whitening filter data.
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7.5 Function: overlap o

void. overlap(float *site1-parameters, float *site2-parameters, int n, float deltaJ,

double *gamrna12)

This function calculates the values of the overlap reduction function 7(/), which is the averaged
product ofthe response ofa pair ofdetectors to an isotropic and unpolarized stochastic background

of gravitational radiation.
The arguments of overlap O are:

sitel-paraneters: Input. sitel-parameterst0. .81 is an array of nine floating point variables

that define the position of the central station of the first detector site and the orientation

of its two arms. The three-vector sitel-paraneters t0. .21 are the (*,A, r) components (in

cm) of the position vector of the central station of the first site, as measured in a reference

frame with the origin at the center of the earth, the z-axis exiting the North pole, and

the r-axis passing out the Iine of 0o longitude. The three-vector sitel-parameters t3. . 5l

are the (r,y,") components (in cm) of a vector pointing along the direction of the first

arm of the first detector (from the central station to the end station). The three..vector
sitel-parameters t6. .8l are the (r,A, r) components (in cm) of a vector pointing aiong the

direction ofthe second arm ofthe first detector (from the central station to the end station).

site2-parameters: Input. site2-paraneters t0. . Sl is an array of nine floating point variables

that define the position of the central station of the second detector site and the orientation

of its two arms, in exactly the same format as the previous argument.

n: Input. The number N of discrete frequency values at which the overlap reduction function

ry(/) is to be evaiuated.

deltaJ: Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/ ::

J i + t  -  J i -

gamn3t!: Output. ganrns!! [0. .n-1] is an array of double precision variables containing the val-

ues of the overlap reduction 7(/) for the two detector sites. These variables are dimensionless.

gannT!) [i] contains the value of f (/) evaluated at the discrete frequency fi : iAf , where

i : 0 r l r . . . , N - 1 .

The values of f(/) calculated by overlapO are defined by equation (3.9) of Ref. [20]:

r(.f) ,: * Ir"dA 
e2rirn'e,/" (r{ r} + rf ri) (7 .5.1)

Here O is a unit-length vector on the two-sphere, Ad is the separation vector between the two

detector sites, and flr*'t ir the response of detector i to the * or x polarization. For the first

detector ( i :1) one has

F,*,* : * (rrrr 
- :r9":f|.l),;" (CI), (7.5.2)

where the directions of the first detector's arms are defined Av *i and ?f , and ej;*(Q) are the

spin-two polarization tensors for the "plus" and "cross" polarizations, respectively. (A similar

expression can be written down for the second detector.) The normalization of lU) is determined

by the following statement: For coincident and coaligned detectors (i.e., for two detectors located

at the same place, with both pairs of arms pointing in the same directions), lU) : 1 for all

frequencies.
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

I

:
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7.6 Example: overlap prograrn

The following example program shows one way of combining the functions detector-siteO and

overlapO to calculate the overlap reduction function f(/) for a given pair of detectors. In partic-

ular, we calculate 1(/) for the Hanford, WA and Livingston, LA LIGO detector sites. The resulting

overlap reduction function data is stored as two columns of double precision numbers (fi and ilil)
in the f i le LlGO-over1ap.dat.  Here f t . :  i .Lf  with i :0,1,. . . ,N-1. The values of N and A/ are

input parameters to the program, which the user can change if he/she desires. (See the #define

statements listed at the beginning of the program.) Also, by changing the site location identification

numbers and the output file name, the user can calculate and save the overlap reduction function

for any pair of detectors-e.g., the Hanford, WA LiGO detector and the GEO-600 detector; the

GEO-600 and VIRGO detector; the Garching and Glasgow detectors; etc. The overlap reduction

function data that is stored in the file can then be displayed with xrogr, for example. (See Fig. 46.)

/x main program to illustrate the function overlapQ x/

#include "grasp.h"

#define DETECT0RSJILE "detectors.datrl

#define SITEI-CHOICE 1
#define SITE2-CHOICE 2
#define N 500
#defi.ne DELTA-F 1.0

/x fi.le containing detector info */

/x l:LIGO-Hanford site x/

/* 2:LlGO-Livingston site */

/x number of frequency points x/

/x frequency spacing (in Hz) * I
#define 0UI-FILE "LlG0-overlap.dat" 

/x output f i lename x/

naino
I

int
double

i .

f loat sitel-parameters [9] ,site2-parameters [9] ;
char  s i te l -name[100] ,noise1j i le [100] ,whi ten1j i1e[100]  ;
cbar  s i te2-name[100] ,noise2- f i le [100] ,wbi ten2j i le [100]  ;

double xgammaf!;

FILE xfp;
fp=f open(0IIIJILE, "w") ;

/'r ALLOCATE MEMORY x/
gammaf!= (doubLe x)ma1Ioc (Nxslzeof (double) ) ;

l* CALL DETECTOR-SiTE$ TO GET SITE PARAMETER INFORMATION x/

detector-site (DETECTORS-FILE, SITEl-CH0ICE, sitel-parameters , sitel-nane,
noise1- f1 le,  whi tenl j i . le)  ;

detector-site (DETECT0RS-FILE , SITE2-CHQICE , si.te2-parameters , s ite2-:tame ,
noise2Ji l -e,  wbl ten2Ji le)  ;

l* CALL OVERLAPQ AND WRITE DATA TO TIIE FiLE x/
overlap ( s it e 1 -parameters, s it e2-partmet ers, N, DELTAJ, g:mma t ! ) ;

f o r  ( i =O ;1<N; i++ )  {
f=i.*DELTA_F;
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i

,

fprintf (fp, "7.e 7oe\n" ,f rgamma12lt1 , '

]

f c l ose ( fp ) ;

return;

o.4

o.2

0.0

-o.2

-0.4

-u.o

-0.8

-1 .0
0.0 100.0

Overlap reduction function
(forthe LIGO detector pair)

200.0 300-0
f (Hz)

Figure 46: The overlap reduction function lff) for the Hanford, \MA and Livingston, LA LIGO
detector pair.
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7.7 F\rnction: get-IF012o

get-IFO12(FItE *fpt ,  FILE *fp2, FILE *fpl lock, FILE +fp2lock, int  n,  f loat *out l ,  f loat
*out2, f loat *srate1, f loat *srate2)

This function gets real interferometer output (IFO) data from two detector sites.
The arguments of get-IF012 O are:

fp1: Input. A pointer to a file that contains the interferometer output (IFO) data produced by
the first detector.

fp2: Input. A pointer to a file that contains the interferometer output (IFO) data produced by
the second detector.

fpllock: Input. A pointer to a file that contains the TTL lock signal for the interferometer
output produced by the first detector.

fp2lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer
output produced by the second detector.

n: Input. The number N of data points to be retrieved.

outl: Output. outl[0..n-1] is an array of floating point variables containing the values of the
interferometer output produced by the first detector. These variables have units of ADC
counts. out 1 [i] contains the value of the whitened data stream o1 (t) evaluted at the discrete
t ime 11  : ' iA t t ,  where ' i :0 ,1 , . . . ,N-1andAt1  is thesampl ingper iodof  the  f i rs t  de tec tor ,
defined below.

out2: Output.  out2[0..n-1] isanarrayof f loat ingpointvar iablescontainingthevaluesof the
interferometer output produced by the second detector, in exactly the same format as the
previous argument.

sratel: Output. The sample rate Afi (in Hz) of the first detector. At1 :: IlAh (in sec) is the

corresponding sampling period of the first detector.

srate2: Output. The sampie rate Lf2 (in Hz) of the second detector. At2 :: llAfz (in sec) is
the corresponding sampling period of the second detector.

get-IFO12O consists effectively of two calls to get-dataO, which is described in
Sec. 3.6 It prints out a warning message if no data remains for one or both detectors.
case, both outl [] and out2 [] are set to zero.

Authors: Bruce Ailen, balien@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Currently, get-IF012O calls get-dataO and get-data2O, where get-data2O is

simply a copy of the get-dataO routine. get-dataO should eventually be modified so that

it can handle simultaneous requests for data from more than one detector. After this change

is made, the function get-data2 O should be removed.

detail in
For that
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7.8 F\rnction: sinulate-noiseo

void sinulate-noise(int n, float delta-t, double *porrer, double *whiten-out, float *out,
int *pseed)

This function simulates the generation of noise intrinsic to a detector. The output is a (not nec-
essarily continuous-in-time) whitened data stream o(t) representing the detector output when only
detector noise is present.

The arguments of simulate--noiseO Are:

n: Input. The number l[ of data points corresponding to an observation time T :: N At, where
At is the sampling period of the detector, defined below. N should equal an integer power of
2,

delta-t: Input. The sampling period At (in sec) of the detector.

power: Input. powerlO..n/2-LJ is an array of double precision variables containing the values
of the noise power spectrum P(/) of the detector. These variables have units of. strain2 fHz
(or seconds). power[i] contains the value of P(f) evaluated at the discrete frequency fi -

i l (NAt ) ,  where  ' i :0 ,1 , - - .  ,  N /2  -  1 .

whiten-out: Input. whiten-out [0. .n-1] is an array of doublg precision variables containing the
values of the real and imaginary parts of the spectrum W(f) of the whitening filter of the
detector. These variables have units r&zf strain (or sec-l/2;, which are inverse to the units of
the square root of the noise power spectrum P(/). whiten-out [Z+i] and whiten-out [Z*i+t]
contain, respectively, the values of the real and imaginary parts of I7(/) erratuated at the
d iscre te  f requency  f t :  i l (NLt ) ,  where  i :0 ,1 ,  . . . ,N /2-1 .

out:  Output.  out lO..n-1] isanarrayof f loat ingpointvar iablescontainingthevaJuesof the
whitened data stream o(t) representing the output of the detector when only detector noise is
present. o(t) is the convolution of detector whitening fiIter W (t) with the noise n(f) intrinsic
to the detector. The variables out[] have units of rHz (or sec-L/z), which follows from the
definition ofn(t) as a strain anaW(f) as the "inverse" ofthe square root ofthe noise power
spectrum P(/). out [i] contains the value of o(t) evaluated at the discrete time L : 'iAt,

w h e r e ' i  :  0 , 1 , .  -  - , . 4 f  -  1 .

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulate-noiseo simulates the generation of noise intrinsic to a detector in the following
series of steps:

(i) It first constructs random variables n(f ) in the frequency domain that have zero mean and
satisfy:

/ - * /  f  \ - /  t  \ \  L  ^(r '-(ft)r '(f iD:;r 6u P(f) , (7.8.1)

where ( ) denotes ensemble average. The above equation is just the discrete frequency version
of Eq. (7.3.1). This equation can be realized by setting

n(ft) :|JV rrrrlfr) @t* iu1) , (7.8.2)

where ui and ui are statistically independent (real) Gaussian random variables, each having
zero mean and unit variance. These Gaussian random variables are produced by calls to the
Nurnerical Recipes 'in C random number generator routine gasdevO.
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(ii) sinulate-noise O then whitens the data in the frequency domain by multiplying n(fi) by
the frequency components W(f) of the whitening filter of the detector:

o(f,i) :: n(f) w(f;.) (7.8.3)

This (complex) multiplication in the frequency domain corresponds to the convolution of. n(t)
and W(t) in the time domain. By convention, the DC (i.e., zero frequency) and Nyquist
critical frequency components of o(fi) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components 6(fi) into the time
domain  to  ob ta in the  wh i tened da tas t ream o( t1 ) .  Here  h : iL t  w i th  i :0 ,1 , . . . , f f -  1 .

Authors: Bruce AIIen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to
simuiate the noise at two detectors simultaneously. Since the time-.series data are real, the two
Fourier transforms that would need to be performed in step (iii) could be done simultaneously.
However, for modularity of design, and to simulate noise for "single-detector" gravity-wave
searches, we decided to write the above routine instead.
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7.9 F\rnction: sinulate-sbo

void sinulate-sb(int n, float delta-t, float omega-O, float fJow, float f-bigh, double
*garnm3l!, double *whitenl, double +whiten2, float *out1, float +out2, int xpseed)

This function simulates the generation of an isotropic and unpolarized stochastic background of
gravitational radiation having a constant frequency spectrum: Oe*(/) : Qo for "fro* ( "f < "fnieh.
The outputs are (not necessariiy continuous-in-time) whitened data stream o1(t) and o2(t) repre-'

senting the detector outputs when only a stochastic backgrorrnd signal is present.

The arguments of sinulate-sbO are:

n: Input. The number .Af of data points corresponding to an observation time T :: N At, where
At is the sampling period of the detectors, defined below. N should equal an integer power

of.2.

defta-t: Input. The sampling period At (in sec) of the detectors.

Os
0

.ft"o,S"f<.fr ' tgr '
otherwise.

f-Iow: Input. The frequency "fio* (in Hz) below which the spectrum Os*(/) of the stochastic

onega-0: Input. The constant value O6 (dimensionless) of the frequency spectrum Og*(/) for the
stochastic background:

n*f/):  
{

Oe should be greater than or equal to zero.

background is zero. fio." should lie in the range 0 ( "fto* ( "fNyquist, where ./Nyquist is the
Nyquist critical frequency. (The Nyquist critical frequency is defined by .fpyq,ri"t ::1/(2At),
where At is the sampling period of the detectors.) fio* should also be less than or equal to

J  n lgn '

f-high: Input. The frequency.fr,iel, (in Hz) above which the spectru* Ae*(/) of the stochastic

background is zero. .fi,igh should lie in the range 0 ( .fi,ien ( "fNyqutst. It should also be greater

than or equal to fio',.

gamrnsf!: Input. gamm3llL0..n/2-Lf is an array of double precision variables containing the
values of the overlap reduction function 7(/) for the two detector sites. These variables are

dimensionless. ganmal) [i] contains the vaiue of "y(f) evaluated at the discrete frequency

f i :  i l (NLt ) ,  where  i  :0 ,  \ , " '  ,N12 -  I .

whitenl : Input. whitenl [O . . n-f ] is an array of double_ precision variables containing the values

of the real and imaginary parts of the spectrum Wt(f) of the whitening filter of the first

detector. These variables have units rHzf strain (or sec-1/2;, which are inverse to the units

of the square root of the noise povrer spectrum hU). whitenl [2*i] and whitenl [2xi+1]
contain, respectively, the values of the real and imaginary parts of W{f) evaluated at the

discrete frequency f i :  i l (NAf),  where i :0,1, " ' ,  N/2 -  I .

whiten2: Input. whiten2[0. .n-f] is an array of double precision variables containing the values

of the real and imaginary parts of the spectru^ Wz(f) of the whitening filter of the second

detector, in exactly the same format as the previous argument.

outl: Output. outl[0..n-1] is an array of floating point variables containing the values of the
whitened data stream o1(t) representing the output of the first detector when only a stochastic
background signal is present. o1(t) is the convolution of detector whitening fiiter lVi(t) with
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the gravitational strain h1(t). The variables outll] have units of rHz (or sec-r/2), which
follows from the definition of h1(t) as a strain ana Wr(/) as the "inverse" of the square root
of the noise power spectrum hU). outlli] contains the value of o1(t) evaluated at the
discrete t ime t1 -  i \ t ,  where i  :  0,1,.- . , l f  -  1.

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of
the whitened data stream o2(t) representing the output of the second detector when only a
stochastic background signal is present, in exactly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

sinulate-sbO simulates the generation of an isotropic and unpolarized stochastic background
of gravitational radiation having a constant frequency spectrum 0*(/) : Qo for .fro* ( "f 5 "fnisL
in the following series of steps:

(i) It first constructs random variables irtfft) ana nzj) in the frequency domain that have zero
mean and satisfy:

where ( ) denotes ensemble average. Here [1(1) ana n 11.u1are the Fourier components of the
gravitational strains h1 (t) and h2(t) at the two detectors. The above equations are the discrete
frequency versions of equation (3.17) of P"ef. [20], with Oe",(/) : Qo for "fro* ( "f < "fr'ieh.
They can be realized by setting

r qrt2
(i,i(ni,r(il) : i, unt ffi to'ao

t  qFr2

&i(i lnrff)) : i , uot f*, fn'no

tuiu)n (ri)) : l, u,, * t-oo'v("fi) ,

:  .  - .  r  -  /  3r fo ' \  
t / '  

, - r1,  nr1,h{f) : ;u, lffi) 
f;"'' Q6" @v*i'vv)

irz(f;) : hr(f,) tU) +

!rt-, (t'&\'/' "-,/' ^r/2 
lT -.y2(f) (rzr + iazr) ,, "  \ r 7 /  

r i  r ro

(7.e.1)

(7.e.2)

(7.e.3)

(7.e.4)

(7.e.5)

(7.e.6)

l t . e . ( )
(7.e.8)

where rri, gtit r2i, andAzi are statistically independent (real) Gaussian random variables. each
having zero mean and unit variance. (Note: The r1;, ALi, x2i, und Azt random variables are
statistically independent of the q and ui random variables defined in Sec. 7.8.) These Gaus-
sian random variables are produced by calls to the Nwnerical Recipes in C random number
generator routine gasdevO. Note aiso that the second term of hzUt) (which is_proportional
to 1p 1 fj) is needed to obtain equation (7.9.2). Without this term, (niff)nzj) ) would
include an additional (unwanted) factor of f (f).

(iii) sinulate-sbO then whitens the data in the frequency domain by multiplying 61(fi) and
hz(f) by the frequency components Wt(f) and W2(f) of the whitening filters of the two
detectors:

otj) :-- hr(f) w'(f)
i  t  " t  - lozj) i: hzff) WzU)
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This (complex) multiplication in the frequency domain corresponds to the convolution of
h1(t) and W{t), and h2(t) and W2(t) in the time domain. By convention, the DC (i.e., zero
frequency) and Nyquist critical frequency componems of ft(/i) and 62(f6) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components o1(fi) and azj)
into the time domain to obtain the whitened data streams o1(t;) and oz(t). Ilere ft :iLt
with i : 0, 1," ' , N - 1. Since oi(fi) and aiff) are the Fourier transforms of real data sets,
the two Fourier transforms can be performed simultaneously.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to simulate the
generation of a stochastic background and intrinsic detector noise simultaneously, we have
chosen-for the sake of modularity-to write separate functions to perform these two tasl.rs
separately. (See also the comment at the end of Sec. 7.8.)
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7.10 F\rnction: conbine-datao

void conbine-data(int which, int n, float *in1, float *in2, float *out)

This low-level function takes two arrays as input, shifts them by half their length, and combines

them with one another and with data stored in an internally-defined static buffer to produce output

data that is continuous from one cali of conbine-dataO to the next.

The arguments of conbine-dataO are:

wbich: Input. An integer variable specifying which internally-defi.ned static buffer should be used

when combining the input arrays with data saved from a previous call. The allowed values

a r e l ( w h i c h ( 1 6 .

n: Input. The number N of data points contained in the input and output arrays. I/ is assumed

to be even.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the first

input array.

:rrr2: Input. in2[0..n-1] is an array of floating point variables containing the values of the

second input array.

out: Output. outlO..n-1] is an array of floating point variables containing the output data,

which is continuous from one caII of conbine-dataO to the next.

cornbine-dataO produces continuous output data by modifying the appropriately chosen static

buffer buf [o . .3*n/2-L] as follows:

uuf[ i ]+ -  s in[ i*MJI/n] x inl [ i ]  for 0 < i  < n/z* t

u u f [ : . ] + : s i n [ i * M J I / n ]  * i n 1 [ i ] * s i n [ ( i  - r . l 2 )  * M - r > I / n ] x i n 2 [ i  - i l 2 1  f o r  \ 1 2 <  i ( n - 1

uur [ i ]+ :  s in l ( i  - \ /2 )  xMf I /n ]  *  in2 [ i  -42 ]  fo r  n  (  i  (  3+n/2- t  .

The values of the output array out [0. .n-1] are taken from the first two-thirds of the buffer, while

the last one.third of the buffer is copied to the first third of the buffer in preparation for the next

call. When this is complete, the last two-thirds of the buffer is cleared.

One nice feature of combining the data with a sine function (rather than with a triangle func-

tion, for example) is that if the input data represent statistically independent, stationary random

processes having zero mean and the same variance, then the output data will also have zero meart

and the same variance. This is a consequence of the trigonometric identity

sinz[i x M-pr/n] + sin2[(i- - r,l2)x MJr/n] : 1 (7.10.1)

Thus, conbine-dataO preserves the first and second-order statistical properties of the input data

when constructing the output.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm'edu

Comments: In the context of stochastic background simulations, the two input aruays would

represent two whitened data streams produced by a single detector, which are then time'

shified and combined to simulate cont'inuous-in'time detector output.
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7.11 Function: nonte-carlo o

void monte-carlo(int fake-sb, int fake-noise1, int fake--noise2, int n, float delta-t,
float oroega-O, float f-Iow, float f-high, double,tgammatf, double xpowerl, double r.power2,
double *whiten1, double *whiten2, fLoat *out1, float *out2, int *pseed)
This highJevel function simulates (if desired) the generation of noise intrinsic to a pair of detec-
tors, and an isotropic and unpolarized stochastic background of gravitational radiation having a
constant frequency spectrum: Oe-(/) : f,)o for fio* ( .f < .fi,ier,. The outputs are two continuous-
in-time whitened data streams o1(t) and o2(t) representing the detector outputs in the presence of
a stochastic background signal plus noise.

The arguments of nonte-carloo are:

fake-sb: Input. An integer variable that should be set equal to l if a simulated stochastic
background is desired.

f ake-aoisel: Input. An integer variable that should be set equal to 1 if simuiated detector noise
for the first detector is desired.

f ahe-noise2: Input. An integer variable that shouid be set equal to 1 if simuiated detector noise
for the second detector is desired.

n: Input. The number .l/ of data points corresponding to an observation time T :: N At, where
At is the sampling period of the detector, defined below. N should equal an integer power of
2.

delta-t: Input. The sampling period At (in sec) of the detector.

oroega-O: Input. The constant value Oe (dimensionless) of the frequency spectrum 0*(/) for the
stochastic background:

. f to*S. f<" f i , ieh
otherwise.

O6 should be greater than or equal to zero.

f-low: Input. The frequencX .fro'^, (in Hz) below which the spectru* Ogr(/) of the stochastic
background is zero. fio* should lie in the range 0 ( .fto* ( "fNyquist, where -fNyquist is the
Nyquist critical frequency. (The Nyquist critical frequency is defined by /Nyqo6t :: L I (2At) ,
where At is the sampling period of the detector.) /ro* should also be less than or equal to

"frisi'.

f-higb: Input. The frequency.fi,iet (in Hz) above which the spectru- Ae*(/) of the stochastic
background is zero. "fi,igl, should lie in the range 0 ( "fhtel, ( .fNyquist. It should also be greater
than or equal to fio*.

garnrnat!2; Input. gamm4!!lO..L/2-7) is an array of double precision variables containing the
values of the overlap reduction function 7(/) for the two detector sites. These variables are
dimensionless. garnn4l2 [i] contains the value of "y(/) evaluated at the discrete frequency

f i  :  i l (NAt ) ,  where  i  :  0 ,1 , . .  - ,  N12 -  I .

powerl: Input. powerl l0 . .n/2-tl is an array of double precision variables containing the val-
ues of the noise power spectrum & (/) of the first detector. These variables have units of
strain2fHz (or seconds). powerl[i] contains the value of Pt(/) evaluated at the discrete
frequency f i :  i l (NAf),  where i  :  0,1, . . -  ,N/2 -  1, .

os."(/) : 
{ ?

