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1 Introduction

Very long Fabry-Perot cavities serve as measuring devices for interferometric gravitational wave de-
tectors. Several such detectors are currently under construction [1, 2, 3]. The cavities are planned
to have high circulating power and large storage time. For example, LIGO (Laser Interferometer
Gravitational wave Observatory) Fabry-Perot cavities will accumulate 20 kW of power and will have
roughly 1 ms of storage time.

The suspended mirrors are designed to move freely along the direction of the beam propagation.
Due to multi-beam interference in the Fabry-Perot cavity the motion of the mirrors strongly affects
the light inside the cavity. The light, in turn, affects the motion of the mirrors by exerting radiation
pressure on them. The interaction of light in the cavity with the suspended mirrors through radiation
pressure gives rise to a nonlinear dynamics. Finite time of light propagation in the cavity introduces
a time delay in the dynamics. The propagation time gives rise to storage time. Thus a Fabry-Perot
cavity is a dynamical system with delay; such systems are known to have instabilities [4].

The significance of the “spring” action and the “damping” effect of the radiation pressure for the
dynamics of the Fabry-Perot cavity was pointed out by Braginskii [5]. The cavity with one suspended
mirror driven by radiation pressure was studied experimentally by Dorsel et al [6, 7, 8, 9]. The
main results reported in these papers are observations of optical bistability and mirror oscillations
with frequencies determined by the radiation pressure. These authors analyzed their results using
the adiabatic approximation for the intra-cavity field. At about the same time Deruelle and Tourrenc
studied the Fabry-Perot cavity with suspended mirrors theoretically [10, 11]. Their analysis revealed
delay-induced instability caused by the radiation pressure in the cavity. This instability was further
studied by other researchers [12, 13]. Stabilization of the Fabry-Perot cavity by a control system
was discussed by Meers and MacDonald [14]. Recently, the radiation pressure induced dynamics
of Fabry-Perot cavities attracted attention of the VIRGO group in connection with the design of the
length control system of their detector [15]. Similar research has been done in LIGO and is presented
in this paper.

Emerging laser gravitational wave detectors require detailed modeling and pose new questions for
the study of dynamics. From a phenomenological point of view, there is a question of what are the
parameters that define the universal properties of Fabry-Perot cavities with suspended mirrors, and
how the dynamics changes with respect to these parameters. From a point of view of applications,
there is a question of how to generalize the results obtained in table-top experiments to large scale
Fabry-Perot cavities of the gravitational wave detectors.

In this paper we attempt to provide a phenomenology of the Fabry-Perot cavities for modeling
and optimization of the performance of LIGO interferometers. Due to the complexity of the subject
we split the discussion into two papers. In the first paper we study various aspects of the nonlinearity
in the dynamics, leaving aside the time delay instabilities. In the second paper [16] we consider the
time delay instabilities and study the dynamics of a Fabry-Perot cavity with a realistic control system.

In this paper we formulate the dynamics in terms of normal coordinates: the cavity length and the
cavity center of mass. We show that a small part of the radiation pressure in the cavity, the excess
force, excites the cavity center of mass. In absence of the excess radiation pressure, the dynamics
of the cavity length is equivalent to the dynamics of a suspended mirror in a cavity, which has one
mirror suspended and one mirror fixed. To study the universal properties of the cavity dynamics,
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such as multistability, we introduce two parameters. The first parameter is a control parameter which
allows us to select the equilibrium state. The second parameter characterizes strength of the radiation
pressure and determines whether the system is stable or multistable and how many equilibrium states
are there. The results obtained in this paper are general and apply to any Fabry-Perot cavity with
suspended mirrors. Numerical calculations and modeling with parameters of LIGO cavities are given
throughout this paper.

The paper is organized as follows. In Section 2 we describe the equations of motion and define
the control parameter. In Section 3 we formulate the dynamics in normal coordinates. In Section 4 we
construct equilibrium states and introduce the specific radiation pressure. In Section 5 hysteresis and
instabilities are described. In Section 6 the global properties of the dynamics are analyzed in terms of
the effective potential. In Section 7 we provide explicit formulas and numerical values for the cavity
resonant frequencies. In Section 8 we briefly describe nonlinear dynamics of the cavity with a control
system.
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2 Dynamical Equations and Regimes

2.1 Mirror Coordinates

The dynamical system we study in this paper is a Fabry-Perot cavity with two suspended mirrors,
labeled bya andb, and a laser incident on the cavity from one side. A suspended mirror is a rigid
body with six degrees of freedom, whose dynamics depends on the suspension design. In this paper
we neglect angular degrees of freedom of the mirrors and consider only the motion of their center of
mass. We also neglect the side motion of the mirrors. In this approximation the mirrors are always
aligned to the incident beam and move parallel to themselves as simple pendula. We specify the
mirror positions by their coordinates,xa(t) andxb(t), in the inertial coordinate frames as shown on
figure 1. The mirror suspension points are also moving, their coordinates arex0a(t) andx0b(t).

Figure 1: Coordinates of mirrors and their suspension points
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b
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reference
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The two inertial coordinate frames are separated by a large distance, the nominal cavity length,
L0, which we consider fixed. The actual length of the cavity depends on mirror positions in their
respective coordinate frames:

L = L0 + xb(t)� xa(t): (1)

The large cavity length of the gravitational wave detectors makes the