21,8



power2: Input. power2l0 . .n/2-L7 is an array of double precision variables containing the values
of the noise power spectrum Pz(f) of the second detector, in exactly the same format as the
previous argument.

whitenl : Input. whitenl [0. . n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum Wff) of the whitening filter of the first
detector. These variables have units rHzf strain (or sec-l/z;, which are inverse to the units
of the square root of the noise power spectrum hff). whitenl [2xi] and vbitenl [2*i+1]
contain, respectively, the values of the real and imaginary parts of WrU) evaluated at the
discrete frequency f t :  i / (NLt),  where i  :  0,1,- i .  ,  Nl2 -  I .

whiten2: Input. whiten2 [0. . n-1] is an array of double precision va.riables containing the ralues
of the real and imaginary parts of the spectrum WU) of the whitening filter of the second
detector, in exactly the same format as the previous argument.

out l :  Output.  out l [0. .n-1] isanarrayof f loat ingpointvar iablescontainingthevaluesof the
continuous-in-time whitened data stream o1(t) representing the output of the first detector.
o1(t) is the convolution of detector whitening filter W1(t) with the data stream s1(t) ::
h{t) +n{t), where h1(t) is the gravitational strain and n1(t) is the noise intrinsic to the
detector. These variables have units of rHz (or sec-l/2;, which follows from the definitionof
s1(t) as a strain andW1ff) as the "inverse" of the square root of the noise power specrrum
h(f). outl[i] contains the value of o1(t) evaluated at the discrete time l1 - i\t, where
i : 0 r 1 , . . - , 1 / - 1 .

out2: Output.  out2[0..n-1] isanarrayof f loat ingpointvar iablescontainingthevaluesof the
continuous-in-time whitened data stream o2(l) representing the output of the second detector,
in exactly the same fornaat as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

monte-carlo O is a very simple function, consisting of calls to sinulate-sb () , simulate-noise () ,
and conbine-dataO. If f ake-sb=l, nonte-carloO calls sinulate-sbO tw,ice, producing two sets
of data that are time-'shifted and combined by conbine-dataO to simulate continuous-in-time
detector output. Similar statements apply when either f ake-noisel or f a-ke-noise2 equals 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.12 Example: nonte-carlo program

The foliowing example prograrn is a simple demonstration of the function monte-carlo O, which
was defined in the previous section. It produces animated output representing time-series data for

simulated detector noise and for a simulated stochastic background having a constant frequency

spectrum: Og*(/) : Oo for .fro* ( "f < "fr,ier,. The output from this program must be piped into
:<ngr. The parameters that were chosen for the example program shown below pioduce whitened
time.series data for a stochastic background having O*(/) : 1.0 x 10-3 for 5 Hz 1/ < 5000 Hz.
For this particular example, the noise intrinsic to the detectors was set to zero. A sample "snapshot"

of the animation is shown in Fig. 47.
By modifying the parameters listed at the top of the example prograrn, one can also simulate

an unwhitened stochastic background signal (Fig. 48), and whitened and unwhitened data streams
corresponding to the noise intrinsic to an initial LIGO detector (Figs. 49 and 50). Other combi-
nations of signal, noise, whitening, and unwhitening are of course also possible. To produce the
animated output, simply enter the command:

monte-carlo | :<ngr -pipe &

after compilation.

/* main program to illustrate monte-carlo$ x/

#include "grasp.h"

void graphout (f loat, f1oat, int) ;

#define DETECTORSJILE
#define SITEI-CHOICE 1
#define SITE2-CHOICE 2
#define FAKE-SB 1

#define FAKE-NOISE1 0

#define FAKE-NOISE2 0

#define WHITEN-OUI1 1

#define WI{ITEN-0UT2 1

#define

#define

#define

#define

#define

#define

maino

{

"detectors .dat" f* file containing detector info */

/x identification number for site 1 */

/x identification number for site 2 x/

/x 1: simulate stochastic background x/

/x 0: no stochastic background x/

/* 1: simulate detector noise at site 1 */

/,r. 0: no detector noise at site 1 x/

/x 1: simulate detector noise at site 2 xf

/x 0: no detector noise at site 2 */

/x 1: whiten output at site 1 x/

/* 0: don't whiten output at site 1 x/

/x 1: whiten output at site 2 *f

/x 0: don't whiten output at site 2 xf

N 65536 /x number of data points x/

DELTA-T (5. Oe-5) /x sampling period (in sec) x/

0I'IEGA-0 (1.0e-3) f x omega-} *f
F-LOW (5.0) /x minimum frequency (inHz) xl

F-HIGH (5.0e3) /x maximum frequency (inHz) xl

NUI"I-RUNS 5 lx number of runs x/

in t  i ,  j , last=O,seed= -77 ;
f loat delta-f , tstart=0 . 0, t ime-:row;

fLoat sitel-pararneters [9] ,site2-paraneters [9] ;
char si.te1-na:ae [100] , noiselJile [100] , whitenlJile [100] ;
char  s i te2-aame [100] ,noise2Ji le  [100] ,whi tea2Ji le [100]  ;
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double xpowerl , xpower2, xwhltenl , xwhitel2, xg:nmat2;
f loat  xout l ,xout2;

/x ALLOCATE MEMORY x/
powerl= (double x)naIloc ( (N/2) xsizeof (double) ) ;
power2= (double x)nal1oc ( (N/2) xsizeof (douUle) ) ;
uhitenl= (double x)nalloc (N*sizeof (double) ) ;
whiten2= (double x)naI1oc (N*sizeof (double) ) ;
gannal!=(double x)na1loc( (N/2) *sizeof (double) ) ;
outl=(f1oat *)ma1loc (Nxsizeof (f loat) ) ;
out2=(float x)nalIoc(Nxsi.zeof (f toat) ) ;

/x IDENTITY WHITENING FILTERS (IF WIIITEN-OUT1:WHITEN-OUT2:0) x/
f o r  ( i =0 ; i <N /2 ; i ++ )  {

shitenl [2xi] =whiten2 [2xi] =1 .9 '

shitenl [2xi+1] =g61ten2 [2xi+1] =0. 0;
I

/* CALL DETECTOR-SITEQ TO GET SITE PARAMETER INFORMATION x/
detector-site (DETECT0RS-FILE, SITEl-CHOICE, sitel-parameters, sitel--name,

uoisel-f i le, whitealJile) ;
detector-site (DETECTORSJILE, SITE2-CHOICE, site2-parameters , site2-name,

noise2-f i le, whitea2Jile) ;

/x CONSTRUCT NOISE POWER SPECTRA, OVERLAP REDUCTION FUNCTION, AND x/

/x (NON-TRTVIAL) WHITENING FILTERS, IF DESIRED x/
deLta-f=(f loat) (1. O/ (N*DELTA-T) ) ;
noise-power (noise1-fi1e, N/2, deltal , powerl ) ;
noise-power (noise2-fi1e, N/2 , deltal , power2) ;
overlap (site1-parameters, site2-para&eters , N/2, deltal , ganrnl{!) '

i f (WIIITEN-0UT1==1) vhiten(whitenlJile,N f 2,Ae]-taj,whiten1) ;
if (IIHITEN -0I.'l"I�2==7) rhiten (shiten2j ile, N f 2, del-taJ, whitea2) ;

/x SIMULAIE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE x/

for  ( j=0;5(NUMIUNS; j++)  {
monte-carlo (FAKE-SB, FAKE-N0ISE1 , FAKE-NOISE2, N, DELTA-T,OMEGA-0,F-LOW, F-HIGH,

g:mrn4t2, powerl, power2, wbitenl,whiten2, out1, out2, &seed) ;

/* DISPLAY OUTPUT USING XMGR x/
f  or  ( i=0;  i .<N;  i++)  {

time-nor,r=t start+i*DELTA-T ;
printf ("7"e\t%e\utr ,t ine-D.olr, outl [ i ] ) ;

)
if (3==1JSIY-RUNS-1) last=1 ;
graphout (tstart , tstart+NxDEtTA-T,1ast) ;

/x UPDAIE TSTART x/
t st art +=N*.DELTA-T ;

) /* end for (;:6'ialgUM-RUNS;j++) *l

retulcn;

22r



)
j

void graphout(float :oln,float :naax,int last)

t
static int f irst=1;
printf ("&\n") ;

if (f i .rst) {

/x first time we draw plot x/
printf("@doublebuffer true\n"); /* keep display from flashing */

prlutf ("@f ocus off \n") ;
prlntf ("@!torld xnin 7.e\n" ,:<min) ;
printf ( " @world :<max 7oe\n" , )arax) i
printf ( "@autoscale yaxes\n" ) ;
pr in t f ( "@xaxis label  \ " t  (sec) \ " \n")  ;
printf ("@title \"Sinulated Detector Ouput\"\n") ;
priatf ("@subtit l-e \" (stochastic backgrouud--whitened) \"\n") ;
pr in t f ( "@redraw \n") ;
if ( l last) printf("@ki11 sO\n"); /* kil l  set; ready to read again x/

f  i rs t=0;
I

h"" 1
/x other timeOAs we draw plot */
printf ("@world xnin 7.e\n",:rnln) ;
priatf ("@wor1d :<nax 7oe\n",:<max) ;
printf ( "@autoscale yaxes\n" ) ;
if ( !1ast) priatf("@ki11 s0\n"); /* kil l  set; ready to read again */

)

return;
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Simulated Detector Ouput
(stochastic background-whitened)

Figure 47: Time.series data (whitened) for a stochastic background having a constant frequency

spectrum: Os*(/)  :1.0 x 10-3 for 5Hz1l < 5000 Hz.

Simulated Detector Ouput
(stochastic background-unwhitened)

-5.00e-21

-1.00e-20 L
t c .  I

Figure 48: Time-series data (unwhitened) for a stochastic background having a constant frequency

spec t rum:  O*( / )  :1 .0  x  10-3  fo r  5Hz1 l  <  5000 Hz.
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Simulated Detector OuPut
(initial LIGO detector noise-whitened)

1000.0
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Figure 49: Time.series data (whitened) for the noise intrinsic to an initial LIGO detector.

Simulated Detector OuPut
(initial LIGO delector noise-unwhitened)

1.00e-1 1

0.00e+00

-1.00e-1 1
16.6 17.1

t (sec)
i <  1  i ( A

Figure 50: Time-.series data (unwhitened) for the noise intrinsic to an initial LIGO detector.

18 .117.6
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7.L3 F\rnction: test-datal2o

int test-data!2(int n, float *data1, float xdata2)

This function tests two data sets to see if thev have probabilitv distributions consistent with a
Gaussian normal distribution.

The arguments of test-data12 O are:

n: Input. The number l/ of data points contained in each of the input arrays.

datal: Input. datal[0..n-1] is an array of floating point variables containing the values of the
first array to be tested.

data2: Input. data2[0..n-1] is an array of floating point variables containing the values of the
second array to be tested.

test-data12O is a simple function that makes use of the is-gaussianO utility routine. (See

Sec. 10.4 for more details.) test-data12 O prints a warning message if either of the data sets
contain a value too large to be stored in 16 bits. (The actual maximum r.alue was chosen to be
32765.) It returns f. if both data sets pass the is-gaussiaaO test. It returns 0 if either data set
faiis, and prints a message indicating the bad set.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, datal [] and data2 [] contain
the values of the whitened data streams o1(t) and o2(t) that are output by the two detectors.
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7.L4 extract-noise o

void extract-noise(int average, int which, float *in, int n, float delta-t, double *whiten-ou

double *power)

This function calculates the real-time noise power spectrum P(f) of a detector, using a Hann
window and averaging the spectrum for two overlapped data sets, if desired.

The arguments of extract-aoiseO are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time
noise power spectra corresponding to two overlapped data sets are to be averaged.

which: Input. An integer variable specifying which internally-defined static buffer should be used
when overlapping the new input data set with data saved from a previous call. The allowed
v a l u e s a r e 1 ( w b i c b ( 1 6 .

in: Input. in[O..n-1] is an array of floating point variables containing the values of the as-
sumed continuous-in-time whitened data stream o(t) produced by the detector. o(t) is the
convolution of detector whitening filter W(t) with the data stream s(t) :: h(t) + n(t), where
h(t) is the gravitational strain and n(t) is the noise intrinsic to the detector. The variables
in[] have units of rHz (or sec-r/2), which follows from the definition of s(t) as a strain and
W(f) as the "inverse" of the square root of the noise power spectrum P(f)- in[i] contains
the value of o(t) evaluated at the discrete time t6 :iAt, where 'i,:0,L,"',N- 1.

n: Input. The number ff of data points corresponding to an observation time T :: N Af, where
At is the sampling period of the detector, defined below. l/ should equal an integer power of
2.

delta-t: Input. The sampling period At (in sec) of the detector.

wbiten-out : Input. whiten-out [0. . n-1] is an array of doublg precision variables containing the
nalues of the real and imaginary parts of the spectrum W(f) of the whitening filter of the
detector. These variables have units rHz/strain (or sec-l/z;, which are inverse to the units of
the square root of the noise power spectrum P(/). whiten-out [2*i] and shiten-out [Z*i+t]
contain, respectively, the values of the real and imaginary parts of W ttl evaluated at the
discrete frequency f i :  i l (NAf),  where ' i :0, I ," '  ,Nl2 -  L.

por^rer: Output. polrer lo . .n/2-71 is an array of double precision variables containing the values
of the real-time noise power spectrum P(f) of. the detector. Explicitly,

,
P(f):: T s.(f)s(f) ,

where .i(/) is the Fourier transform of the unwhitened data stream s(t) produced by the
detector. These variables have units of strain2/Hz (or seconds). power [i] contains the value
of P(/) evaluated at the discrete frequency ft,: i l(NAf), where i:0,1, "' , N12 - I.

extract-!.oise O calculates the real-time noise power spectrum P(f) u follows:

(i) It first stores the input data stream o(t) in the last two-thirds of an appropriately chosen
static buffer buf [0 . -3*n/2-t]. The first on+third of this buffer contains the input data left
over from the previous call.

(7.14.1)
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(ii) It then multiplies the first two-thirds of this buffer by the Hann window function:

(7.14.2)

The factor 1ffi is the 'hrindow squared-and-summed" factor described in Numerical Recipes
in C, p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fburier transformed into the frequency domain, where it is un-
whitened by dividing by the (complex) spectrum W (f) of. the whitening filter of the detector.
The resulting unwhitened frequency components are denoted bv (t)"11;t the superscript (1)
indicates that we are analyzing the first of two overlapped data sets.

(iv) The real-time noise power spectrum is then calculated according to:

l"; l '-"o' (T)l

2
' - T

P(f) :: * [ 
, ',"ftl + (2)P(/) 

]

(1) Pu) ( t )" .(" f)  (1)s(/) (7.14.3)

(v) The data contained in the last two-thirds of the buffer is then copied to the first two-thirds of
the buffer, and steps (ii)-(iv) are repeated, yielding a second real-time noise power spectrum
(2) Pff).

(vi) If average:L, P(/) is given by:

(7.14.4)

Otherwise, P(f) : (2) PU).

(vii) Finally, the data contained in the last two-thirds of the buffer is again copied to the first
two-thirds, in preparation for the next call to extract-aoiseO. The data saved in the first
one-third of this buffer will match onto the next input data stream if the input data from one
call of extract-u.oiseO to the next is continuous.

Note: One should call extract-noiseO with average f 1., when one suspects that the current
input data is not continuous with the data that was saved from the previous call. This is because
a discontinuity between the "old" and "new" data sets has a tendency to introduce spurious iarge
frequency components into the real-time noise power spectrum, which should not be present. Since
a single input data stream by itself is continuous, the noise power spectrum (2) P(f) (which is
calculated on the second pass through the data) will be free of these spurious large frequency
components. This is why we set P(/) equal to Q) P(f)-and not equal to (t)p(/)-*hen average f
1 .

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to

extract the real-time noise power spectra at two detectors simultaneously. However, for
moduiarity of design, and to allow this function to be used possibly for "single-detector"

gravity-wave searches, we decided to write the above routine instead.
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7.15 F\rnction: extract-signal o

void extract-signal(int average, float *in1, ftoat +in2, int n, float delta-t, double

*whiten1, double *nthiten2, double *si.gna112)

This function calculates the real-time cross-correlation spectrum 512(/) of the unwhitened data

streams s1(t) and s2(t), using a Hann window and averaging the spectrum for two overiapped data

sets, if desired.
The arguments of extract-signalO are:

average: Input. An integer variable that should be set equal to 1if the values of the real-time

cross-correlation spectra corresponding to two overlapped data sets are to be averaged.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the

assumed continuous-in-time whitened data stream o1(l) produced by the first detector. o1(t)

is the convolution of detector whitening filter I,71(t) with the data stream s1(t) :: ht(t) +

n1(t), where fu(t) is the gravitational strain and n1(t) is the noise intrinsic to the detector.

The variables inf [] have units of rHz (or ru"-1l2), which follows from the definition of

s1(t) as a strain and Wt(il as the "inverse" of the squa,re root of the noise pov/er spectrum

PL(il. inl[i] contains the value of o1(t) evaluated at the discrete time ft : i\t, where

f : 0 , 1 , . . . , N - 1 .

i112: Input. in2[0..n-1] is an array of floating point variables containing the ralues of the

assumed continuous-in-time whitened data stream o2(t) produced by the second detector, in

exactly the same format as the previous argument.

n: Input. The number l/ of data points corresponding to an observation time T :: N Af, where

At is the sampling period of the detectors, defined below. N should equal a,n integer pov/er

of.2.

delta-t: Input. The sampling period At (in sec) of the detectors.

whitenl : Input. whitenl [O . . n-1] is an array of double_ precision variables containing the values

of the real and imaginary parts of the spectru^ WtU) of the whitening filter of the first

detector. These variabies have units rilzfstrain (or sec-1/2;, which axe inverse to the units

of the square root of the noise power spectrum h(f). whiteall2*iJ and whitenl [!*i+1J

contain, respectiveiy, the values of the real and imaginary parts of W{f) evaluated at the

discrete frequency f i  :  i /  (N Al l ) ,  where' i ,  :  0,7, ' ' ' ,  N 12 - 1"

whiten2: Input. whiten2 [0. . n-1] is an array of double precision variables containing the values

of the real and imaginary parts of the spectru* WzU) of the whitening filter of the second

detector, in exactly the same format as the previous argument-

signal12: Output. sigaa112 lO . .t/2-11 is an array of double precision variables containing the

values of the real-time cross-correlation spectrum

srz(/) ': (5i(/) sz(f) + c.c.) , (7.15.1)

where 51(f) and 52(/) are the Fourier transforms of the unwhitened data streams s1(t) and

s2(t) produced bythe two detectors. These variables have units of strain2'sec2 (or simply sec2).

signa112[i] contains the value of 512(/) evaluated at the discrete frequency fi:i l(NAt),
w h e r e  i  :  0 ,  1 ,  -  -  - , N 1 2  -  I .
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extract-signal O calculates the real-time cross-correlation spectrum snj) as follows:

(i) It first stores the input data streams o1(t) artd o2(t) in the last two-thirds of internally-defined
static buffers buf 1 [0 . .3*n/2-IJ and buf 2 l0 . .3*n/2-1] . The first one--third of these buffers
contains the input data left over from the previous call.

(ii) It then multiplies the first two-thirds of these buffers by the Hann window function:

(7.15.2)

The factor AF is the '\rindow squared-and-summed" factor described in Numeri,cal Recipes
in C, p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fourier transformed into the frequency domain, where it is un-
whitened by dividing by the (complex) spectra Wr(il anafir2(71, which represent the whiten-
ing filters of the two detectors. The resulting unwhitened frequency components are denoted
by tt)517; atta (1)s("f); the superscript (L) indicates that we are analyzing the fi.rst of two
overlapped data sets.

(iv) The real-time cross-correlation spectrum is then calculated according to:

(1)srz("f)  , :  I t t ls.1t) 
( t)sr(/)+c.c. 

] (7.15.3)

(v) The data contained in the last two-thirds of the buffers is then copied to the first two-thirds
of the buffers, and steps (ii)-(iv) are repeated, yielding a second real-time cross-correlation
spectrum @EnU).

(vi) If average:1. En(f) is given by:

EnU) ': * | 
(l)srz(,f) a t');,r(/) 

J 9.r5.4)

Otherwise, tp(f) : (z) grr171.

(vii) Finally, the data contained in the last two.thirds of the buffers is again copied to the first
two.thirds, in preparation for the next call to extract-sbo. The data saved in the first
one-third of these buffers will match onto the next input data streams if the input data from
one call of extract-sb() to the next is continuous.

Note: One should call extract-sbO with average + I, when one suspects that the current
input data is not continuous vdth the data that was saved from the previous call. This is because
a discontinuity between the "old" and "new" data sets has a tendency to introduce spurious large
frequency components into the real-time cross-correlation spectrum, which should not be present.
Since a single input data stream by itself is continuous, the cross-correlation specttn- (2),3r2(.f)

(which is calculated on the second pass through the data) will be free of these spurious large
frequency components. This is why we set EnU) equal to (')in(f)-und not equat to (1).irz(,f)-

when average * 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to extract the
real-time detector noise power and cross-correlation signal spectra simultaneously, we have
chosen-for the sake of modularity-to write separate functions to perform these two tasks
separately. (See also the comment at the end of Sec. 7.14.)

w(t):: {9, *[, 
-"o, (?]
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7.L6 Function: optinal-filtero

voi-d optinalJilter(int n, float de1taJ, float fJow, float f-higb, double +ganna12,

double *power1, double *power2, double *fi1ter12)

This function calculates the values of the spectrum 0(/) of the optimal filter function, which

maximizes the cross-correlation signal-to-noise ratio for an isotropic and unpolarized stochastic

background of gravitational radiation having a constant frequency spectrum: Oe*(/) : Oo for

" f to*S" f<" f r , ieh-
The arguments of optimalJiltero are:

n: Input. The number N of discrete frequency values at which the spectrun QO of the optimal

filter is to be evaluated.

deltaJ: Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: Lf ::

J X + T  J 7 .

f-Iow: Input. The frequency "fio* (in Hz) below which the spectru- Aw(/) of the stochas-

tic background-and hence the optimai fllter Q(/)-is zero. fio* should lie in the range

0 ( .fro* ( .fNyquist, where "fNyquist is the Nyquist critical frequency. (The Nyquist critical

frequency is defined by .fNyq,ri"t :: tl(2Lt), where At is the sampling period of the detectors.)

fio* should also be less than or equal to "ftien.

f-high: Input. The frequency "fi,iel, (in Hz) abowe which the spectru* Oe-(/) of the stochastic

background*and hence the optimal fiiter Q(/)-is zero. "firigL should lie in the range 0 (

"fi'igh ( "fNyquist. It should also be greater than or equal to fio*.

ganrnal2: Input. gamna!! [0. .n-f ] is an array of double precision variables containing the values

of the overlap reduction function .y(J) for the two detector sites. These variables are dimen-

sionless. gannal2 [i] contains the value of 'y(/) evaluated at the discrete frequency f;: iLf ,
w h e r e ' i ,  :  0 , 1 , . . . , N  -  1 .

powerl : Input. poverl [0. . n-1] is an array of double precision variables containing the values of

the noise pov/er spectrum &(f) of the first detector. These variables have units of. strain2 fHz
(or seconds). powerl [i] contains the value of &(/) evaluated at the discrete frequency

f t . : i A f  ,  w h e r e  i : 0 , 1 , " ' , 1 / - 1 .

power2: Input. power2[0..n-1] is an array of double precision variables containing the values

of the noise power spectrum PzU) of the second detector, in exactly the same format as the

previous argument.

filter12: Output. fi1ter12[0..n-1] is an array of double precision variables containing the

values of the spectrum QU) "t the optimal filter function for the two detectors. These

variables are dimensionless for our choice of normalization (^9) : Qo T' (See the discussion

below.) f i1ter12 [i] contains the value of Q(il evaluated at the discrete frequency fi : i\f ,
w h e r e  i : 0 , 1 , . . -  , l /  -  1 .

Thevalues otQ(il calculatedbyoptinalJilterO aredefinedbyequation (3.32) of Ref. [20];

6rn . - \  l ( / )C Is * ( / )
Y\ r  )  . - . ,  

f3h( i lPz$)  
.
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Such a filter maximizes the cross-correlation signai-to-noise ratio SNR i: p/o, where

(? corresponds to the observation time of the measurement.) We are working here under the

assumption that the magnitude of the noise intrinsic to the detectors is much larger than the

magnitude of the signal due to the stochastic background. If this assumption does not hold,
Eq. 7.16.3 for o2 needs to be modified, as discussed in Sec. 7.18.

Note that we have explicitly inciuded a normalization constant ) in the definition of Q(;). fne

choice of ) does not a.ffect the value of the signal-to-noise ratio, since p and o are both multiplied
by the same factor of ). For a stochastic background having a constant frequency spectrum

"fto*("fS"f i ' igr '
otherwise,

it is convenient to choose A so that

F : Q o T  '

From equations (7.L6.L) and (7.16.2), it follows that

(7.16.4)

tL :: (s) : " # I:af illfl)lfl-'er*(fl)o(r)

o2 :: (s') - (s)'= T l:df h(fl)pzfl/t)tQ(/);'� .

^: [ ffin,]:"'r F#-j.1-'

(7.16.2)

(7.16.3)

o*(/): { ?

(7.16.5)

will do the job. With this choice of I, Q(/) is dimensionless and independent of the value of Qe.

This is why 06 does not have to be passed as a paxameter to optinalJilterO.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.L7 Example: optinal-filter program

The following example program shows one way of combining the functions detector-siteO,

noise-powerO, overlapO, and optinalJilterO to calculate the spectrum QU) of the op-

timal filter function for a given pair of detectors. Below we explictly calculate Q(/) for the initial

Hanford, WA and Livingston, LA LIGO detectors. (We also choose to norma,iize the magnitude

of the spectrum QU) tO 1, for latei convenience when making plots of the output data-) Noise

power information for these two detectors is read from the input data file noise-init.dat' This

file is specified by the information contained in detectors.dat. (See Sec. 7.1 for more details.)

The resulting optimal filter function data is stored as two columns of double precision numbers (fi

ana 0(/.)) in the file LrGojilter.dat, where f;. : i.Lf and i : 0,1, "',.ly' - 1. A plot of this

data is shown in Fig. 51.
As usual, the user can modify the parameters in the #def ine statements listed at the beginning

of the program to change the number of frequency points, the frequency spacing, etc. used when

calculating 0(/). ebo, by changrng the site location identification numbers and the output file

name, the user can calcuiate and save the spectrum of the optimal filter function for any pur of.

detectors. For example, Fig. 52 is a plot of the optimal filter function for the advanced LIGO

detectors.

/r. main program to illustrate the function optimal-filterQ x/

#include "grasp.h"

#def ine DETECT0RSJILE "detectors.dat" /x file containing detector info x/
#def ine SITEI-CHOICE 1 /x 1:LIGO-Hanford site x/
#def ine SITE2-CH0ICE 2 /x 2:LIGO-Livingston site x/
#define N 500 /x number of frequency points x/
#define DELTA-F 1.0 /x frequencyspacing (lnHz) xl
#def j.ne F-LOhr O.O /'t minimum frequency (inHz) *1

#def ine F-HIGH 5OO.O /x maximum frequency (inHz) *l

#define OUT-FILE "LfG0-filter.dat" /x output filename x/

naiuo
t

int i;
double f ;
double abs-value,maxl

float sitel-paraneters [9] , site2-parameters [9] ;
char  s i te l -name[100] ,noise1j i le [100] ,whi ten1j i le [100]  ;
char  s i te2--nane[100] ,noise2JlLe[100] ,whi ten2-- f i le [100]  ;

doubLe *power1, xpower2;

double *gamnal2'
double xf i1 ter12;

FILE xfp;
fp=f oPen(OUTJILE, "w") ;

/x ALLOCATE MEMORY x/

powerl=(double x)na1Ioc(Nxsizeof (double) ) ;
power2= (double x)oalloc (Nxsizeof (double) ) ;
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g:rnmat!=(doubl_e x)nalloc (Nxsizeof (double) ) ;
f i l ter12= (double x)roalloc (Nxsizeof (double) ) ;

l* CALL DETECTOR-SITEQ TO GET SITE PARAMETER INFORMATION x/

detector-site (DETECT0RS-FILE, SITEl-CHOICE, site 1-parameters , sitel-Dane,
noisel - f  i Ie ,  whi teal j l le)  ;

detector-site (DETECTORS-FILE, SITE2-CHOICE, site2-parameters , site2--uame,
noise2-f iIe, whiten2Jile) ;

l', CALL NOISE-POWERfl AND OVERLAP$ x/
noise-power (aoise 1-f i1e, N, DELTAJ, powerl ) ;
noise-power (noise2-f i le , N, DELTAJ, power2) ;
overlap ( s 1t e 1-paramet ers, s i.t e2-parameters, N, DELTAJ, garnmal 2 ) ;

Ix CLLL OPTIMAL-FILTERQ AND DETERMINE MAXIMUM ABSOLUTE VALUE X/

optinal-f i l ter (N, DELTAJ, F-LOW,FJIGH, g:mma12, powerl , power2, f i l tett2) ;

max*O.0;
fo r  (1=g ' i <N ; i++ )  {

abs-value=fabs (fi l ter12 [i] ) ;
if (abs-va1ue)nax) nax=abs-val-ue;

)

/x WRITE FILTER FIINCTION (NORMALIZED TO 1) To FILE */
f o r  ( i =9 ' i (N ; i++ )  {

f=i*DELTA-F;
fprintf (fp, "7oe 7oe\n",f ,f i1ter12 [iJ /nax) ;

]

f c l o s e ( f p ) ;

returD:
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{ '

Optimal filter f unction
(forthe initial LlGo detectors)

Figure 51": Optimal filter function 0(/) ("ot*ilized to 1) for the initial LIGO detectors.

0.0

Figure 52: Optimal filter function 8(/) (normalized to 1) for the advanced LIGO detectors.
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7.18 Discussion: Theoretical signal-to-noise ratio for the stochastic background

In order to reliably detect a stochastic background of gravitational radiation, we will need to be
able to say (with a certain level of confidence) that an observed positive mean value for the cross-
correlation signai measurements is not the result of detector noise alone, but rather is the result
of an incident stochastic background. This leads us natually to consider the signal-to-noise ratio,
since the larger its value, the more confident we will be in saying that the observed mean va.lue of
our measurements is a valid estimate of the true mean value of the stochastic bachground signal.
Thus, an interesting question to ask in regard to stochastic background searches is: "What is the
theroretically predicted signal-to-noise ratio after a total observation time 7, for a given pair of
detectors, and for a given strength of the stochastic background?" In this section, we derive the
mathematical equations that we need to answer this question. Numerical results wili be calculated
by exampie programs in Secs. 7.20 and7.2I.

To answer the above question, we will need to evaluate both the mean value

of the stochastic background cross-correlation signal S. The signal-to-noise ratio SNR is then given
by

and the r.ariance

p::  (s)

o2 ,: (s2) - (s),

(7.18.1)

(7.18.2)

(7.18.3)

(7.18.4)

(7.18.5)

(7.18.6)

for stochastic background
has a constant frequency

(7.18.7)

SNR::  4
o

As described in Sec. 7.16,If. the magnitude of the noise intrinsic to the detectors is much larger
than the magnitude of the signal due to the stochastic background, then

- 3H& re
tt : r n# J_*of 7(l/ l) l/ l-"ac-(l/ l)A(/)
, T roo - 

i l f ,o" x =n 
J-*df h(lfl)P2(l/l)10('

where QU) i" an arbitrary fiiter function. The choice

6 r " ' . - \  ? ( / )C Is * ( / )y \ r  t  . -  . ,  
f3h j )pz j )

maximizes the signal-tonoise ratio (7.18.3). It is the opt'imal frLter
searches. As also described in Sec. 7.16, rf. the stochastic background
spectrum

f io*(" fS"fr ' ier ,
otherwise,

it is convenient to choose the normalization constant .\ so that

P : Q o T .

n  T  / t o n 2 \ 2 [ r / n , r n 'o'= t (aeal L/n"*

oe*(/) : 
{ ?

] - '  
,

-Y2(f)
For such a ,\,
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which leads to the squared signal-to-noise ratio

i

(7.18.e)

This is equation (3.33) in Ref. [20].
But suppose that we do nof assume that the noise intrinsic to the detectors is much larger in

magnitude than that of the stochg5tic bacftground. Then Eq. (7.18.5) for o2 needs to be modified to

take into account the non-negligible contributions to the variance brought in by the stochastic back-

ground signal. (Equation (7.18.4) for p is unaffected.) This change in o2 implies that Eq. (7.18.6)

fot_@(/) is no longer optimal. But to simplify matters, we will leave Q(/) as is. Although such

a Q0 no longer maximizes the signal-to-noise ratio, it at least has the nice property that, for a

stochastic background having a constant frequency spectrum, the normalization constant .\ can be

chosen so that @ffl ir independent of Oe. The expression for the actual optimai filter function) on

the other hand, wouid depend o1Oo.
So keeping Eq. (7.18.6) for Q(/), let us consider a stochastic background having a constant

frequency spectrum as described above. Then we can still choose .\ so that

P : d l a T , (7.18.10)

(sNR)2 :reB# l:" rr Fffi

(the same .\ as before works), but now

_z _T [  / /o,*o, .  "y2( i l  ] - '  | / rod\z Srn'o , ,  
-y2U)

o':,1J,,"* d'I Ff.]iP,6l t \@/ J,,* aI Tryirwf)
/ron2\ [ro,*o ,, f (f) _ n^ (y' \ f/n'.n ,, 

.y2ff)
*n'[@ 

) J,,"* af T4iTprut+sro \4 ) J,,"* dI Tn4f)ffi

+ei //o,rn ,tr 
-,t2(f) 

. 
. )

- r f,o* 
"r 

TnqGWa (t + z'(/)) 
] 

' (7'18'11)

The new squared signal-to-noise ratio is Q?s T2 divided by the above expression for o2 -

Note the three additional terms that contribute to the variance o2. Roughly speaking, they

can be thought of as two "signal*noise" cross-terms and one ((pure signal" variance term. These

are the terms proportional to f)6 and Qfr, respectively. When Os is small, the above expression

for o2 reduces to the pure noise variance term (7.1,8.8). This is what we expect to be the case in

practice. But for the question that we posed at the beginning of the section, where no assumption is

made about the relative strength of the stochastic background and detector noise signals, the more

complicated. expression (7.18.11) for o2 should be used. The function calculate-varO, which is

defined in the following section, calculates the rariance using this equation.
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7.Lg tr\rnction: calculate-varo

double calculate-var(int a, f loat

float t, double *ganrn3t!, double

This function calculates the theoretical

signal S.
The arguments of calculate-varo

deltaJ, float omega-O, float f-Iow, float f-b.igh,
*power1, double xpower2)

variance o2 of the stochastic background cross-correlation

are:

n: Input. The number N of discrete frequency values at which the spectra are to be evaluated.

deltaJ: Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: AJ ::
" f

J X + L  J T .

omega-O: Input. The constant value Os (dimensionless) of the frequency spectrum O*(/) for the
stochastic background:

f io* ( " fS , f i , ig r ,
otherwise.

Q6 should be greater than or equal to zero.

f-low: Input. The frequency .fio- (in Hz) below which the spectru* Oe*(/) of the stochastic
background is zero. fio* should lie in the range 0 ( .fto* ( .fNyquist, where "fNyquist is the
Nyquist critical frequency. (The Nyquist critical frequency is defined by "fNyqutst ::l/(2At),
where At is the sampling period of the detector.) /ro* should also be less than or equal to

"firrgtt.

f Jrigh: Input. The frequency "frrieh (in Hz) above which the spectru* Os'"(/) of the stochastic
background is zero. .firign should lie in the range 0 ( "firier, 5 -fNyqutst. It should also be greater
than or equal to fio*.

t: Input. The observation time T (in sec) of the measurement.

garnmst!: Input. garnrnslf [0. . n-1] is an array of double precision variables containing the values
of the overlap reduction function .y(/) for the two detector sites. These variables are dimen-
sionless. gamrnall [i] contains the value of f (/) evaluated at the discrete frequency ft : iAf ,
w h e r e i : 0 r 1 , ' . . , 1 / - 1 .

powerl : Input. powerl [0. .n-1] is an array of double precision variables containing the values of
the noise power spectrum hU) ot the first detector. These variables have units of. strain2 fHz
(or seconds). poverl[i] contains the value of &(/) evaluated at the discrete frequency

f t  :  iL f  ,  where  i  :  0 ,  1 ,  " ' ,N  -  1 .

power2: Input. power2[0..n-1] is an array of double precision variables containing the values
of the noise power spectrum Pzff) of the second detector, in exactly the same format as the
previous argument.

The double precision value returned by caLculate-varO is the theoretical variance o2 given by
Eq. (7.18.11) of Sec. 7.18. As discussed in that section, Eq. (7.18.11) for o2 makes no assumption
about the relative strengths ofthe stochastic background and detector noise signal, but it does use
Eq. (7.18.6) for the filter functio" QU), which is optimal only for the large detector noise case. For
stochastic background simulations, Qs is usually chosen to equai some known non-zero value. This
is the value that should be passed as a parameter to calculate-var O . For stochastic background
searches (where Q6 is not known a priori) the value of of the parameter Os should be set to zero.
The variance for this case is given by Eq. (7.18.8).

n*f/):  
{

Os
0
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Authors: Bruce Allen, baJlen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.2O Example: snr prograrn

As mentioned in Sec. 7.18, an interesting question to ask in regard to stochastic background searches
is: "What is the theroreticaliy predicted signal-to-noise ratio a,fter a total observation time T, for
a given pair of detectors, and for a given strength of the stochastic background?" The following
example program show how one can combine the functions detector-siteO, noise-powerO,
overlapO, and calculate-varO to answer this question for the case of a stochastic background
having a constant frequency spectrum: Os*(/) : Qo for .fro- ( I < "fineh. Specifically, wc calculate
and display the theoretical SNR after approximately 4 months of observation time (? : 1.0 x 107
seconds), for the initial Hanford, WA and Livingston, LA LIGO detectors, and for Oo = 3.0 x 10-6
for 5 Hz < f < 5000 Hz. (The answer is SNR - L.73, which means that we could say, with
greater than 95% confidence, that a stochastic background has been detected.) By changing the
parameters in the #def ine statements listed at the beginning of the prograln, one can ca.lculate
and display the signal-to-noise ratios for different observation times ?, for different detector pairs,
and for different strengths Os of the stochastic background.

Note: Values of .l/ and A/ should be chosen so that the whoie frequency range (from DC to the
Nyquist critical frequency) is included, and that there are a reasonably large number of discrete
frequency values for approximating integrals by sums. The final answer, however, is independent
of the choice of l/ and A/, for ly' sufficiently large and A/ sufrciently small.

/x main program to calculate the theoretical snr x/

#iuclude "grasp.h"

#define DETECTORSJILE
#define SITEI-CHOICE 1
#define SITE2-CH0ICE 2
#define OMEGA-O (3.0e-6)

#define F-LOW 5.0
#define F-HIGH (5.0e+3)

*def ine T (1.0e+7)

#define N 40000
#define DETTA-F 0.25

"detectors.dat" /x file containine detector info x/

/x 1:LIGO-Hanford site x/

lx 2:LlGO-Livingston site i./

/x Omega-0 (for initial detectors) x/

/x minimum frequency (in IIz) */

/x maximum frequency (n Hz) x I
f * total observation time (in sec) x/

/x number of frequency points x/

/* frequency spacing (inHz) xl

naino
(
t-

double

f loa t

char

char

mealt, varirnce , stddev, snr;

s it e 1 -pararoeters [9], s it e2-paramet ers [9] ;
s i te  1-nane [  100] ,  noise 1- f  i le  [100] ,  whi tenl j i le  h00l  ;
site2-name [ 100], no j.se2-J 1Le [100], whiteo2j i le [100] ;

double xpowerl,xpower2l
double *gemYna12'

/x ALLOCATE MEMORY */
powerl= (double x) nalloc (Nxs lzeof (double) ) ;
power2=(46ub1e x)roalfoc (Nxslzeof (double) ) ;
grnmlt!= (double x ) na1loc (N*sizeof (double) ) ;

/x C.AILL DETECTOR-SITEQ TO GET SITE PARAMETER INFORMATION x/
detector-site (DETECTORS-FILE, SITE1-CH0ICE, sitel-parameters, sitel--name,
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aoisel - f  i le ,whi tenl j i le)  ;
detector-site (DETECT0RS-FILE, SITE2-CH0ICE, site2-parameters , site2--n'me,

noise2-f i l-e, whiten2Jile) ;

l* CALL NoIsE-PowERfl AND OVERLAP$ x/
no ise-pover (noise 1-f j. le, N, DELTAJ, power 1 ) ;
noise-power (noise2.fi le, N, DELTAJ, power2) ;
overla? ( s it e 1-paranet ers, s ite2-pararet ers, N, DELTAJ, g:mma!! ) ;

/* CALCULATE MEAN, VARIANCE, STDDEV, AND SNR x/
nean=OMEGA-0xT;
var iaace=calculate-var (N, DELTAJ, 0MEGA-O, F-LOW, F-HIGH, T, garoroal2,

powerl ,poraer2) ;
stddev=sqrt (variance) ;
snr=mean/stddev;

/* DISPLAY RESULTS x/
n r i n t f  f  t r \ n t t \ .

\  r g  / '

printf("Detector site 1 = 7os\n",sitel-name) ;
prlntf ( "Detector si.te 2 = o/os\n" 

, sJ.te2-nane) ;
printf ("Onega-O = o/oe\n", 0MEGA-0) ;
pr in t f ( " f - low = %e Hz\n" ,F-LOW);
printf ("f-hj.gh = /os Hz\n",f-f lIGH);
pr int f  ( "0bservat ion t ime T = ' / ,o-  sec\a" ,T) ;
printf ( "Theoretical S/N = n/oe\n" 

, snr) ;
p r i n t f ( " \ n " ) ;

T e t l l T n  .
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7.21 Example: omega-min prograrn

The example program described in the previous section calculates the theoretical signal-to-noise
ratio after a total observation time 7, for a given pair of detectors, and for a given strength Os

of the stochastic background. A related-and equally important-question is the inaerse: "What

is the minimum value of Qe required to produce a given SNR after a given observation time ??"

For exampie, if SNR : 1.65, then the aJrswer to the above question is the minimum value of O6 for

a stochastic background that is detectable with g5% confidence after an observation time ?. The

following example program calculates and displays this 95% confidence value of Os for the inital

Hanford, WA and Livingston, LA LIGO detectors, for approximately 4 months (? : L.0 x 107

seconds) of observation time. (The answer is Oe : 2.87 x 10-6.) Again, we are assuming in this

example program that the stochastic background has a constant frequency spectrum: O*(/) :90

for 5 Hz < f < 5000 Hz. By modifying the parameters in the #def ine statements listed at the

beginning of the program, one carl calculate and display the minimum required Og's for different

detector pairs, for different signal-to-noise ratios, and for different observation times 7.
Note: As shown in Sec. 7.1-8, the squared signal-to-noise ratio can be written in the foilowing

form:

(sNR)2 : T 0 3 (7.2r.1)
A + B  o o * C o 3 '

where A, B, and C are complicated expressions involving integrals of the the overlap reduction

function and the noise power spectra of the detectors, but are independent of T and O6. Thus,
given SNR and T, Eq. (7.21.1) becomes a quadraiic for i)e:

a f i f , + 6 O s * c : 0 , (7.2r.2)

which we can easily solve. It is this procedure that we implement in the following program.

f* main program to calculate the minimum detectable omega-0 x/

#include "grasp.h"

#define DETECT0RS-FfLE "detectors.dat" 
/x file containing detector info */

#def ine SITEI-CHOICE 1 /x l:ltQQ-Ilanford site x/
#deflne SITE2-CHOICE 2 /* 2=LlGO-Livingston site x/
#define SNR 1.65 /* 1.65:SNR for 95Yo confidence x/
#define F-L0W 5.0 /x minimum frequency (inHz) */
#def ine F-HIGH (5.0e+3) /x maximum frequency (inHz) ,rl

#define T (1.0e+7) /x total observation time (in sec) x/

#define N 40000 /* number of frequency points x/
#define DELTA-F 0.25 /,r frequency spacing (in Hz) x/

naino
.t
t-

int
f loat

doub le  f ac to r , f 3 , f  6 , f 9 , f ! 2 ,p l , p2 ,g2 ;
double in t1,  in t2, in t3, in t4;
double a,b,c,onega-0;

float sitel-parameters [9] , site2-parameters [9] ;

i ;
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char sitel-rame [100] ,noisel-fi le [1oo] ,wnitenlj i le [100] ;
cbar  s i . te2-nameh00l ,noise2j i l -e [100] ,whi ten2j i le [100]  ;

double *powerl,xpower2;
double xgAmmal2'

/x ALLOCATE MEMORY x/
powerl= (doubte *)naI1oc (N+sizeof (double) ) ;
power2= (double *)naI1oc (Nxsizeof (double) ) ;
gannat!= (double x)na1loc (Nxsizeof (double) ) ;

lx CALLDETECTOR-SITEQ TO GET SITE PARAMETER INFORMATION x/

detector-site (DETECT0RS-FILE, SITEl-CHOICE, sitel-parameters , sitel-aame,
noisel-f i le, whltenl-fi le) ;

detector-sj-te (DETECTORSJILE, SITE2-CH0ICE, site2-parameters, site2-aame,
noise2*f iIe, whiten2Jile) ;

l* CALL NoIsE-PowERQ AND OVERLAP$ */
aoise-power (noise1-fi1e, N, DEITAJ,pouerl) ;
noise-power (noise2JiIe, N, DELTAJ, power2) ;
overlap ( s 1t e 1-parameters, s ite2-paramet ers, N, DELTAJ, garnnal 2 ) ;

/x CALCULATE INTEGRALS FOR VARIANCE X/

iat 1=iat2= j_at3=int4=0 . 0 ;

f o r  ( i =0 ; i <N ; i++ )  {
f=ixDELTAJ;
if (F-LOw<=f && f<=F-HIGH) {

f 3=f *.f *.f ;
f6=f3xf3;
f9=f6xf3;
f 12=f 9,rf 3;
g2=gamma12 [i] xg"..a12 ;i1'
p1=powerl hJ ;
p2=power2 [i] ;

int 1+=DELTAj*g2/ (f 6*p1xp2) ;
int2+=DELT A,S x g2 f (f.9xp1xp1 xp2) ;
int3+=DELT LJ x 92 f (t9*p1xp2xp2) ;
int4+=DELTAJxg2x (7 . 0+ 92) I G1 2xp1 xp 1xp2*p2 ) ;

l

J
)

/x CALCULATE COEFFICIENTS OF QUADRATiC EQUATION x/

f act or= 1 0 . 0xM-P I *M-PI / ( 3 . O*HUBBLE*HUBBLE) ;

a= (int 4 / jrnt 7 - 2 . oxTxiatl / (StlRxSNR) ) / (f act orxf actor ) ;
b= (iut2+int3) / (iutlxtactor) ;
c = 1  . 0 ;

/* SOLVE THE QUADRATIC */
onega-O=O . 5x ( -b-sqrt (bxb-4+ax c)) I a;

/x DiSPLAY RESULTS x/

, A '



pr in t f ( " \ n " ) ;
pri.ntf ( "Detector site 1 = o/os\n" 

, sitel--name) ;
priatf ( "Detector site 2 = o/os\n" 

, site2-name) ;
printf ( " S,/N ratio = 7o€\n," , SNR) ;
printf ("f-1ov = o/oe Hz\n",F-LOW) ;
pr ia t f  ( " f -h igb = %e Hz\n" ,FJIGH);
printf (t 'Observation tine T = 7oe sec\a",T);
printf ("Mlnumum Onega-O = n/"e\n",omega-O);

p r l n t f ( " \ n " ) ;

return;
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7.22 F\rnction: analyze o

void analyze(int  average, f loat x in1, f loat * in2, int  n,  f loat del ta-t ,  f loat f - low,

float fJrigh, doubfe *garnrnstl, double xwhitenl, double *whiten2, int real-tine-aoisel,

int real--tine-loise2, double *power1, double *power2, double *sigJlal, d,ouble xvariance)

This highJevel function performs the optimal data processing for the detection of an isotropic and

unpolarized stochastic background of gravitational radiation having a constant frequency spectrum:

O*(/) : Oo for .fro*, ( .f < "fi,Eh- It calculates the cross-correlation signal value ,S and theoretical

"*iur"" o2, taking as input thJcontinuous-in-time whitened data streams o1(t) and o2(t) produced

by two detectors.
The arguments of analyze O are:

average: Input. An integer variable that should be set equal to L if the values of the real-time

cross-correlation and/or noise power spectra corresponding to two overlapped data sets are

to be averaged.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the

continuous-in-time whitened data stream o1(t) produced by the first detector. o1(t) is the

convolution of detector whitening filter l4z1(t) with the data stream s1(t) :: h1(t) + n{t),

where h1(t) is the gravitational strain and n1(t) is the noise intrinsic to the detector. These

variables have units of rHz (or sec-t/2;, which follows from the definition of s1(t) as a strain

and, W1(f) as the "inverse" of the square root of the noise polnrer spectrum hU)- in1[i]

contains the value of ol(t) evaluated at the discrete time tl : iAt, where i :0,1," ' , AI - 1'

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the

continuous-in-time whitened data stream o2(t) produced by the second detector, in exactly

the same format as the previous argument.

n: Input. The number lrl of data points corresponding to an observation time T :: N At, where

At is the sampling period of the detectors, defined below. .lf should equal an integer pov/er

of.2.

delta_t: Input. The sampling period At (in sec) of the detectors.

f-low: Input. The frequency "fio* (in Hz) belovr which the spectru* Oe-(/) of the stochas-

tic background is assumed to be zero. fio* should lie in the range 0 ( fio* S "fNyquist,

where ./Nyqutst is the Nyquist critical frequency. (The Nyquist critical frequency is defined by

"fNvq,.rt"t ,_"'l11Znt1, where At is the sampling period of the detectors.) fio* should also be

less than or equal to "fi'iet'.

f-high: Input. The frequency.fr,iel, (in Hz) above which the spectru* Os"(/) of the stochastic

Lackground is assumed to be zero. "fnigl should lie in the range 0 { ,fi,igr' ( .fNvqul"t' It should

also be greater than or equal to fio*.

garnmalf : Input. ganrns!2lo..n/2-tJ is an array of double precision variables containing the

values of the overlap reduction function f(/) for the two detector sites. These variables are

dimensionless. garnm3!! [i] contains the value of f (/) evaluated at the discrete frequency

f i  :  i l  (N Lt) ,  where f  :  0,  1,  " ' ,  N 12 -  I '

whitenl : Input. whitenl [0 . . n-1] is an array of double_ precision variables containing the values

of the real and imaginary parts of the spectrum WtU) of the whitening filter of the first

l

I
L
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detector. These variables have units rHz/strain (or sec-l/z;, which are inverse to the units

of the square root of the noise power spectrum h(f).whitea1[2*i] and whitenl[2xi+1J

contain, respectively, the values of the real and imaginary parts of W{f) evaluated at the

d iscre te  f requency  f i :  i l (NLt ) ,  where  i :0 ,1 ,  " ' ,N12 -7 .

whiten2: Input. whiten2 [0. . n-f] is an array of doub_Ie precision variables containing the values

of the real and imaginary parts of the spectrum Wz(f) of the whitening filter of the second

detector, in exactly the same format as the previous argument.

real-time-noisel: Input. An integer variable that should be set equal to 1 if the real-time noise

power spectrum hff) of the first detector should be calculated and used when performing

the data analysis.

real-tine-noise2: Input. An integer variable that should be set equal to 1 if the rea,l-time noise
power spectrum P2ff) tor the second detector should be calculated and used when performing

the data analysis.

powerl: Input/Output. powerl[0. .n/2-LJ is an array of doub]e precision variables containing

the values of the noise power spectrum P1(/) of the first detector. These variables have units

of strain2/Hz (or seconds). powerl[i] contains the value of &(/) evaluated at the discrete

f requency  f i : i l (NAl t ) ,  where ' i :0 ,1 , " ' ,  N12-  1 .  I f  rea l - t ine-no ise l :1 ,  theva lues  o f

powerllo..n/2-Ll are changed to

h$) "i(/)"r(/) , (7.22.1)

where 5r(/) is the Fourier transform of the unwhitened data stream s1(t) at the first detector

site. If real-time-noisel 17, the values of power1l0. .n/2-tl are unchanged-

power2: Input/Output. power2L} - .n/2-L] is an array of double precision variables containing

the values of the noise power spectrum Pzff) of the second detector, in exactly the same

format as the previous argument.

signal: Output. A pointer to a double precision variable containing

correlation signal

Qff) ,

where snj) is the real-time cross-correlation spectrum and QU) i" the spectrum of the

optimal filter function. ,5 has units of seconds.

variance : Output. A pointer to a double precision variable containing the value of the theoretical

variance o2 of the cross-correlation signal ^9. o2 has units of sec2.

a:ralyze O is very simple function, consisting primarily of calls to other more basic functions.

If real-tirne-noisel or real-tiroe-noise2:1, a-nalyzeO calls extractlloiseO to obtain the

desired real-time noise power spectra. It then cails extract-signalO and optirnalJilterO to

obtain the values of 5rz(/) and Q(/), which are needed to calculate the cross-correlation signal

,5, according to Eq. (7.22.2). Finally, aaalyzeO calls calculate-varO to obtain the theoretical

variance o2 associated with 5.
Note: One should call a:ralyzeO with average f 1. when one suspects that the current input

data in1 tl and in2 [] are not continuous with the data from the previous cali to analyze O. This is

2
' - T

r-fi,i*r,
t ': 

Jrr"*- 
df ,nff)

the value of the cross-

(7.22.2)

, A <



because a discontinuity between the "old" and "new" data sets has a tendency to introduce spurious
large frequency components into the real-time cross-correlation and/or noise pow'er spectra, which
should not be present. (See the discussion at the end of Secs. 7.14 and 7.15 for more details.)

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.23 F\rnction: prelin-statso

prelirn-stats (float ornega-O,f1oat t,double signal,double variance)
This function calculates and displays the theoretical and experimental mean value, standard devi-
ation, and signal-to-noise ratio for a set of stochastic background cross-correlation signal measrue-
ments, weighting each measurement by the inverse of the theoretical variance associated with that
measurement.

The arguments of prelirn-stats O are:

onega-0: Input. The constant value O6 (dimensionless) of the frequency spectrum O*(/) for the
stochastic background:

. f to*(. fS"f i , ier,
otherwise.

O6 should be greater than or equal to zero.

f loat t: Input. The observation time 7 (in sec) of an individual measurement.

double signal: Input. The value ^9 of the current cross-correlation signal measurement. This
variable has units of seconds.

double variance: Input. The value o2 of the theoretical variance associated with the current
cross-correlation signal measurement. This variable has units of sec2.

prelim-statsO calculates the theoretical and experimental mean value, standard deviation,
and signal-to-noise ratio, weighting each measurement S; by the inverse of the theoretical variance
af; associated with that measurement. This choice of weighting maximizes the theoretical signal-to'
noise, allowing for possible drifts in the detector noise power spectra over the course of time. More
precisely if we let Si (i, : I,2,. .. , n) denote a set of n statistically independent random variables,
each havine the same mean value

o  , r r - l Q o" r g w \ . 1  / - 1  0

but different variances

then one can show that the weighted-average

p':: (s) ,

ol ,: qsly;1 - (so)' ,

(7.23.t)

(7.23.2)

(7.23.3)e .- D,iLr )lS'

Da\i

has maximum signal-to-noise ratio when )1 - of,'. Roughly speaking, the above averaging scheme
assigns more weight to signal values that are measured when the detectors are "quiet," than to

signal values that are measured when the detectors are "noisy."

The vaiues calculated and displayed by prelin-.stats O are determined as follows:

(i) The total observation time is
T t o t " : n T , (7.23.4)

where n is the total number of measurements. and ? is the observation time of an individual
measurement.
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(ii) The theoretical mean is grven by the product

l4heory: Oo 7. (7.23.5)

This follows from our choice of normalization constant for the optimal filter function. (See

Sec. 7.16 for more details.)

(iii) The theoretical variance is given by

(7.23.6)

Note that when the detector noise power spectra are constant, o7 :: o2 fot'i: L,2,"',fl
and af;"o* : o2. This case arises, for example, if we do not calculate reaJ-time noise power
spectra, but use noise power information contained in data files instead.

(iv) The theoretical signal-to-noise ratio (for n measurements) is given by

^2," t h e o r y - y ? " o j 2

SNRihsorv : \fr 
l4h*,rY

- otheory

T.?-, o,2S;
Fexp t  - :  # '

L j = l u  j

(vi) The experimental variance is given by

" )-3- ' o:25?._  Z- i , :7w i  v i  _  , ,2uexpt '- 
T:_, "-T 

f'�expt
J

(7.23.7)

The factor of \fr. comes from our assumption that the n individual measurements are statis-
tically independent.

(v) The experimental mean is the weighted-average

When the weights of,2 are constant, the above formula reduces to the usual expression

' t  n  / n  \ 2
o2"*o,: lT.s| - t ts, In7-, " 

\;i /
for the variance of n measurements ̂ 9;.

(vii) The experimental signal-te.noise ratio is given by

SNR€,.Dt : \fr, 
PexPt

' 
dexpt

(viii) The relative error in the signal-to'noise ratios is

(7.23.8)

(7.23.s)

(7.23.10)

(7.23.11.)

relative error :: (7.23.12)

The value of this quantity should be on the order of (1/SNR1l"o.y) . 7A0%.

Note: prelin-statsO has internally-defined static variables which keep track of the number
of times that it has been called, the sum of the weights, the sum of weights times the signal values,
and the sum of the weights times the signal values squared.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

SNRtneory - SNRe*pr

SN&l"o.y
. n0%
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7.24 F\rnction: statisticso

void statistics(float *input, int n, int nun-bins)
This function calculates and dispiays the mean value, standard deviation, signal-to.noise ratio,
and confidence intervals for an input array of (assumed) statistically independent measurements
14 of. a random variable r. This function also write output data to two files: histogram.dat and
gaussian.dat. The first file contains a histogram of the input data r,i; the second file contains
the Gaussian probability distribution that best matches this histogram. (See Sec. 7.22 for more
details.)

The arguments of statistics O are:

input: Input. input[0..n-1] is an array of floating point variables containing the values of a
set of (assumed) statistically independent measruements 11 of a random variable c.

n: Input. The Iength lf of the input data array. If N < 2, statisticsO prints out an error
message and aborts execution.

num-bins: Input. The number of bins to be used when constructing a histogram of the input
data xi.

statistics O calculates and displays the mean value and standard deviation of the input data
xi. It also calculates and displays the signal-to-noise ratio and 68To, 90Yo, and gSTo confidence
intervals for the input data, assuming that the ri axe statistically independent measurements of a
random variable r. statisticsO also writes output data to two files:

histogram. dat is a two.column file of floating point numbers containing a histogram of the
input data r;. The length of each column of data is equal to ar:m-bins, and the histogram is
normalized so that it has unit area.

gaussiaa.dat is a two-column file of floating point numbers containing the Gaussian prob-
ability distribution function that best matches the histogram of the input data ri. Each
column of gaussian.dat has a length equal to 8192. There are also three marleers included
in the Gaussian probability distribution data: One marker for the mean, and two for the *
one standard deviation values of z.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of the stochastic background routines, statisticsO is used to per-

form a statistical analysis of the cross-correlation signal values S; calculated by the function
analyzeO.

(U

(ii)
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7.25 Example: sinulation program

By combining all of the functions defined in the previous sections, one can write a program to

simulate the generation and detection of a stochastic background of gravitational radiation having

a constant frequency spectrum: Oe-(/) : Qo for "fro* ( .f < "fuieh. The following example program

is a simulation for the initial Hanford, WA and Livingston, LA LIGO detectors. The parameters

chosen for this particular simulation are contained in the #def ine statements listed at the beginning

of the program. By changing these parameters? one can simulate the generation and detection

of a stochastic background for different stochastic backgrounds (i.e., for different values of Qs,

J1o*, and "fi,igr,) and for different detector pairs. The number of data points, the sampling period

of the detectors, and the total observation time for the simulation, etc. can also be modified.

Preliminary statistics are displayed during the simulation. In addition, a histogram and the best-

fit Gaussian probability distribution for the output data are stored in two files: histogran.dat

and gaussian.dat. Sample output produced by the simulation and a plot of the histogram and

best-fit Gaussian data are given in Sec. 7.26.

/x main program for stochastic background simulation x/

#include "grasp.h"

#define

#defiue

#define

#define

#def inei

#define

#define

#deflne

#define

#define

#def i.ne

#define

#define

#define

#define

naino
{
t

DETECTORSJILE "d.etectors.dat" 
/x file containing detector info xf

SITEI-CHOICE 1 /x identification number for site 1 x/

SITE2-CHOICE 2 /*. identification number for site 2 xf

FAKE-SB t lx 1: simulate stochastic background x/

/x 0: stochastic background from real data x/

/x 1: simulate detector noise at site 1 x/

/x 0: detector noise from real data at site 1 x/

/* 1: simulate detector noise at site2 xf

/x 0: detector noise from real data at site 2 *f

/x number of data points x/

/x sampling period (in sec) x/

f x omega-},rf

/x minimum frequency (inllz) x/

/x maximum frequency (inHz) */

/x 1: use real-time noise at site 1 x/

/* 0: use noise information from data file *f

/* 1: use real-time noise at site 2 */

/x 0: use noise information from data file x/

/* number of runs (for simulation) x/

/x number of bins (for statistics) x/

FAKE-NOISEI 1

FAKE-NOISE2 1

N 65536
DELTA-T (5.0e-5)

OMEGA-0 (1.0e-3)

F_L0W (5.0)

F-HIGH (5.0e3)

RE]TL-TIME-NOISEI O

REAL-TIME-NOISE2 O

NW-RUNS 1600
NI'M-BINS 2OO

int i",pass-test=O,previous-test,ruas-coropleted=O,seed= -17 ;
f loat delta-f;
double signal, variaace ;

f loat sitel-parameters [9] ,site2-paremeters [9] ;
cbar  s i . te1-name[100] ,noise1-- f i le [100] ,whi ten1j i le [100]  ;
char site2-nane [100] ,noise2lIIe[100] ,whlten2ji le [100] ;

double xgeneration-power1, *generation-power2 ;
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double xa.nalysis-porer 1, xarralys is-p ow er2 ;
double xwhi-ten1, xwhiten2 ;
double xgammal2'
f loat  xout l ,xout2;
f loat  *s tats;

/x ALLOCATE MEMORY */
generation-powerl= (double x)na}}oc ( (N/2) *sizeof (double) ) ;
generation-power2= (double x)nal}oc ( (N/2) i.sizeof (double) ) ;
aaooooalys is-powerl= (double x ) na11o c ( (N / 2) xsizeof (double) ) ;
aaalysis-power2=(doubfe x)nalloc ( (N/2),rsizeof (double) ) ;
whitenl=(double x)nalloc (N*sizeof (doubte) ) ;
whitea2=(double x)nal1oc (Nxsizeof (double) ) ;
garnrnatf= (double x) nal.loc ( (N/2) *sizeof (double) ) ;
out l=( f loat  * )nal Ioc(Nxsizeof  ( f loat)  )  ;
out2=(float *)ma11oc (N,rsizeof (f loat) ) ;
stats= (f }oat x)nalloc (NIIMJIJNS*sizeof (f loat) ) ;

/x INITIALIZE OUTPUT ARRAYS TO ZEPcO *l
f o r  ( i =0 ; i (N ; i++ )  ou t l [ i ] =ou t2 [ i ] =0 .0 ;

l* CLLL DETECTOR-SITEQ TO GET SITE PARAMETER INFORMATION x/

detector-site (DETECTORSJILE, SITE1-CH0ICE, sitel-parameters , sitel-oame,
noisel-f i l-e, wbjtenlj i le) ;

detector-site (DETECTORSJILE, SITE2-CH0ICE, site2-par:meters, si,te2-.name,
noise2*f i le,whiten2--f iIe) ;

/* DISPLAY STOCHASTIC BACKGROUND SIMULATION PARAMETERS */
* - i - + + / l t \ * l l \ .
P I I 4 U J \  \ A  / '

printf ( " STOCHASTIC GRAVITATIONAL I^IAVE BACKGROUND SIMULATION\n" ) ;
p r i n t f ( " \ n " ) ;
printf ( "PARAMETERS: \n" ) ;
printf ("Sinulated stochastic background (Q=no,1=yes) : 7od\n",FAKE-SB) ;
pr in t f ( "s inulated detector  noise at  s i te  1 (O=no, l -yes) :  %d\n" ,FAKE-N0ISE1);
printf("Sinulated detector aoise at site 2 (O=no,l=yes): 7.d\a",FAKE-N0ISE2);
printf("Real-tine noise at site 1 (O=no,1=yes): 7.d\a", REAL-TIME-N0ISE1);
printf("Real-tine noise at site 2 (O=no,1=yes): 7.d\n", REAL-TIME-N0ISE2);
printf ("Detector site 1 = 7os\D",si.te1--nane);
printf ("Detector site 2 = o/os\n",site2-nane);

printf ("Sampling period = 7oe secoads\a",DELTA-T) ;
printf ("Nr:mber of data poi.nts = 7.d\n",N);
printf ("Onega-0 = o/ne\n" 

,OMEGA-O) ;
printf ( "f -f ow = o/os Hz\o" , FJ0W) ;
printf ( "f -high = "/os Hz\n" , F-HIGH) ;
printf ("Nunber of ruas (for sinulatj.on) = 7.d\n",NUMJIJNS);
prlntf("Nu.mber of bj-ns (for statistics) = 7.d\n",NIIMJINS);
p r i n t f ( " \ u " ) ;

/x CONSTRUCT NOISE POWER (FOR SIGNAL GENERATION), WHITENNG FILTER x/

/x AND THE OVERLAP REDUCTION FUNCTION x/

delta-f= (float) (1. o/ (N,FDELTA-T) ) ;
uoise-power (noisel-fi le , N/2, deltaJ , generatioa-powerl) ;
noise-power (noise2-fi le , N/2, deltaJ , generation-power2) ;
whiten (uhitenl-Jl]e, N I 2, deltaJ, whiteal ) ;
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whiten (whiten2-f iIe, N f2 ,delta-f. ,whiteu2) ;
overlap ( s it e 1 -paramet ers, s it e2-paramet ers, N/2, deltaJ, g:rnna1 2 )'

/* OoNSTRUCT NOISE-POWER (FOR SIGNAL ANALYSIS) IF REAL-TIME NOISE x/

/* IS NOT DESIRED x/
if (REAL-TIME-N0ISE1t=1) {

for (1=g' i<N l2;i++) aaalysis-powerl[ i] =generation-powerl [ i l  ;

ir cnr*-uuE-NorsE2t=1) {
for (i=0; i<N l2;i++) aaalysis_power2 [i] =generation-power2 [iJ ;

I

,- ""*aO*t THE SIMULATION */
for (i=1;i(=NIJMIIINS;i++) {

/x SIMULATE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE, IF DESIRED *./

if (FAKE-SB==1 II FAKE-NOISEI==1 II FAKE-NOISE2==!) {
monte-carlo (FAKE-SB, FAKE-NOISE1 ,FAKE-NOISE2 , N , DELTA-T,01'1EGA-0,

F-L0W, F-HIGH, g:rnm4f 2,
generation-power1, generat ion-power2,

, 
rhitenl ,whiten2, outl , out2, &seed) ;

J

/x TEST DATA TO SEE IF GAUSSIAN */
I

previous-test=pass-test ;
pass-test=test-data12 (N, out1, out2) ;

if (pass-test==1) {

/x ANALYZE DAIA x/
anal-yze (previous-test , outl , out2, N, DELTA-T,OMEGA-O, F-LOhI, F-HIGH,

gammall, s[iten1, whiten2,
REAL-TIME-NO ISE1, REAL-TIME-NOISE2,
alalys i s-power 1, analys is -power2, &s ignal, &variaace ) ;

/x DISPLAY PRELIMINARY STATISTICS X/
prelin-stats ( 0MEGA-O, N'T.DELTA-T, s ignal, variance ) ;

/* UPDATE RUNS COMPLETED AND STATS ARRAY FOR FINAL STAIISTICS X/

runs-completed++ i
stats [ru:rs-completed- 1] =signal ;

)

) /x end for (1:1;i<*NUM-RUNS;i++) x/

/x FINAL STATISTICS x/
p r i n t f ( " \ n " ) ;
st at i st i cs ( stat s, runs -conp1 et ed, NiiU-B INS) ;

return;
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7.26 Some output from the sinulation program

Below is a sample of the output that is produced during the execution of the stochastic back-
ground simulation program described in Sec. 7.25. Also shown, in Fig. 53, is a plot of the his-
togram and best-fit Gaussian probability distribution that were stored in data files by the function
statistics O. For this particular simulation, the total number of runs was equal to 127I and the
number of bins for the histogram was equal to 200.

total number of runs conpleted.=81S
totaL observation tine =2.670592e+03 seconds
signal value=2. 659629e-03
experinental ng:n=3. 360998e-03
exieriueatal stddev= L.214569e-02
experineutal SNR=7. 899961e+00
tbeoretical mea:o=3. 276800e-03
theoretical stddev=1 . tt29tie-O2
th.eoreti.cal SNR=8. 405551e+00
relative error i.o SNR=6 percent
experiroental onega-O=1 . 025695e-03
tb.eoretical omega-0=1. 000000e-03
theoretical onega-O for detectj.on with 95 percent confidence=1.962989e-04

iotal number of r'.ias coiapleted=816
total observation tine =2.673869e+03 seconds
sigual value=-3. 592409e-03
experinental nean=3. 35247 6e-03
experiroeutal stddev=L. 2t4068e-02
experinental SNR=7. 888017e+00
theoretical mean=3. 276800e-03
theoretical stddev=1 . Lt29t6e-O2
tb.eoretical SNR=8 . 410706e+00
relative error in SNR=6 percent
experirnental omega-O=1. 023095e-03
theoretical onega-O=1. 000000e-03
theoretical onega-0 for detection with 95 percent confidence=1.961785e-04

total number of runs completed=817
total observation tine =2.677146e+03 secoads
signal vaLue=-7. 967954e-03
experiroental nean=3. 338620e-03
experiroental stddev= 1. 21397 0e-02
experirnental SNR=7. 860860e+00
theoretical nean=3. 276800e-03
theoretical stddev=1 . LI29t6e-02
theoretical SNR=8. 415858e+00
relati-ve error in SNR=6 percent
experiroental onega-O=1. 018866e-03
theoretical onega-0=1. 000000e-03
theoretical oroega-O for detection with 95 perceat confidence=1.960585e-04

Data segmeat 1 failed Gaussial test!
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total number of ru:rs conpleted=818
total observation ti.me =2.680422e+03 seconds
signal value=1 . 447747 e-02
experimental mea.a=3 . 352238e-03
experimental stddev=t . 213852e-02
experimental SNR=7 . 8985 19e+00
tbeoretical nean=3. 276800e-03
theoretical stddev=l . tt29t6e -Q2

il.eoretiCal SNR=8. 421007e+00
relative error in SNR=6 percent
experinental onega-O=t . Q23022e-03
theoretical omega-O=1 . 000000e-03
theoretical onega-O for detection witb 95 perceut coafidence=1.959386e-04

total number of runs conpleted=819
total observation time =2.683699e+03 seconds
signal value=3. 6472LLe-03
experimental meare=3 . 352598e-03
experineatal stddev=L.2L3171e-02
experimental SNR=7. 909022e+00
theoretical nean=3 . 276800e-03
theoretical stddev=l . tt29t1e-02
theoretical SNR=8. 426153e+00
relative error in SNR=6 perceEt
experimental onega-O=1 . 023132e-03
theoretical omega-O=1 . 000000e-03
theoretical onega-0 for detection with 95 percent confidence=1.958189e-04

total number of rr:as conpleted=820
total observation time =2.686976e+03 seconds
signal- value=-5. 958459e-03
experimeatsl mean=3. 34L243e-03
experimental stddev=t . 2128Q7 e-02
experimeatal SNR=7. 889026e+00
theoretical neaa=3. 276800e-03
theoretical stddev=l . I729t6e-02
theoretical SNR=8. 431295e+00
relative error in SNR=6 perceDt
experimental onega-O=1. 019666e-03
theoretical onega-O=1 . 000000e-03
theoretical oroega-0 for detection with 95 percent confi.dence=1.956995e-04

total ur:mber of runs conpleted=821
total observation tiroe =2.690253e+03 seconds
signal value=1. 057661e-02
experimental meat=3. 350056e-03
experimental stddev=1.2L233te-02
experimental SNR=7 .917764e+Q0
theoretical nean=3. 276800e-03
theoret ica l  s tddev=l  .  t t29t6e-02
theoretical SNR=8. 436435e+00
relati-ve error in SNR=6 percent
experimental onega-O=1. 022356e-03
theoretical omega-0=1. 000000e-03
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theoretical oroega-0 for detection uith 95 percent confidence=1.955803e-04

Data segment 2 failed Gaussiaa test!

total number of runs coropleted=822
total observation time =2.693530e+03 seconds
signal value=6. 683305e-03
experimental nea:r=3. 354111e-03
experinental stddev=1.2L1649e-02
experimental SNR=7. 936639e+00
theoretical meer=3. 276800e-03
theoretical stddev=1 . t l2976e-Q2
tbeoreti.cal SNR=8 . 44157 te+OO
relative error in SNR=S percent
experimental onega-O=1 . 023593e-03
theoretical omega-O=1. 000000e-03
theoretical onega-0 for detection witb 95 percent coafidence=1.954613e-04

Histogram and Gaussian P robabil ity Distribution

Figure 53: Histogram of the measured cross-correlation signal vaues, and the corresponding best-fit
Gaussian probabiiity distribution for the stochastic background simulation.

(for tbe initial LIGO deteclors simulation)
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8 GRASP Routines: Supernovae and other transient sources
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GRASP Routines: Periodic and quasi-periodic sources



i

10 GRASP Routines: General purpose utilities

This section includes general purpose utility functions for a variety of purposes. For example, these

include functions to calculate time'averaged power spectra, and functions to graph data, listen to

data, etc.
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L0.1 F\rnction: grasp-openo

FIIE* grasp-opeD(const char xenvironment-variable, cbar xshortpath)
This routine provides a simple mechanism for obtaining the pointer to a data or parameter file.

It is called with two character strings. One of these is the name of an environment variable, for
example GRASP-DATAPATH or GRASP?ARAMETERS. The second argument is the "tail end" of a path
name. The routine then constructs a path name whose leading component is determined by the
environment variable and whose taii end is determined by the short path narne. grasp-openo
opens the file (printing useful error messages if this is problematic) and returns a pointer to the
fiie.

The arguments are:

environment-variable: Input. Pointer to a character string containing the name of the envi-
ronment variable.

shortpath: Input. Pointer to a character string containing the remainder of the path to the file.

As a simple example, if the environment variable GRASPJARAMETERS is set to
/ust /LocaL/ data/ t4nov94. 2 and one calls
grasp-open("GRASPJARAMETERS" , "cbannel.0"), then the routine opens the file
/ust/IocaL/data/!4nov94.2/c!anne]-.0 and returns a pointer to it.
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L0.2 Function: avg-speco

void avg-spec(f loat *data,f loat *average, int  npoint, int  *reset, f loat srate,f loat decaSrt ine, i l

windowtype)
This routine calculates the power spectrum of the (time-domain) input stream data[ ], aver-

aged over time with a user-set exponential decay, and several possible choices of windowing.

The arguments ale:

data: Input. The time domain input sa,mples are contained in data[O..N-1], with the data

sample at time t : nr\t contained in data[n] .

average: Output. The one sided power spectrum is returned in average[O, "N-1]' The value

of average [n] is the average power spectrum at frequency

" n x srate
r  -  

2 x N
(10.2.1)

This is twice the number of distinct frequency values which appear in the FFT of N samples;

this is because of the overlapping technique described below. We do not output the value

of the average at the Nyquist frequency, which wlould be the (non-existent) array element

average [N] . The units of average [ ] are aatal2 fHz. Note: the elements of average I J

must not be changed in between successive cails to avg-specO'

npoint: Input. The number of points npoint : .lf input. This must be an integer povier of two'

reset: Input. If set to zero, then any past contribution to the average power spectrum is

initialized to zero, and a new average is begun with the current input data'

srate: Input. The sample rate Lf Lt of the input data, in Hz'

decaytine: Input. The characteristic (positive) decay time r in seconds, to use for the moving

(exponentially-decaying) average described below. If no averaging over time is wanted, simply

set decaytine to be small compared to NAt.

windowtype: Input. Sets the type of window used in po\iler spectrum estimation. Rectanguiar

winio*ing 1i."., ,ro windowing) is windowtype=O: Hann windowing is windowtype=1, Welch

windowing is windowtype=2 and Bartlett windowing is windowtype=3. See [1] for a discussion

of windowing and the definitions of these window types'

The methods used in this routine are quite similar to those used in the overlap=1 version of

the Numeri,cal Recipes [1] routine spctraO, and the reader interested in the details of this routine

should first read the coiresponding section of [t]. A continuous sample of the input data of twice

the length of the a,rray datat I is maintained by avg-speco. Thus, each element of the array

data[ ] utilized. twice; once with the first point data[O] right in the middle of the time'domain

window function, and once more with that same point right at the beginning of the window function'

Note that to reproduce (exactly) the procedure described in Numerical Reci'pes [1] one must have

npoint:M where M is the variable used in the procedure spctrmO, and the decay time must be

very lurg" (so that the two successive spectra are equally weighted). For example, if you are doing

analysis with 2048 samples, using that as the number of samples which you FFT and correlate'

then you should make two calls to avg-spec O . in each of which npoint:i-024; this will give you

one spectrai bin per FFT bin.

{
I

'l

.{-:
i
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One frequently wants to do a moving-time average of power spectra, for example to see how
the noise spectral properties of an interferometer are changing with time. This is accomplished in
avg-specO by averaging the spectrum with an exponentially-decaying average. Let A1(f) denote
the average pov/er spectrum as a function of frequency f , at time t. Then the exponentially-decaying
average (A(f )), at time t is defined by

(A ( / ) ) , : I!* at' A1, (f )s- 
(t-t') / "

(10.2.2)
I!* at' s-(t-t')/t

where r is the characteristic decay time over which an impulse in the power spectrum would decay.
In our case) we wish to average the power spectra obtained in the nth pass through the averaging
routine. The discrete analog of the previous equation (10.2.2) is

(A(/)) , . r :
D e.(f)"-o(N-n)
n:O (10.2.3)

Here,

N
I o-a(N-n)
L -
n=0

npoint

srate x decaytiroe

is determined by the averaging time desired. The average defined by (10.2.3)
mined by a recursion relation. We denote the the normalization factor by

N

YVzu : I e-a(N-n).
n:0

(a(/)hr : "-"{il;' (.4(/)).^,-r . W 
ror N : 0,1,2,"'

It obeys the (stable) recursion relation l/.nr : 1 * e-o,A6r-1 together with the initial condition
N-t:0. The exponentially-decaying average then satisfies the (stable) recursion relation

(10.2.4)

can be easily deter-

(10.2.5)

(10.2.6)

(no initiai condition is needed). The routine avg-speco computes the exponentially decaying
average by implementing these recursion relations for (A(/))16 and,A4','.

Theunitsof theoutputarrayaverageI J arethesquareoftheunitsof theinputarraydataf
J per Hz, i.e.

units (averagel]) - (units (aata[D)' ln . (10.2.7)

The example program calibrate described eariier makes use of the routine avg-specO.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for calibrateO.
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L0.3 Function: binshort o

void binshort(short *input,int ninput,double *bins,int offset)
This function performs the "binning" which is needed to study the statistics of an array of short
integers, such as the output of. a12 or 16 bit analog-to-digitial converter. Its output is a histogram
showing the number of times that a particular r,alue occurred in an input array. Note that this
routine increments the output histogram, so that you can use it for accumulating statistics of a
particular variable.

The arguments are:

input: Input. This routine makes a histogram of the values input [0. .ninput-1l .

ninput: Input. The number of elements in the previous array.

bins: Output. Upon return from the function, this array contains a histogram showing the
probability distribution of the r,alues input [0. .ninput-1] . The array element bins loff set]
is incremented by the number of elements r of input [] that had value r : 0. The array
element bins [off set+i] is incremented by the number of elements r of input [] that had
value s : i. [f. the output of your 16 bit ADC ranges from -32,768 to *32,767 and nbins
has value 216 - 65,536 then you would want off set : 32,768. For a 12-bit ADC you
would probably want nbins : )r2 - 4096, and depending upon the sign conventions either
offset :2047 or offset :2048.

of f set: Input. The offset defi.ned above.

Note that in the interests of speed and efficiency this routine does not check that your values
lie within range. So if you try to bin a value that lies outside of the range -offset, -off set *
1,... , off set - 1 you may end up over-writing another array! You'll then spend unhappy hours
trying to locate the source of bizzarc unpredictabie behavior in your code, when you could be doing
better things, like seeing if your ADC has dynamic range problem (reaches the end-point values too
often) or has a mean value of zero (even with AO-coupled inputs the ADC may have substantial
DC offset).

Authors: Bruce Ailen, ballen@dirac.phys.uwm.edu

Comments: None.

262



tO.A F\rnction: is-gaussiaao

int is-gaussian(short *arralr,int n,int min,int max,int print)
This is a quick and robust test to see if a collection of values has a probabiiity distribution that
is consistent with a Gaussian normal distribution ("normal IFO operation"), or if the collection
of values contains "outlier" points, indicating that the set of val.ues contains "pulses", "blips"

and other "obvious" exceptional events that "stick out above the noise" (caused by bad cabling,
alignment problems, or other short-lived transient events).

The arguments are:

array: Input. The values whose probability distribution is examined are array [0 . . n-1] .

n: Input. The length of the previous axray.

nin: Input. The minimum va,lue that the input values might assume. For example, if array[J
contains the output of a 12-bit analog-tedigital converter, one might set nin=-2048. Of
course the minimum va.lue in the input array might be considerably larger than this (i.e.,
closer to zero!) as it should be if the ADC is being operated well within its dynamic range
limits. If you're not sure of the smallest value produced in array[], set min smaller (i.e.,
more negative) than needed; the only cost is storage, not computing time.

nax: Input. The maximum va,lue that the input values mi,ght assume. Fbr exa^mpie, if array[J
contains the output of a 12-bit analog-to-digital converter, one might set rnax=2047. The
previous comments apply here as well: set roax larger than needed, if you are not sure about
the largest value contained in array[J.

print: Input. If this is non-zero, then the routine will print some statistical information about
the distribution of the points.

The value returned by is-gaussiaaO is 1 if the distribution of points is consistent with a
Gaussian norma,l distribution q/ith no outliers, and 0 if the distribution contains outliers.

The way this is determined is as follows (we use 11 to denote the array element array[iJ ):

o First, the mean value i of the distribution is determined using the standard estimator:

't n-l
_ r \ . -
: x , :  -  )  f i ; .

r r -
(10.4.1)

o Next, the points are binned into a histogram .n/[u]. Here .nf [u] is the number of points in the
array that have value u. The sum over the entire histogram is the total number of points:

Dt N[4 : "'

o Then the standard deviation s is estimated in the following robust way. It is the smallest
integer s for which

i tt, + tl > n ertg/rt) : rl ['."-"ttar. ( 10.4.2)
i = - S  V ' t t  r - !

This value of s is a robust estimator of the standard deviation; the range of *s about the
mean includes 68% of the samples. (Note that since the values of ri are integers, we repiace
f by the closest integer to it, in the previous equation).
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Next, the number of values in the range from one standard deviation to three standard devi-
ations is found, and the number of values in the range from three to five standard deviations
is found. This is compared to the expected number:

n(erfc! I rt) - ertc(5 I t/z)). (10.4.3)

o If there are points more than five standa.rd deviations away from the mean, or significantly
more points in the 3 to 5 standard deviation range than would be expected for a Gaussian
normal distribution, then is-gaussiaaO returns 0. If the numbers of points in each range
is consistent with a Gaussian normal distribution, then is-gaussianO returns 1".

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function should be generalized in the obvious way, to look at one sigma wide bins
in a more systematic way. It can eventually be replaced by a more rigorously characterized
test to see if the distribution of san:ole values is consistent with the normal IFO operation.

264



10.5 F\rnction: clearo

void clear(f loat *&rrdyr int  n, int  spacing)
This routine clears (sets to zero) entries in an array.
The arguments are:

array: Ouput. This routine clears elements array [0] , array lspacingJ , ' . ., array [ (n-1)'*

n: Input. The number of array elements that are set to zero.

spacing: Input. The spacing in the array between succesive elements that are set to zero.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

, array [ (n-1) xspacing] .
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L0.6 F\rnction: product o

void product(f loat *c, f1oat *a, f loat *b, int  nconplex) Thisrout inetakesasinputapair
of arrays a and b containing complex numbers. It multiplies a with b, placing the result in c, so
that c: o x b. The arsuments are:

a: Input. An array of l[ complex numbers a[0..2N-1]
containing the real and imaginary parts.

b: Input. An array of lf complex numbers b[0..2N-1]
containing the real and imaginary parts.

with a[2j) and a[2j+1] respectively

with bi2jJ and bi2j+11 respectively

c: Output. The array of N complex numbers c [0. .2N-1] with c [2j] and c [2j+1J respectively
containing the real and imaginary parts of. a x b.

ncouplex: Input. The number .l[ of complex numbers in the arrays.

Note that the two input arrays a[ ] and b[ ] can be the same array; or the output array c[ J
can be the same as either or both of the inputs. For example, the following are all valid:

product(c,a,a,n), which performs the operation a2 - c.
product(a,a,b,n), which performs the operation a x b ---+ a.
product (a,b, a,n), which performs the operation a x b -- a.
product(a,a,a,n), which performs the operation a2 -, a-

Note also that this routine does not allocate any memory itself - your input and output arrays must
be allocated before calling product O.

Author: Bruce Allen, bailen@dirac.phys.uwm.edu

Comments: None.
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10.9 Function: grapho

void grapb(float {<array,int n,int spacing)
This is a useful function for debugging. It pops up a graph on the computer screen (using the

graphing program :.ngr) showing a graph of some array which you happen to want to iook at.
The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed
are array[g],  array[spacingJ, array[2*spacing], . . . ,array[(n-1)*spacing].

This function is a handy way to get a quick look at the contents of some array. It writes the
output to a temporary fiIe and then starts up xngr, reading the input from the fiIe. The r values
are evenly spaced integers from 0 to n-1. The g values are the (subset of) points in arrayt l. If
your axray contains real data, you might want to use spacing=1. If yoru axray contains complex
data (with real and imaginary parts interleaved) you will use spacing=2, and make separate calls
to see the real and imaginary parts. For example if conplex [0. .2047) contains 1024 complex
numbers, then:
graph (conpLex, 7024,2) (view 1024 real values)
graph(conplex+1 ,1024,2) (vtew 7024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages
from xngr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.10 F\rnction: graph-doubleo

void graph-double(double *arrdyrint n,int spacing)

This is a useful function for debugging, and exactly like the function graphO, except that it's
intended for double precision floating point numbers. It pops up a graph on the computer screen
(using the graphing program )<ngr) showing a graph of some array which you happen to want to
look at.

The arguments are:

axray: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed
are array [0J , array lspacingJ , array f2*spacingJ ,...,array [ (n-1) *sPacing] .

This function is a handy way to get a quick look at the contents of some array. It writes the
output to a temporary file and then starts up :sngr, reading the input from the file. The c values
are evenly spaced integers from 0 to n-1. The g values are the (subset of) points in array[ J. If
your axray contains real data, you might want to use spacing=1. If your axray contains complex
data (with real and imaginary parts interleaved) you will use spacing=2, and make separate ca.lls
to see the real and imaginary parts. For example if conplex [0. . 2047] contains 1024 complex
numbers, then:
graph ( conp lex, !024, 2) (view L024 real values)
graph(coroplex+1 ,L024,2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages
from mgr are tossed into /devlnull!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.11 Function: graph-shorto

void graph-short(short *drxdy, int n)
This is a useful function for debugging, and exactly like the function grapho, except that it's

intended for short integer values. It pops up a graph on the computer screen (using the graphing
program xmgr) showing a graph of some array which you happen to want to look at.

The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph. The elements graphed are
a r r a y [ 0 . . n - 1 ] .

This function is a handy way to get a quick look at the contents of some a;rray. It writes the
output to a temporary file and then starts up :ongr, reading the input from the file. The r values
are evenly spaced integers from 0 to n-1. The gr values are the points in array I J .

Note that in order not to produce too much garbage on the screen, any output or error messages
from xrogr are tossed into /dev/nutl!

Authors : Bruce Allen, baLien@dirac. phys. uwm.edu

Comments: None.
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10.12 F\rnction: sgrapbo

sgraph(short *array, int n, char *name, int filenr:mber)
This routine writes the elements of a short arrav into a file so that thev mav be viewed later

with a graphing program like xngr.
The arguments are:

array: Input. The array that you want to $aph.

n: Input. The number of array elements that you want to graph. The elements used are
ar ray [0 .  .n -1 ] .

name: Input. Used to construct the output file name.

; fil-enunber: Input. Thevalue of3r used to construct the output file name.
1 r

This function produces an output file with two columns, containing:
i 0 array[ol
r 1 array[1J

n-1 array[n-1J
" The name of this file is: name.y where y is the integer specified by filenr:rober. Note that if

g < 1000 then g is "expanded" or "padded" to three digits. For example, calling
i  sgraPh(array,1024, "cur ious",9)

I will produce the file
curious.009

i containing 1024 lines.
j

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

: 
"omments: None.
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10.13 Function: audioo

void audio(short *arrdl, int n)
Makes a Sun workstation play music!
The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used are
a r r a y [ 0 . . n - 1 ] .

It doesn't take much experience before you find out that an interferometer can do funny things
that you can't see in the data stream, if you just graph the numbers. Hourever in many cases
you can hear the peculiar events. This function works only on Sun workstations with a CD-sound
quality chipset, that can handle 16 bit linear PCM audio. It creates a temporary file, then pipes it
though the Sun utility audioplay. The sample rate is assumed to be 9600 Hz.

Note that audio O adjusts the uolume so that the loudest event (largest absolute value) in the
data stream has a (previously fixed, by us!) morimum amplitude. So the "background. level" of
the sound will depend upon the amplitude of the most obnoxious pings, blips, bumps, scrapes or
howlers in the data set.

On a machine not equiped with the correct sound chip (for example a SparcStation 2) you can
listen to the file, if you first convert it to a format that the chipset can handle. This can be done by
taking the output of auCio O, which is a file called tenp. au and con-v€rting it to .,voice" format.
To do this, use the command:
audioconvert -f voice -o tenp2.au temp.au
You can then iisten to the sound using the command:
audioplay tenp2.au

Wam,i'ng: If you share your ofrce with others, they will find the first few events that you listen
to highiy entertaining. After the first day however they will stop asking what you're listening
to. After a few more days, their suggestions that you buy headphones will become more pointed.
Respect this request.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume
and/or the sample rate.

t
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10.14 Function: soundo

souad(short *axray,int n,cbar *name,int filenunber)
This is just like the function audio O except that it writes the sound data into a file of the form

x  2 1 1

The a,rguments are:

array: Input. The array that you wa,nt to hear.

n: Input. The number of array elements that you
ar ray [0 . .n -1 ] .

naqe: Input. Used to construct the output file name.

the volume

want to hear. The elements used are

filenunber: Input. The value of 3r used to construct the output file name.

This function produces an output file with lGbit PCM linear coding, containing sound data.
The name of the file is: name.y.au where g is the integer specified by filenr:mber. Note that if
g < 1000 then g is "expanded" or "padded" to three digits. For example, calling
sound (array, 4800, " growl", 9)
will produce the file
growl .009. au
containing 1/2 second of sound.

Note: see the Wam,ing that goes with audioO.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom
and/or the sample rate.
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10.15 Example: translate

This example may be found in the src,/examples/examplesltility directory of GRASP, and
contains an exampie program which translates data from the "old 1994" Caltech 4Gmeter format

described earlier, to the new LIGO/VIRGO frame format. Because this code provides an example
of how the data is encoded in this new format, we have included the text of the translation code

here. The frames produced by this translation contain about 5 seconds of data each, and are about
half a megabyte in length. The number of frames in each data file is set by the
# define FRAMESJERJILE
at the top of the code. To run the utility, use the command
traaslate directory-name
where directory-name is the name of the directory in which the files cbanneI.0 to channel.15

may be found. The FRAME format files produced by transl-ate are labelled uniquely by the time

at which the first data point in the first frame was taken (in Coordinated Universal Time). An

example of such a file (produced by translate) is:
c1-94_10-15_06_18_02
where C1 denotes the Caltech  0-meter prototype. Suggested narnes for the other sites are H2 and
H4 for the two Hanford LIGO detectors, L1 for the Livingston LIGO detector V1 for the Virgo
detector, G1 for the GEO detector, T1 for the Tama detector, 51 for the Glasgow detector, M1 for
the Max-Plank detector, and A1 for the AIGO detector. In the file name, 94 denotes the year (we

will use 01 for 200L, etc.) and 10 denotes the month (iabelled from 1 to 12). The hour ranges from

0 to 23 and in ihis examples is 06. The minuies (fe) ranges from 0 io 59 and ihe seconds (02)

ranges from 0 to 61 to include leap seconds but is normaily in the range from 0 to 59. This naming
convention will be used for any data files containing one second or more of data.

#include (nath.h)

# inc lude (std io.h)

#include <stdLib.b>
#include (string.h)

#include "Framel.h"

#include "grasp.h"

#define OLDNAIIES 0
#define LOCKLO 1
#define LOCKHI 10
#define C0RRECTTIMESTAMPS 1

/x set to zero to use new channel names, 1 for old names x/

/x set to 1 to correct loss of timestamp resolution x/

/x Each block of old-format data contains 5.07 secs of data. This
parameter determines how many of these old-format blocks (now a frame)
end up in each FRAME file. x/
#define FRAMESJER-FILE 32

/x earth's equatorial radius, in meters x/
#define EQUATORIAL (6.37814e+06)

/* earth's ellipticity or flattening due to rotation x/
#def ine FLAT (3.35281e-3)

/x the conversion from ADC counts to volts is: x/
static char unitsl]="Units are 10 volts per 2048 coults. Raage -2Q48 to

#if (OLDNAMES)

/x channel assignments before Nov 15, 7994 x/
static char xprenovl5[]={
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t t I FO  ou tpu t t t ,  t t t t ,  u t t ,  " n i c rophone r t ,  I t dc

"seisnonet€rt '  
,  

t t  t t ,  u " ,  r r  r r  
,  

r rTT'L ] -ockgd"
t 'mode c leaner v is ib i l i . ty f ,  "s lov pzt" ,

/* channel assignments after Nov 15, L994,rf
stat ic char xpostnovl5[]={

t ' fFO output 'r ,  I tmagnetometer'r ,  t tmicrophoD€", "",  "dc straj.nrr,  "Dode cle:ner pzttt
t ' se isEometer t ' ,  t ' s low pz t r t ,  r rpower  s tab i l i z€r t t ,  t t " ,

"TTL locked", "arm 1 visibi l i ty", "axn 2 visibi l i ty", "mode cleaaei visibi l i ty"
r r  r r  

,  
t r em  1  co i l  d r i ve r t ' ) ;

#else

/x channel assignments before Nov 15, L994 *l
s tat ic  char  *prenov15[ ]={

I t IFO-DI ' IROu, t r " ,  u" ,  i l IFO_Miket t ,  t t IFO_DCDMt' ,  "PSL_MC_V' ,
t ' I FO-Se is -1 " ,  t t t ' ,  r r r r ,  t r n ,  t ' I FO_Locku ,  u IFO_EAT ' ,  u IF0_SAT '
" fFO-MCR',  uIFO-SPZT",  ISUS-EE-Coi1-V") ;

/x channel assignments after Nov 15,1994 x/
static cbar xpostnovlS[]={

t 'IFO-Dlt[R0tt, ttIF0-Mag-x" , ttIF0_Mikett, ut', uIFO_DCDII", UPSL_MC_V' ,
" IFO-Seis-1u,  nIFO-SPZT' ,  xPSL_PSS' | ,  " " ,
"IFO-Lock" , ' IF0-EAT", xIFO_SAT', "IFO_MCR" ,
u" ,  USUS-EE-Coi1-V") ;

#endif

/* Program's only argument is the name of the directory containing old-format data xf
1nt nain(int argc,charx argvil) {

char f i lenane [256], na:ne [256], hist [1024], xhistnew, *buf f , **sfuanlrane ;
in t  i ,code=1,Dum,1arge=50000,sna11=5000,n, f i rs t= l , f i rs t t i t re ,aayopen-0,n l iaes;
long buffSize;
f loat  fast rate=9868.4208984375, tb lock,s1owrate=986.84208984375,xreal ,x inag,xf req, theta;
double f irstmsec, f irst-estirnate, second-estinate, dif f , dt, dtslow ;
f loat startt ine=-100. 0,guesstime ;
doubLe currenttime=-2O0 i
int blockcount=O;
struct FrFiIe xoutputfl le;
struct FrameH xfrane;
struct FrAdcData xadc[16] ;
struct FrDetector *frdetect ;
struct FrVect *.f ramevec;
struct FrVect xfra:nevecS;
struct FrStatData xstaticdata;
struct FrStatData xstaticdatas;
struct ld-binheader bin-beader ;
struct ld-nainbeader main-header;
struct tn tiroe,*gtiroe,gts;
time-t caltine;
FILE xfp[ l6J,xfpswepts ine;
void unhappyexit(1nt i) ;
int get-run-nr:mber(int firsttine) ;

f * initialize the frame system x/
FrlibIni (NULL, NIILL,2) ;
buffSize=1000000:

straint' , ttnode cle:rer pzttt,

,  "arm 1vis ib i l i ty" ,  "arm 2 v is ib j ,1 i . ty" ,
"arn 1 co11 dr lver") ;

I
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buf f qnalloc (buf f Size) ;

f * ueate a frame x/
f 3ams=psemeHNew (ttC1" ) ;

/* assign detector structure: site location and orientation information */
frame-)detectRec=FrDetectorNew( t 'rea1t' ) ;
f rdet e ct=f rame -)dete ctRe c ;
f rdetect -)latitude=34. 1667 ;
f rdetect -)longitude=1 18 . 133 ;
f rdetect-)arnlAngle=180 . 0 ;
f rdetect ->arn2Angle=27 Q . O ;
f rdetect -)arnlLength=38 . 5 ;
f rdetect -)arn2length=38 . 1 ;

/x Correct for oblateness of earth, use reference spheriod with
flattening FLAT; EQUATORIAL is earth equatorial radius in meters.
Reference: eqns (4.13-14) in "Spacecraft attitude determination and
control", Ed. James R. Wortz, D. Reidel Publishing Co., Boston, 1985.
Note: this SHOULD be corrected to add in the height of Caltech above
sea level. x/

/x angle measured down from the North pole x/
tbeta= (M-PI /!80 .0) * (90. 0-f rdetect-)J-atitude) ;
frdetect-)altitude=EQUAToRIALx ( 1 .0-FLAT*cos (tbeta) *cos (theta) ) ;

/* now open files containing 40 meter data */ I

i f  ( !argv[1J l l  argc!=2)  untrappyexi t (1)  t  
. ,

/* step through all possible channels, seeing which channels have data,rf
f  or  ( i=0;  i<16;  i .++)  {

sprintf (nan€, r '7.s,/channel .7od" , argv [1J , i) ;
fp [iJ =f open(name, "r") ;
if (fp[iJ==NIILL) fprintf(stderr,"Fi1e %s unavailable. Skipping it. . .\n",name);
aayopen= (aayopenl ifp tli ) ;

)

/x if there are no open files, then please exit with a warning message x/
if ( !anyopen) uahappyexit(1) ;

/* the sample times for the fast/slow channels x/
dt=1 .0/ fast rate;
dtslow=1 .0/slowrate;

/* Define 4 fast, 12 slow ADC channels (long strings of blanks needed - see below) x/
f o r  ( i =0 ; i ( 16 ; i ++ )

if (fp[i] !=NULL)
i.f ( i<4)

/x sample rates differ from fastrate, slowrate - see GRASP manual for details x/

adc [ i ]  =FrAdcDataNew ( f  rame, r r  r '  ,50000.0x 15 .0 /76.0, large,  16)
e lse

adc [1] =PtgdcDataNew (frame , "

/x now loop over
wb.ile (code)O)

creating blocks of output data ,r fthe input data,

{
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I:

/x read a block of. data xf
f  or  ( i=0;  i (16;  i .++)  {

/x set size of data block x/
n= ( i (4) ?large : sna1l ;

/x read data into frame short array xf
i f  ( i<4 && fp[1]  !=NULL)

code=read_b1_ock( fp[ i ] ,&(aachl ->aata->dataS),&num,&tblock,&fastrate,0,&r ,0,
&bin-header, &main-beader) ;

e lse 1f  ( fp [ i ]  l=NULL)
code=read-block( fp[ i ]  ,&(adc[ i ]  ->data->dataS),&m:m,&tbl -ock,&sLowrate,0,&n,0,

&bin-header, &mairlheader) ;
]

/x if no data remains,
it (code==0) {

fprintf (stderr,

abo r tO ;
-l

)

we have found an error */

"Error iD translation: unexpected eud of data!\n");

/+ check the various sample times ,r/

i f  (d t !=1.O/ fast rate)  fpr in t f (s tderr , "Fast  sample rates don' t  rnatcb! \o") ;
i f  (d ts lowl=1.O/s lowrate)  fpr in t f (s tderr , "S1ow sample rates don' t  natch! \n") ;

/* set time stamps for this block of data xf

fx create structure to store localtime of tape x/
t ine . tm-sec=rnain-header . tod-secoud ;
t ine . tm-:oin=main--beader . tod-minut e ;
t ine . tm-hourqnain-b.eader . t od-.hour ;
t ine . tn-ndayaoain-header . dat e-day ;
tine . tm--Donqoain-header . date-month ;
tine . tm-year=maj.n-header. date-year ;
tirae . tm-wday=nain-Jreader . date-dow ;
tine.tro-yday=-1; /x info not available, but frlled in by mktime x/
tirne.tn-isdst=-l; /x info not available, but filled in by mktime x/
caltiroe=oktine (&tlne) ;
gtine=gntine (&caltine) ;
gts=*gtime;

if (caltine !=main-header. epoch-ti.ne-sec) {
fprintf(stderr,"I am confused about the correct t ine: %d or %d\n",

( 1nt ) calt ine, naJ-n-header . epo ch-t ine-s e c ) ;
fprintf (stderr,t ' ff not running on a PST tine-zoae rnachine, ig"nore error!\n");

1
I

/x set the time stamp for the first data sample (more precise than header time) */
{ J  / ' G i - ^ } \  (
r r  \ r r t D U , /  I

f irsttiroe=roain-beader . epo ch-tine-sec ;
f irstms e c=0 . 00 1 xnaiai.eader . epo ch-t ine-ns e c ;
printf ( "Loca1 start t i loe : 7os\n" , ctine (&caltine) ) ;
printf ("UTC start t ime : Tos",asctime(&gts)) ;

/x assign the run number from 1,..,1.1 to the frame. ,r/

f rame-)run=get Jun-number (f irstt ine) ;
if (frarne-)run(.1 | | frane-)run)11) unhappyexit(2) ;
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/x assign proper name to adc channel (overwrites long blank space above) x/
if (frane->run<2)

g[an-11sss=prenov15;

e lse
sfuan3amg=postnovl5;

f o r  ( i =0 ; i ( 16 ; i ++ )

if (fplil t=uurr) {
strcpy(adc [i] ->name, chaa_-narne [i] ) ;
f* put in the physical volts/counts conversion x/

adc[i] -)data-)r:nlt[0]=(char 'r)nalloc((strlen(':nits)+1)xsizeof (cbar)) ;
strcpy(adc [i] ->data->unit [0] ,units) ;

/x which ADC "crate" was this */
adc [i.] ->crate=i;

]
I

if (C0RBECTTTMESTAUPS) {
guesst ime=currenttiroe+7o . 0/15 . 0 ;
i f  ( fabs(guesst ine- tb lock)>1.0)  {

startt ime=tblock;
blockcount=0;

I
J
currenttime= (blockcouat++) x ( (double) 76 . 0/15 .0)+startt ine;

/* put the time stamp into the frame structure *f
curreDtti.!oe+=f irstmsec ;
f rarne -)UTineS=f irstt iroe+ ( int ) currentt ime ;
frame-)UTineN= (int) ( 1 . e9x (currenttime- (int) currenttine) ) ;
f r :mg->d1=76.  0/15 .0;

I)
e lse  {

/* put the time stamp into the frame structue *f
tblock+=firsttrsec;
f rame-)UTirneS=f irstt ine+ ( int) tblock ;
f ra-ue-)UTineN= (int) ( 1 . e9x (tblock- (int) tblock) ) ;

. 
frame-)dt=nun/slowrate;

J

/* frame'>type[0]:6' *7

/x put in the history information (only once per translation) x/
i f  l f i r c + \  f

t

f i rs t=0;
histnew=blst;
histnes+=spri.ntf (histnew, "\nTranslati.on carried out by: \n") ;
histnew+=sprintf(histnew," login: 7os\n",getenv("LOGNAI"IE"));
hlstnew+=spriutf (histneu," user: %s\n",getetrv("USER")) ;
bistnels+=sprintf (histnew, " directory: o/os\n" 

, getenv ( "PWD" ) ) ;
histnew+-sprintf (histnelr, I' datapath: 7os\n" , argv hi ) ;
histnew+=sprintf (histnew," tra.D.slation progra.D name: 7.s\n",argv[0]);
histnew+=sprintf (histnew, tt source code nane; 7.s\n", "tra"ns1ats. c") i
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FrHistoryAdd (f rame, hist) ;

f * read the swept sine calibration files (only once per run) x/

sprintf (name , "%s/swept-sine. ascii " , argv [1J ) ;
fpsweptsine=f open(name, "r" ) ;
read-sweptslne (fpsveptsine, &nllnes, &freq, &rea}, &iuag) ;

/* copy swept sine calibration data into vector; see below for packing style x/

framevec=FrVectNew (FR-VECT-F, 1 ,3*nlines, 1 . 0, "Vifo/Vcoil" ) ;
f o r  ( i =0 ; i ( n l i aes ; i ++ )  {

franevec-)dataF lil =freq [iJ ;
framevec-)datalr [i+nlines] =reaL [i] ;
framevec->dataF [i+2xn]inesl =inag [i] ;

1

,- ,n"n link the calibration data into the history structure x/

stat i cdata=FrStatDataNew ( " sweptsine ",
"swept  s ine cal ibrat ion: \npacking:  f reql iJ ,  real [ i ] ,  inaginary[ iJ  " ,

f rame-)UTineS ,}'!AXINT, 1 , f ramevec) ;
FrStatDataAdd (&f rane->detectRec-)sData, staticdata) ;

/* put in lock range (INCLUSIVE low->high) Rolf: if O:unlock and l=lock

then you need LOCKLO:LOCKHI:i

framevecS=FrVectNew (FR-VECT-S, ! ,2,!.0, " adcCounts" ) ;
framevecS-)datas tOl =LOCXLO; /x smallest value at which we are still in lock */

framevecS-)dataS[1]=L0CKHI; /* largest value at which we are still in lock */

/x then link the lockrange data into the history structure x/

stat i cdataS=FrSt atDataNew ( " 1 o cklo/f o ckhi ",
rrlock r:nge : \npackiag: array [0]=locklo array[1J=lockhit ',
frarne-)UTirneS , MAXINT, 1 , framevecS) ;

FrStatDataAdd (&f rane->detectRec-)sData, stat j' cdataS) ;
f

J

/x is the time stamp for this data block consistent with start time*offset? x/

f irst-est inate=f rame -)UTineS+1 . e-9*f raroe-)UTineN ;
second-estinate=nain-treader. epoch-tiroe-sec+1 . e-3xmain-header. epocb-timelnsec;

dif f =f irst-estimate-second-estinate ;
i f  ( f abs (d i f f )>0 .002 )

fpr in t f (s tderr , "T ime stanps have dr i f ted by ' / , t  nsec! \n" ,d i f f ) ;

/x Increment frame counter (set to 1 for first frame of each run) x/

frame-)frane++;

/x Open Flame file (one file per FRAMES-PER-FILE frames) x/

if ((frarae-)fraroe%FRAMESJER-FILE)==1) {
/*. set file name. Note than month:I to 12 not 0 to 111 xl

spriutf (f ileoame, "cr-'/,o2d-'l,o2d-'/,02d-'/,02d-'/,02d-'/,02d" , gts ' tn-year ' gts ' tn--!oon+1 ,
gts . tn--uday, 8!s . tn-hour, gts . tm-riD, gts . tn-sec) ;

pr in t f  ( "F i lenane:  7.s \n" , f i leuame) ;
outputfi le=FrFileONew(fi lename, N0, buff , buffSize) ;

1
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,/* un-comment to print a short snippet of each Frame onto the screen x/

/x FlameDump(frame, stdout, 2); x/

/* Write frame to file, */
FrameWrite(frarne, outputf i1e) ;

/* Close file if finished with FRAMES-PER-FILE or no remaining data x/
if ((frane-)frane%FRAMESJER-FILE)==0 I I code==-1)

FrFi-le0End(outputf i1e) ;
)

/x llee frame memory and return x/
Fr :meF ' roo  f f rame)  .

return(O) ;
)

/x this routine is called if something is wrong x/
void unhappyexit(int i) {
switch (i) {

case 1:
fprlntf (stderr,
t'Syntax: \ntransLate directory\nwhere channel. * fi les nay be found in directory\n");
e x i t ( 1 ) ;

case 2:
fprintf (stderr,
"The IJIIC does not appear
exi t  (1)  ;

def aul-t:
abo r tO ;

to  l ie  in  the  range o f  aay  da ta  se t ! \n " ) ;

return;
L
J

/x number of secs after Jan 1 1970 UTC at which Nov 1994 runs began x/
statj.c int stj"nes[]={784880277,784894763,785217574,785233119,785250938,785271063,

785288073,785315747,785333880, 785351969,785368428, 785388243) ;

/* This routine looks at the epoch time (sec) and returns the run number (1-1i) x/
iDt get-run-number(int firsttine) {

i-nt i;

f o r  ( i =0 ; i ( 12 ; i ++ )

if (f irstt ine(st j-nes [i] ) break;

return i.;
l)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The technique used to time-stamp this data is an attempt to correct the poor resolu-
tion of the original data - please see the remarks in 4.1 for additional detail. Aiso notice that
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because the sample rates of the slow/fast channels differ by a ratio of L0, we can not easily

reformat the frames with sample sizes of length 2n . We expect that the FRAME format will

continue to evolve, so that this translator (and the FRAME format data) may reqire periodic

updates. Should the year have four digits (eg, 1994) for easier sorting?
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10.16 Multi-taper methods for spectral analysis

Since the early 1980's there has been a revolution in the spectral analysis, due largely to a seminal
paper by Thomson [23]. There is now a standard textbook on the subject, by Percival and Walden

1241, to which we wiil frequently refer.
Among the most useful of these techniques are the so-called "multitaper" methods. These make

use of a special set of windowing functions, called Slepian tapers. For discretely-sampled data sets,
these are discrete prolate spheroidal sequences, and are related to prolate spheroidal functions. The
GRASP package contains (a modified version of) a public domain package by Lees and Park, which
is described in [25]. Further details of this package may be found at
http: / /Iove.geology.yale.edu/ntm/. Note however that we have already included this package
in GRASP; there is no need to hunt it down yourself.

For those who are unfamilar with these techniques, we suggest reading Chapter 7 of [24]. The
sets of tapered windows are defined by three para.meters. These are, in the notation of Percival
and Walden:

l/: The length of the discretely-sampled data-set, tlpically denoted by the integer npoints in the
GRASP routines.

NW Lt:. The product of total observation time NAt and the resolution bandwidth I4l. This
dimensionless (non-integer) quantity is denoted nwdt in the GRASP routines. Note that for
a conventional FFT, the frequency resolution would beW : Lf : l/NLt. This corresponds
to having NWAI: 1. The multitaper techniques are typically used with values of I,7 which
are several times larger, for example W : 3A"f , which corresponds to Ntr;VAt:3.

K: The number of Slepian tapers (or window functions) used, typically denoted nwin in the
GRASP routines. Note that it is highly recommended (see page 339 of fZ+l) that the number
of tapers K <2NWAt.

In addition to providing better spectral estimation tools, the multi-taper methods also provide
nice techniques for spectral line parameter estimation and removal. When the sets of harmonic
coefficients are generated for different choices of windows: one can perform a regression test to
determine if the signal contains a sinusoid of fixed amplitude and phase, consistent across the
complete set of tapers. The GRASP package uses this technique (the F-test described on page 499,
and the worked-out example starting on page 504 of l2al) to estimate and remove spectral lines
from a data-set. This can be used both for diagnostic purposes (i.e., track contamination of the
data set by the 5th line harmonic at 300H2) or to "clean up" the data (i.e., remove the pendulum
resonance at 590 Hz).

As an aid in understanding these techniques, we have included with GRASP a section of the
data-set from the Willamette River appearing on pg 505 of Percival and Walden [24], and an
example program which repeats and reproduces the results in Section 10.13 of that textbook. This
demonstrates the use of multi-taper methods in removing "spectral lines" from a data set.
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10.17 F\rnction: slepian-taperso

int sleplan-tapers(int nurn-points, int nwin, double *,lam, float nwdt, double
double *tapsun)

This function computes and returns properly-normalized Slepian tapers. It uses the method
described in Percival and Walden [2al pages 38G387, finding the eigenvectors and eigenvalues of a
tri-diagonal matrix. The arguments are:

mrn-points: Input. The number of points N in the taper.

nwin: Input. The number of tapers computed.

lan: Output. Upon return, 1an[0. .nwin-1] contains the eigenvalues ,\ of the tapers. Note that
0 < l < 1 .

nwdt: Input. The (total sample time) x (frequency resolution bandwidth) product.

tapers: Output. Upon return: tapers[O..nunpoiats-1] contains the first taper,
tapers[mrn-points. .2*nu0-points-1] contains the second taper, and so on-

tapsum: Output. On return tapsum[O] contains the sum of the nun-points values of the first
taper, tapsun[1] contains the sum of the values of the second taper, and so on. Note that
because the odd-index Slepian taper functions are odd, tapsun [1 ,3, S, . . . ] would vanish if
it were not for round-off and other numerical enor.

This function will print a warning message if the condition K <2NWLI is not satisfied (see
Section 10.16).

Slepian Taper Functions
lGnpoints=39s Nw^t=nwdt4 K=nwin=s

:

2.O

-2.O
0.0

Figure 54: Here are five Slepian tapers computed with slepian-tapersO. The parameters are
npoints=395. nwdt=4.0 and nwin=S.
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Author: Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)
and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: There are a number of techniques for calculating the Slepian tapers. We have not
extensively tested these routines, but they appear to work well. They make use of the standard
EISPACK routines, translated from FOHfRAN into C using f2c.
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10.18 F\rnction: nultitaper-spectn:mo

nultitaper-spectrr.:m(f1oat *data, int npoints,int kind, int nwin, float nwdt, int ino:m,
f loat dt ,  f loat *ospec, f loat *dof,  f loat * fva1ues, int  k1en, f loat *cest,  int  dospec)

This function computes the multi-taper spectrum, as defined for example by Percival and
Walden [24] equation (333). For the sake of efficiency, it computes then stores internaliy the

Slepian taper functions, so that if it is called a second time (and needs the same tapers) they do
not need to be re-computed. If called v/ith different parameters it recomputes the Slepian tapers
for the new parameters.

The arguments are:

data: Input. Pointer to the time.domain data array, data[0. .npoints-l].

npoints: Input. Number of data points in the data array.

kind: Input. If set to 1, compute the normal multi-taper spectrum. If set to 2, compute the
"adaptive" spectrum defined by defined by Percival and Walden equation (370a).

nwin: Input. The number of tapers to use.

nwdt: Input. The (total 5ample time) x (frequency resolution bandwidth) product.

inorm: Input. Determines choice of normalization. Possible values are

1: Divide spectrum by l/2.

2: Divide spectrum by At2.

3: Divide spectrum by N.

4: Divide spectrum by 1.

dt: Input. Sample interval (only used for normalization).

ospec: Output. The output spectrum, including both DC and Nyquist frequency bins. The

array range is ospec [0. . klen/ZJ . Warning -this is an odd number of entries. The user must
provide a pointer to sufficient storage space.

dof : Output. The effective number of degrees of freedom of the spectral estimator at a given

frequency, defined by Percival and Walden eqn (370b). The number of degrees of freedom is

the constant nwin-1 for kind=1 above, and only useful in the adaptive case where kind=2.

Thearrayrangeisdof lO..kl 'en/2J. Warning-thisis anoddnumberof entr ies. Theuser

rnust provide a pointer to sufficient storage space.

fvalues: Output. The value of the F-statistic in each frequency bin spectrum, including both DC

and Nyquist. This is defined by Percival and Walden equation (499c), and roughly speaking

is the ratio of the energy explained by the hypothesis that one has a fixed-amplitude spectral

line at that frequency to the energy not explained by this hypothesis. The array range is

fvaLues[0..k1en/2J. Warning-thisis anoddnumberof entr ies. Theusermustprovidea
pointer to sufficient storage space.

klen: Input. An integer power of 2, greater than (or equal to) npoints. The (tapered) data is

zero-padded out to this length. You generally want klen to be around four to eight times

larger than the length of your data set, to get decent frequency resolution. The number of

frequency bins (including DC and Nyquist) in the output spectrum is N1 - 7 +kLenf2.
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cest: Output. The estimated Fourier coefficients of any spectral lines in the data- The real and
imaginary parts at DC are contained in cest [0] , cest [1] . The next higher frequency bin has
its real/imaginary parts contained in cest [2] , cest [g] , and so on. This pattern continues
up to and including the Nyquist frequency. The length of the array is cestlO..k1en+1].
The normalization/sign conventions are identical to Percival and'Walden eqns (499a) and the
exa.mple on line 20 of page 5L3, except that the sign of the imaginary part is reversed, because
the Percival and Walden FFT conventions eqn (65ab) are opposite to Numerical Recipes. The
user must provide a pointer to sufrcient storage space.

dospec: Input. If set non-zero, then the power spectrum (pointed to by ospec) is calculated.
If set to zero, then to save time in situations where all that is needed is cest, the power

spectrum ospec is not calculated.

Author: Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)
and Adrian Ottewili (ottewill@relativitv.ucd.ie).

Comments: None.
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i 10.1-9 Structure: struct renoved-lines

This is a structure used to keep track of spectral lines as they are removed. Its primary use is in

z:_: the function remove-spectralJines O. The structure contains the following:

struct removed-lines{

int index;

float fvalue;
f  

' l  
n a f  r a .

- . v E v  - v ,

f loat  in ;

The different quantities are:

index: The subscript (frequency bin) occupied by the spectral line in an array of length Ny

(defined in the previous section). Note that in tlpical use index runs over a range of.2n *l
possible values, including DC and Nyquist.

fvalue The value of the F-statistic, defined by Percival and Walden eqn. (499c)-

re: The real part of the line's complex a,rnplitude. The normalization/sign conventions are

identical to Percival and Walden eqns (499a) and the example on line 20 of page 513.

im: Thre imagirrary part of the line's complex amplitude. The normalization conventions are

identical to Percival and Walden eqns (499a) and the example on line 20 of page 51.3, but the

sign is reversed, because the Percival and Walden FFT conventions eqn (65ab) are opposite

to Numerical Recipes.
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10.20 Function: fvalue-cropo

int fvalue-cnp(const void xf1, const void *f2)

This is a function which may be used to compare the frrdues of two different objects of type
struct renoved-Iines. It is used for example as an argument to the standard-C library routine
qsort for sorting lists of removed lines into decreasing order of fvaLue.

This function is supplied with pointers to two stuctures. It returns -1 if the first structure has
the larger fvalue, *1 if the first structure has the smaller fvalue, and 0 if the fvalues are equal.

The arguments are:

f 1: Input. Pointer to the first structure of type struct renovedlines (cast to void x so that
your compiler does not complain).

f2: Input. Pointer to the second structure of type struct renoved-lines (cast to void * so
that your compiler does not complain).

As an example, if line-list [0. . n-1] is an array of struct renoved-lines, then the function
call:
qsort ( line-1ist, n, sizeof (struct s ignif i c alt-values ), f value-crnp)
will sort that array into decreasing fvalue order. (Note: you may have to cast the arguments to
prevent your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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10.21 tr\rnction: index-cnpo

int index-cnp(const void *f1, const void *f2)

This is a function which may be used to compaxe the frdexes of two different objects of tlpe struct

renoved-lines. It is used for example as an argument to the standard-C library routine qsort for

sorting lists of removed lines into increasing order in frequency.

This function is supplied with pointers to two stuctures. It returns -L if the first structure has

the smaller index, *1 if the first structure has the larger index, ald 0 if the indexes are equal-

The arguments are:

f1: Input. Pointer to the first structure of type struct renoved-liaes (cast to void * so that

your compiler does not complain)-

f2: Input. Pointer to the second structure of type struct renovedJines (cast to void * so

that your compiler does not complain).

As an example, if line-Iist [0. . n-1] is an array of struct removed-Iines, then the function

cali:
qsort ( tine-Iist, n, s izeof (struct s ignif i cant-values ), index-cnp)

will sort that array into increasing index (frequency!) order. (Note: you may have to cast the

a-rguments to prevent your compiler from complaining.)

Author: Bruce AIIen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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LO.22 F\rnction: remove-spectral-lineso

void remove-spectral-lines(fIoat *data, int npoints, int paddedJength, float nwdt,
int nwin, int naxlines, int maxpass, int *D.um-removed, struct removedJines *lineJist,

float *x0tap-spec-init, float *ntap-specjinal, int dospecs, int finin, int finax)
This routine automatically identifies and removes "spectral lines" from a time series. The

procedure followed is described in Percival and Waiden Chapter 10. A worked example may be
found in Section 10.13 of that book, and the next subsection of the GRASP manual includes two
example programs which use renove-spectralJines O. Upon return, removeipectrallines o
provides both an "initial" muiti-taper spectrum, of the original data, and a "final" multi-taper
spectrum, after line removal. Upon return, the data set has the spectral lines subtracted. This
routine also returns a list of the lines removed. For each line it provides the frequency bin (for
the padded data set) in which the line falls, the value of the F-test for that line, and the complex
coefficient Cl defined by Percival and Walden eqn (499a) which defines the line.

The arguments are:

data: Input. A pointer to the time-series array data[0. .npoints-1l.

apoints: Input- The number of points in the previous array.

padded-length: Input. The number of points of zerepadded data that will be analyzed. Note
that this must be an integer power of two greater than or equal to npoints. We recommend
that you use at least a factor of four gleater, to obtain suflflcient frequency resolution to
accurately identify/remove spectral lines.

nwdt: Input. The (total sample time) x (frequency resolution bandwidth) product.

nwin: Input. Number of Slepian tapers. See previous sections.

naxJines: Input. The maximum number of spectral lines that you want removed. The array
line-l-ist[0. .nax-]-j.nes-11 must have at least this length.

naxpass: Input. The maximum number of iterations or passes through the line-removal loop
described below. Set to a large number to make as many passes as needed to remove all the
spectral lines.

num-removed: Output. The actual number of spectral lines subtracted from the data.

line-Iist : Ouput. A list of structures line-list [0. . num-renoved-1] containing the frequency
bin, real and imaginary parts of the removed line, and the F-test significance value associated
with the;frsf removal of the line. Upon return from this function, the elements of line-list []
are sorted into increasing frequency-bin order.

ntap-spec-init: Output. The multi-taper pov/er spectrum of the i.ni.tial datal] array, inciuding
both DC and Nyquist frequency bins. The array rarlge is ntap-spec-init [0 . . paddedJength/2J .
Warning -this is an odd number of entries. The user must provide a pointer to sufficient storage
space.

ntap-specJinal: Output. The multitaper power spectrum of the final datall array, with the
spectral lines subtracted, including both DC and Nyquist frequency bins. The array range
is ntap-specJinal [0. .padded Jengtb/2). Warning -this is an odd number of entries. The
user must provide a pointer to sufficient storage space.

297



i

dospecs: Input. If set non-zero, then the initial/final power spectra (pointed to by ntap-specjnit

and ntap-specJinal are calculated. If set to zero, then to save time in situations where all

that is needed a list of spectral lines and 1h"i1 amplitudes and phases, then neither of these

pov/er spectra a,re calculated.

f inin: Input. In situations where all that is needed is a list of spectrai lines and their amplitudes,

and it is desired to Iimit the search to a restricted range of frequencies, then f inin defines

the lower bound of the ra,nge of (padded) frequency bins which are searched for spectral lines'

The range of f imin is O..klen/2. Also, f inin ( f inax.

f inax: Input. In situations where ali that is needed is a list of spectral lines and their ampiitudes,

and it is desired to limit the search to a restricted range of frequencies, then f inax defines the

upper bound of the range of (padded) frequency bins which are searched for spectral lines.

The range of f inin is 0..k1en,/2. Also, f inin ( f ina;r.

The algorithrn used by remove-spectralJinesO is an automated version of the procedure

illustrated in Percival and Walden Section 10.13. The steps followed are:

L. The mean value is subtracted from the data-set, and it is zero padded to the specified length.

2. The set of Fourier coefficients for the tapered data sets are determined.

3. From these coefficients the F-statistic is determined for each frequency bin (Percival and

Walden eqn (499c)). If the confidence level (that the frequency bin contains a spectral line)

exceeds 1 - l/npoints (Percival and Walden pg 513), an estimator of the spectral line coef-

ficients is constructed, and the line is placed onto a working list. If no frequency bins exceed

this level of confidence, we are finished.

4. The working list is now sorted into order of decreasing F-values-

5. To ensure that we do not remove the same line twice, the spectral line associated with each

spectral line on the working list is subtracted from the data-set, provided that it does not lie

within a frequency width of. LW of a stronger (larger F-value) line-

6. We return to step 1 above, iterating this procedure, provided that the number of times that

we have passed by step 1 is less than or equal to naxPass-

Author: Bruce Allen (ballen@d.irac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

comments: If nax-lines is not large enough, then the line-list [J array may not contain all of

the possible spectral lines, which exceed the confidence level above. This may even be the

case if numJernoved is less than na:c-lines. We suggest that you make rna:<lines somewhat

larger than nr:-n-renoved. One ought to be able to improve on this routine, by using the array

of F-values generated internaily and interpoiating to find the frequency of the lines more

precisely. One might also be able to fit to a model of two closely separated lines to better

remove certain "spiit" features, or to fit to an exponentially-decaying model to remove other

broadened features.
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10.23 Example: river

This is an example program which uses the function renove-spectrallineso to repeat the

analysis of data from the Willamette River given by Percival and Walden in section 10.13 of their

textbook.
It displays graphs of the river flow data (which is distributed with GRASP) and spectrum

before and after automatic removal of the two significant spectral lines (whose frequencies are

Ifyear and 2fyear). These graphs are also shown here. Before running this program, be sure to

set the envionment variable giving the path to the river data, for example:
s et env GRASP JARAMETERS / usr / 1o cal /GRASP/paramet ers
The text output of the prograrn is as follows:

Total number of lines removed: 2
Renoved line of amplitude -0.29t175 +
(F-test value 48.455242)
Renoved line of anplitude 0.023220 + i
(F-test value 15.2243L1)

i  0.312209 at f req 1.005848 cycles/year

0.098357 at f req 2.000000 cycles/year

#include "grasp.h"

#iaclude (unistd.h) /x need the header for the sleepQ function x/

int naiaO {
int i,aum-points,num-win,nun-freg,padded-length,max-fines,numJemovedl
f l-oat nwdt, xdata, r.ntap-spec-init, *mtap-spe c-f inal, f req, f nyqui st ;
struct removed-1ines xline-1ist ;
FILE xfpriver;

f x data length, padded length, num frequencies including DC, Nyquist x/

nun-points=395;
padded-length=1024;
nur-f req= t +paddedJe ngth I 2 ;

/x number of taper windows to use, and time-freq bandwidth x/

uum-win=S;
nwdt=4. 0;

/x maximum number of lines to remove x/
max-1i.nes=8;

/x ailocate arrays */
data= (float *)roalloc (sizeof (f loat) *nuro_points) ;
ntap-spec-init= (float x)malloc (sizeof (f1oat) xnunjreq) ;
ntap-spec-final= (float x)nalloc (sizeof (f loat) xnumjreq) ;
line-1ist= (struct renoved-lines x)roaLloc (sizeof (struct renoved-lines) xnax-]1aes) ;

/x Read Willamette River data from Percival & Walden example, pg 505 x/

fpriver=grasp-open( "GRASP-PARAMETERS' , "wi.Ilamette-river. dat " ) ;
for  ( i=0;  i<395;1++) fscaaf  ( fpr iver , , 'o /of  , , ,data+i . )  ;
f c l ose ( fp r i ve r ) ;

f x Since the data is sampled once per month, fnyquist :6 cyleslyear */

fnyquist=0 .5x\2i
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/* pop up a graph of the original data x/
graph(data,num-poj-nts, 1) ; sleep (5) ;

/x now remove the spectral lines from the data set x/

remove-spectral-1ines (data, num-points , paddedJengtb, nwdt , num-win,

max-lines,500,&num-renoved,lJ.ne-l-ist,mtap-spec-inlt,ntap-spec-fina1 ,1,0,numJreq);

l* pop up a graph of the original multitapered spectrum x/

graph(ntap-spec-init,num-freg, 1) ; sleep(5) ;

/* pop up a graph of the line-removed data and multitapered spectrum x/

graph(data,Dun-poi!.ts, 1) ; sJ-eep (5) ;
graph(rotap-spec-f inal , numJreq, l) ; sleep (5) ;

/x print out a list of lines removed */

printf ("Tota} number of lines removed: 7od\n",nun-renoved) ;
for (i=0; i(num-renoved; i++) {

f req=1 ine-l i st I i] . indexxf nyquist/nurnJ req ;
printf ("Renoved. l ine of amplitude'/,t + i T,f at freq %f cycles./year\t",

l ine-list [ i] . re,l inejist [ i] . im,f req) ;
printf ( " (F-test value %f) \n' , lineJist [1] . fvalue) ;

l
r a f r r ; n  O .
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Willamette River Flow
(from Percval & Walden pg 5O5)

Green: original data (DC removed)
Red: after spectral line removal

100.0 200.0 300-0
months

Willamette River
multi-taper power spectrum

t00

line removed
1 cycle/year

line removed
2 cycles/year

cycles/year

Figure 55: Output of the example program river, making use of remove-spectralJines O to
automatically find and remove two "spectral line" features from a data set. This is the same
example treated by Percival and Walden in Section 10.13 of their tertbook.

E o.o

. 0 L
0.0

E

o
o
B t o
o
3

295



I

I

LO.24 Example: ifo-clean

This example program uses remove-spectralJines O to automatically identify and remove "spec-

tral lines" from the output of the 4Q-meter IFO. To run this program, be sure to set the data path

environment variable, for example:
set eav GRASP-DATAPATH /usr / Io ca]-. / GRASP/dat a/ 1 9nov94 . 3

The program outputs graphs in a f,wo files called ifo-clea:r-data.out and ifo-clean-spec.out,

containing the before/after time series and spectra. These may be viewed with xrngr by typing;
-nxv if o-clean-data. out

)<ngr -nxy if o-c1ean-spec. out

to start up the xrngr graphing program.

The output of this program is a list of lines removed:

lcogr

and
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Renoved line

Removed line

Renoved line

Renoved line

Removed line

of l ines removed: 39
frequency 30.7t7 Hz anpl i tude 0.78 phase 15-54 (F-test 68'6)

frequeacy 79.203 Hz anpl i tude 0.55 phase -t57.47 (F-test 52.5)

frequency 80.257 Hz aiopl i tude 0.12 phase -101.84 (F-test 39.3)

freguency 109.318 Hz anpl i tude 4.52 phase to-2I (F-test 75.5)

frequency 12O.OO9 Hz anpl i tude 0.46 phase 5.01 (F-test 537.9)

frequency 139.584 Hz anpl i tude 0.29 phase -163.57 (F-test 304.5)

frequency 179.938 Hz anpl i tude 2L.91 phase -43.22 (F-test 3635.0)

freguency 23g.867 Hz anplitude 0.45 phase 130.25 (F-test 42.2)

frequency 245.438 Hz anpl i tude 0.21 phase -116.94 (F-test 51.9)

frequency 27g.t67 Hz anpl i tude 0.31 phase 0.52 (F-test 47.2)

frequency 2gg.g47 Hz amplitude 15.37 phase -135.82 (F-test 9712-5)

frequency 359.876 Hz arnpl i tude 1.17 phase 6L.64 (F-test 134.8)

freguency 419.955 Hz anpl i tude 4.48 phase -39.58 (F-test 356.1)

frequency 488.768 Hz ampl i tude 0.19 phase 165.56 (F-test 50.5)

frequency 5oo.2L2 Hz anpl i tude 0.64 pbase 129.38 (F-test 34.5)

frequency 539.964 Hz ampl i tude 5.09 phase 119.38 (F-test 425-2)

frequency 571.585 112 arnf l i tude 4.01 pbase 120.03 (F-test 50.6)

frequency 578.662 Hz anplitude 34.97 phase -L49.12 (F-test 429.8)

frequeacy 582.426 Hz anplitude 107.36 phase 15.64 (F-test LL29-7)

frequency 597.936 Hz arnpl i tude 58.72 phase 63-27 (F-test 558.6)

freguency 605.314 Hz ampl i tude 17.21 phase -!40.57 (F-test 489.7)

frequency 659-822 Hz ampl i tud,e 2.20 phase -752.53 (F-test 121'0)

frequency 77g.831. Hz anpl i tud.e 3.95 pbase -39.18 (F-test 502-4)

frequency 839.760 Hz anpl i tude 2.75 phase -L72.15 (F-test 468.2)

frequeacy 899.840 Hz arnpl i tude 3.40 phase 113.05 (F-test 529.6)

frequency 959.919 Hz anpl i tude 0.80 phase t78.70 (F-test 43-2)

frequency ggg.822 Hz anpl i tude 1'01 phase 67'74 (F-test 114'8)

frequency 1019.698 Hz aropl i tude 1.46 phase -156.72 (F-test 146-6)

frequeacy I07g.777 Hz anpl i tude 3.00 phase 57.82 (F-test 128.9)

frequency L157.023 Hz a.nplitude 2.99 phase -76.14 (F-test 129.4)

frequency 7210.778 Hz aroplitude 2.12 phase 728.39 (F-test 69.5)

frequeucy 1319.644 Hz anpl i tude 3.02 phase -105.29 (F-test 146-2)

frequency L4gg.582 Hz a.mplitude 1.31 phase t4.t.94 (F-test 50.5)
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Renoved line frequency
Renoved line frequency
Removed line frequency
Rernoved liae frequency
Removed line frequency
Removed line frequency

Virtually atl of these lines can be identified as either 60 Hz iine harmonics, or as specific

suspension and pendulum modes. The removal of these lines makes a dramatic difference to the

appearance (and sound of) the signal, as shown in Figure 56. Note that the amplitudes of the

lines above are properly normalized (in ADC units). For example the 180 Hz line harmonic is well

described by ,a(t) : 2lgLsin(360nt/sec). By far the largest amplitude lines are the three violin

modes at 578.662, 582.426, and 597.936 Hz, and the 180 and 300 Hz line harmonics. Most of the

structure visible in Figure 56 is the result of these five harmonics.

#include "grasp.h"

int naino {
short *datas;
int i,num-points,num-lli.n,uum-freq,padded-length,max-Ii.nes,num-rerooved,remain;
float nwdt,*data,xntap-spec-init,*mtap-spec-final,freq,tstart,srate,xiDitial-data,anp,phi;
struct renoved-liaes xfine-list ;
FILE *fpifo, xfplock, xfpoutl , xfpout2;

/x open the IFO output file and lock file x/

fpif o =grasp-open("GRASP-DATAPATH", "channel. 0r') ;
fplock=grasp-opeo( "GRASP-DATAPATH" , " ch.a.nneI . 10" ) ;

/* data length, padded length, num frequencies including DC, Nyquist x/

num-points=8792;
padded-length=65536;
num-f req= 1+padded-Ie ngt}- I 2 ;

/x number of taper windows to use, and time'freq bandwidth x/

nr:m-win=S;
nwdt=3.0;

/x maximum number of lines to remove x/

nax-1ines=100;

/x allocate arrays x f
datas= (short x)nalloc (si_zeof (sb.ort) xnuro-points) ;
data= (f loat x ) nallo c ( s izeof (f loat ) xnuro-points ) ;
trtap-spec-init= (f toat x ) rnall-o c ( s izeof (f loat) xnumjreq) ;
trtaP-sPec-final= (float x)naLloc (sizeof (f loat) xnuroJreq) ;
l ine-list=(struct renoved-Iines x)ma1}oc(sizeof(struct renoved-l-ines)'rnax-lines);

init ial_data= (float x)nalloc (sizeof (ffoat) xnuro-polnts) ;

f* get a section of data.. . x/
get-data (f pif o, f p1ock, &tstart, num-poi-nt s, datas, &renain, &srate, 0) ;

/x copy short data to float data,and save initial data set x/

1559.662 Hz a.npl i tude 2.79 phase

!746-978 Hz a.mpl i tude 1.81 Phase
2039.697 Hz a.npl i tude 1.65 Phase
2279-413 Hz aroplitude 2.12 Phase
3509.465 Hz anpl i tude 0.11 Phase
4609.720 Hz ampl i tude 0.03 phase

107.72  (F- tes t  60 .0)
50 .38  (F- tes t  !12 .0)
165.82  (F- tes t  62 .3)
-25 .06  (F- tes t  163.0)
4 3 . 8 9  ( F - t e s t  6 0 . 1 )
24 .6L  (F- tes t  39 .4)
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for (i=0; i<num-points ; i++) init ial-data [1] =data [i] =datas [i] ;

/x remove the spectral lines from the data set x/
renove-spectral-Iines (data,num-poiuts, paddedJength,nwdt, num-win,

max-lines,500,&num-renoved,linelist,ntap-spec-init,ntap-spec-final,1,0,numJreq);

/* print out a list of lines removed x/
printf ("Tota1 number of l ines removed: 7od\n",num-renoved) ;
for (1=0; i(nun-renoved; i++) {
f req=0.Sxline-list [ i] . lndex *srate/nr:mjreq;
up=2. Oxsqrt (line-l-ist [i] . rexllne-li-st [i] . re+l-inelist [i] . in*linelist [i] . in) ;
phi=180*.ataa2(line-list [ i] . iro, l ine-list [ i] .re) l l /. l t ;
printf("Removed line frequency 7,.3f Hz arnplitude'/,.2f phase 7..2f (F-test 7..1f)\n",

f req, amp,phi.,I ineJist [ i] . f value) ;
]

/* now output a file containing the initial and final data... */
fpout l=fopen(" i fo-c lean-data.  out" ,  "w")  ;
fprintf(fpout1,"# Three cohuons are:\n# Tine (sec) Iuit ial data Final Data\n");
for (i=0; i(num-points; i++)

fprintf (fpout1, u7.f\t7.f\t7.f\n" , i/srate , initiaf-data [i] , data [i] ) ;
fc lose( fpout l ) ;

/x . .. and the iniiial and final specira, for graphing by xmgr
fpout2=f open ( " if o_cleen_spec . out " , t 'wtt) ;
fprintf (fpout2,r'# Three colurnns are:\n# Freq (Hz)
f or (i=0; icuunJreq; i++)

fprintf (fpout2, "7.f \t7.f \t7.f \n" ,0. Sxixsrate/nunJreg,mtap-spec-init [i] ,ntap-sPec-f j.ual [i] ) ;
fc lose( fpout2) ;

return 0;

Init ial spectrum Final spectn:m\n");
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Figure 56: Output of the example program if o-clean, making use of renove-spectrallineso
to automatically identify and remove "spectral line" features from the (whitened) output of the
Caltech 40-meter interferometer. The black curve and the red curve show the before/after time
series and spectra. We have deliberately choosen a stretch of data immediately after the IFO locks,
so that the suspension and pendulum modes are excited.
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f-*

LO.25 Example: tracker

This program produces an animated display which tracks the amplitude and phase of selected line
features in the spectrum. It has a number of user-settable options which determine how the line is

tracked. To run this program, t5pe
tracker I xngr -pipe

and an animated display will start up. In normal use, the parameters should be set as foilows:

ni:m-points: a power of two. A single phase/amplitude point is printed for each set of nuni-points
samples.

pad.d.ingJactor: a power of two. This determines the amount of padding done on the data set,
and thus the ultimate frequency resolution of the line discrimination.

fpreset: your best guess for the frequency that you want to track. If the actual frequency of the
spectral line differs from this value, then the phase wiII slowly drifb as a linear function of
time. (The tracker program does a robust best linear fit to this slope, and uses it to report
a best frequency estimate.)

estimate: if set to zero, then the phase of the iine found is always compared with the frequency
preset above. If set non-zero, then tracker will make a "best estimate" of the true frequency
and compare the phase of the line found with the phase appropriate to that sinusoid.

nbins: the number of (padded) frequency bins adjacent to the one of interest in which the line
will be searched for. The frequency range covered is thus grven by

,,,, - * 
obio"

- 
At(nun-points x paddingJactor * 2)

(10.25.1)

num-display: the number of points displayed by tracker. The total amount of time covered by

the output is nun-display x nurn-points xAt where At is the sample interval.

num-win,nwdt: these parameters are described in the section on multi-taper methods.

naxpass: the number of passes to make within renove-spectralJines O. This number should
be set as small as possible, provided that you still "catch" the line of interest.

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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Figure 57: Output of the example program tracker, making use of remove-spectrall-ines O to
track the amplitude and phase of a selected "spectrai liue" features from the (whitened) output of
the Caltech 4O-meter interferometer. The upper two graphs show the approximately exponential
decay of the 582.396 Hz violin mode; the lower two graphs show the amplitude and phase of the
third harmonic of the 60Hz line noise (note the rernarkable amplitude stability).

2A

o

o

301



10.26 Example: trackerF

This example program is identical to the tracker progra;n just described, which tracks spectral
lines, but with one cruciai difference: it reads its data from FRAME files rather than from the old
format data stream. To run this program, type
set env GRASPJRAMEPATH / usr / Io callGRASP/ 1 8nov94 . 1f ra:ne
trackerF | :rngr -pipe

and an animated display will start up.
To runthis example in real-time on data coming out at the 40-meter lab, tlpe setenv GRASP3EALTIME

trackerF | *rgr -pipe

and an animated display will start up.

#iuclude "grasp.h"

/x macros to define the standard mathematical forms of mod i./
#def lae MoD(X) ( (X) >=0?( (X)7.mrn-display) : (nun-display-1+( (X+1)7.:run-display) ) )
#def ine  FM0D2PI (X)  ( (X)>=0.0?( fnod( (X) ,2 .O*M-PI ) ) : (2 .0xM-Pl+ f rnod( (X) ,2 .0*MJI ) ) )

/x numerical recipes routine for robust linear fit x/
void nedf j . t ( f loat  x [ ] , f1oat  y [ ] , in t  npoints, f loat  xa , f loat  xb, f loat  xdev) ;
void grapbout (f loat,f loat,f loat,f loat) ;

nainO {
short *datas;
int npass=1,num-points,num-win,nr:m-freq,paddedJength,noax-lines,num:elnoved,remain,code,firstpass=
iDt j.,top,estinate,abins,paddiugJactor,num-display,nprint,iDdex,new=0,naxpass=1,mj.abin,maxb5.n;

float nwdt , xdata, *ntap-spec-init , xntap-spec-fina}, srate, creaI, cirnag;
f loat  xphase,pbasel=O.0,anp1,phase2,xt ines,*J- in f i tx ,x l ln f i ty ,of fset ,b inpreset ;
f loat di.splaytine,tl,xamp,dbj.o,ff it, intercept,slope,deviation,maxanp,displayanp=1 .0;
double time, fpreset, sdoub, tsdoub, tinit ial, tstart, init ine=O . 0 ;
struct removed-lines xliae-list;
struct fgetinput fgetiuput;
struct fgetoutput fgetoutput;

USER DEFINABLE
/* data length, padded length (powers of.2l) xl
num-points=2Q48 i
padding-factor=8;

/* your best guess for the line frequency you want to track x/
fpreset=582 . 395 ;

/x set non-zero if you want us to estimate the best-fit frequency x/
estimate=0;

/x number of (padded) frequency bins (either side) to search near fpreset x/
nbins=S;

l* the number of phase/amplitudes to display x/
num-dj-spIay=150 ;

/x number of taper windows to use, and time-freq bandwidth x/
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Itum_wt II=b ;

nwd t=3 .0 ;

/* the number of passes to make within the line removal algorithm x/
maxpass=1;

/x num-points:2048 ; padding-factor:8; fpreset:582.395 ; x /
num-poiats=4096 ; padding-factor=4; fpreset=S82. 395 ;
num-points=4096 ; padding-f actor=4;fpreset=180. 0 ;

END OF USER DEFINABLE

/x number of channels x/
fgetinout . nc[en=1 '

fgetinput . inlock=O;
fgetinput . npoiat=nun-points ;

/x source of files x/
f get input . f j-les=f ranef iles ;

f getinput . chnames= ( char xx ) nalloc (f getinput . nchanxs izeof ( char x) ) ;
fgetinput.locatj.ons=(short *x)nalIoc(fgetinput.nchaa*si-zeof(short *));
fgetoutput . npoint= (int x)nalloc (fgetinput. ncha:rxsizeof (iat) ) ;

/x channel name xf
fgetinput . chnanes [0] ="IFO-DMR0" ;

/* number of points to get x/
fgetinput . seek=O;
f get input . calibrate=0 ;

padded-l ength=paddi.ngJ act orxnuro-point s ;

/x num frequencies including DC, Nyquist x/
nnm-f req= f +padded-1 e ngtb I 2 ;

f ,r max number of lines to report on x/
roax-lines=64;

/x allocate storage x/
datas= (short x)naIloc (sizeof (short) xnun-points) ;
data= (fLoat x)nalloc (sizeof (ftoat) xnum-points) ;
ntap-spec-init=(float x)nalloc (sizeof (fLoat) xnurnJreg) ;
nntap-spe c-f i.nal= (f Loat'r. ) nalI o c ( s ize of (f 1 oat ) xmrnjreq) ;
l i .ne-list= (struct renoved-lines x)nalloc (sizeof (struct removed-lines) xnax-lines) ;
anp= (f loat x ) roalloc (sizeof (f loat) xnr:n-display) ;
phase=(11oat x)nalloc(sizeof (f loat) xnun-display) ;
t iroes= (f loat *) nal1oc (sizeof (f loat) xaun-display) ;
]i.nf itx= (f loat x ) nal]oc ( s izeof (f loat) xm:n-display) ;
l infity= (1loat *)na1loc (sizeof (f loat) *nuro-d:-spIay) ;

fgeti.nput. locations [0] =4.t." '

while (npass>O) {
/* get a section of data.
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code=f get-ch (&f get output, &f get ioput ) ;
t ine=fgetoutput. dt;

if (code==O) return 0;
new+=code;

srate=f getoutput . srate ;
if (new==l) {

fpriutf (stderr, "\aTracker: New Locked
f f i t= fpreset ;
nPass=1;
toP=g '

t ime=O. 0;

]

binpreset=f presetx2 . Oxnr:mJreq/srate ;
ni-nbin=binpreset-nbins ;
if (ninbin<0) roinbin=0;
roaxbin=biapreset+nbios ;
if (naxbiu)nunJreg) naxbin=num-freq;

Segroent at t ine 7.f\n",t ine);

f x copy short data to float dataxf
for (i=0;i(nun-points;i++) data[i]=datas [i] ;

/x remove the spectral lines from the data set */
renove-spectral-lines (data, num-points, paddedJength, nudt , num-win,nax-1i-nes ,

maxpass , &nu:n-removed,line-list ,Etap-spec-i.nit,rotap-spec-f inal ,0,minbin,maxbin) ;

/x if we fail to remove a line, amplitude set to zero, phase R^ETAINS PRIOR VALUE x/
ampl=0.0;

/* look in the list of removed lines for the right one *f
f or (i=0; i(nr:m-rerooved; i++) {

/* the closest bin to our estimated frequency x/
dbin=blnpreset_line_list [i] . index ;
if (fabs(dbin)<=nbins) {

creal=line-l-ist [i] . re+dblnx]1ne-1ist [i] . dcdbr+
0 . Sxdbinxdbinx1j.nelist [ i] . d2cdb2r;

cimag=line-ti.st [i] . in+dbin'r]inejist [i] . acAUi+
0. Sxdbinxdbinxline-list [ i] . d2cdb2i ;

ampl=2 . 0xsqrt ( crealxcrea]+ciroagxcinag) ;
phasel=atau2 (cJ.nag, creal) +2.0xMlIxfnod (fpresetxtine, 1 .0) ;
break;

1)
)

/* save data in a circular buffers x[0..num-display-1] x/
emp [top] =:mF1 ;
phase [top] =flt0ozPl (pbasel) ;
t i .nes [topJ =tine;

/i. how many values are we going to output to the graph? x/
nprint= (npass <nun-display) ?npass : nuro-display ;

/x cut out a piece for the linear fit */
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i f  (npass)=2) {

/x adjust the phases to avoid boundary jumps x/
o f f se t=O.0 ;
index=MOD (top-nprint+1) ;
linfitx [0] =tines [index] ;
l1nf ity [0] =phase [lndex] ;
for  ( i=1; i (npr int ; i++;  1

index=M0D (top+i -nprint+1 ) ;
liDf itx [i] =tirnes lindex] ;
if (phase linaex] -phase IMOD(1ndex-1)] >M-PI)

o f  f  se t -=2 .OxMl I ;
else if (phase [lndex] -pbase IMOD(index-1)] <*M-PI)

of f  set+=2.o*M-PI ;

, 
l infity[i] =phase [index] +offset;

J

/x do a robust linear fit x/
rnedf it (liaf itx- 1 ,1inf ity- 1 ,aprint , &intercept , &slope, &devi.atioa) ;

/x now see vrhat frequency the best fit corresponds to *./
ff i .t=fpreset-slope/ (2 . O*M-PI) ;

/x if we are assuming a fixed frequency (not adapting) x/
i f  ( !est imate)  {

slope=intercept=0. 0;

)

/x print out amplitude if non-zero x/
maxanp=O.0;
f or (i=0; i.<npriut; i++; 1

index=M0D (top+i-aptlnt+ 1) ;
i f  (a .np[ index]>0.0)

printf ( "%e\t7,e\n" , l infitx [ i] ,:.F findexJ ) ;
else

/x won't appear on the graph - out of bounds x/
printf ( "%e\t7"f \n" , l inf i.tx [ i] , - 1 .0) ;

if (anp[indexJ >roaxamp) naxamp=amp[1ndex] ;
I)
/x separate data sets x/
p r i n t f ( "& \n " ) ;

/x print out phase if non-zero amplitude */
for  ( i=0; i<npr int ; i++)  {

phase2=1inf ity [iJ ;
phase2=FM0D2PI ( (phase2-slope*linfitx [i] -lntercept) ) ;
if (phase2>M-PI)

phase2-=2.0*Ml I ;

Phase2= ( 130 . 0/MJI) *Phase2 ;
index=M0D (top+i -sptint+1 ) ;
i f  (anp[ index]>0.0)

printf ( "7.. 8e\t7..8f\n" , l infitx [ iJ , pbase2) ;
e lse

/x won't appear on the graph - out of bounds x/
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-

pri.ntf ( "7.. 8e\t7.f \n" , l int j.tx [ i] , -500.0) ;
]

/x set up scale of the x-axis x/
t1=1i.nf itx [0] ;
displayt ine=num-displayx (nqa-p6ints/srate ) ;

/x set up scale of the amplitude graph y-axis x/
if (naxanp)O.9xdisp1ayanp) {

di sPlaYanP= 1 . 3'rmaxamP ;
fprintf(stderr,"\aTracker: Liae at %t Hz, a:nplitude just i.ncreased\n",fPreset) ;

)
else if (naxanp(0. xdisplayanp && max"'F>0.0)

dlsplayanp=1 . 3xnaxanp i

graphout (t 1, t 1+displayt ine, f f it, displayamp) ;
ff lush(stdout) ;

)

/x now display set, then kill set x/
nPass++;
top=M0D(top+1);

)

return 0;
l

void graphout(float t1,float t2,fl-oat freq,float displayanp)
static int count=o;
int :oaj,:oin;
f loat yrnaj , ynin=1 .0;
iat amprec;

161a=( t2 - t ! )  l tO .O ;
:onaj =$srmio '

i f (ynia<=displayanp/10. 0)
while (ynin(=dj.spfaya-np/f0.0) {

3min*=2.0;
yroaj =4 . Oxyroin ;

I

else
while (ynin>dispfaya:np/10.0) {

Yroin/=1g ' O '

ynaj =5 . Oxyroin ;
)

arnprec= (int) 1og10 (yraaj ) ;
if (aroprec>1)

amprec=0;
e lse

amprec=1-amprec;

/x end of set marker x/
pr in t f  ( "&\n")  ;

if (cou-nt==O) {



/x first time we draw the plot x/
printf ("@doublebuffer true\n,') ;
printf ("@focus off\n") ;

\
I

i r in t f ( "@with gO\n") ;
pr in t f  ( "@move g0.s1 to g1 .s0\n ' , ) ;
pr in t f  ( "@t i t le  \ " \ \ -L ine Tracker \ " \n")  ;
printf ("@subti.t le \"best estinate f=7"f Hz\"\n",freq) ;
printf ("@s0 linestyle 0\n") ;
pr in t f  ( "@s0 s5rbo1 color  4\n ' , ) ;
printf ("@s0 synbol 2\n") ;
pr in t f ( "@s0 synbol  s ize 0.28\n") ;
pr in t f ( "@s0 symbol  f i l1  1\n") ;
p r i n t f ( " @ v i e w  0 . 1 5 ,  0 . 5 3 ,  0 . 9 5 ,  0 . 9 0 \ n " ) ;
/x set up x-axis for amplitude */
priutf ("@vorld :min 7.e\a",t1) ;
printf ("@wor1d :cnax %e\n",t2);
priutf ("@xaxis tick roajor 7.d\n",*r.r, t
printf ("@xaxis tick minor %d\u",:<min) ;
printf ("@xaxis tickl-abel prec 1\n,');
printf ( "@xaxi-s t j.cklabel off \n" ) ;
printf ("@yaxis Iabe1 \"\\-amplitude (ADC counts)\"\n,') ;
printf ( "@world ynin 7.e\nrt ,9. O, t
priatf ("@world ymax 7.e\n",displayanp) ;
priutf ( "@yaxi.s t j.ck uaj or 7.e\att , *"r', t
printf ("@yaxj.s ti.ck minor %e\n",Jmin);
if (anprec< )

printf ("@yaxis ticklabel prec 7.d\n",amprec) ;
else {

printf ("@yaxis ticklabeL forroat general\n,') ;
priatf ( "@yaxis tickl-abel prec '/.d\n" 

, 1) ;'l

/x now do phase plot x/
pr in t f ( "@with g1\n") ;
printf ("@s0 linestyle 0\n',) ;
printf ("@s0 linewidth 0\n") ;
pr iu t f ( "@s0 symbol  co lor  2\n, ' ) ;
priutf ("@s0 synbol 2\n") ;
pr in t f ( "@s0 synbol  s ize 0.28\n") ;
pr in t f ( "@s0 synbot  f i } l  1 \n") ;
p r i u t f  ( " @ v i e w  0 . 1 5 ,  0 . 1 ,  0 . 9 5 ,  0 . 4 7 \ n , ' ) ;
/x set up x-axis for phase x/
pri.ntf ("@worLd :oin %e\n" , t1) ;
printf ("@wor1d :oax 7"e\u" ,t2) ;
printf ("@xaxis tick najor 7,d\n",:cmaj);
prj.ntf ("@xaxis tick nj.aor 7.d\a',,r*1o; t
printf("@xaxis tlcklabel prec 1\n") ;
pr in t f  ( "@xaxis label  \ " \ \ - t i roe (sec) \ ' , \n , ' )  ;
/* set up y-axis for phase x/
printf ("@wor1d ynin 7oe\n", -180. 0) ;
pr in t f  ( "@wor ld ymax 7.e\n"  ,180.0)  ;
pri.ntf ("@yaxis tick najor 90\n,') ;
pr in t f ( "@yaxis t ick minor  45\n") ;
printf("@yaxis tlcklabel prec 0\n") ;
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printf("@yaxis label
printf("@xaxis labe1

/x draw plot x/
printf ( "@redraw\n" ) ;
pr in t f ( '@ki11 s0\n") ;
pr in t f ( "@with gO\n") ;
printf ("@ki.Ll sO\n") ;

coutrt++;
return;

\"\\-phase (degrees) \"\n") ;
\ " \ \ - t i ne  ( sec ) \ "1au ; '

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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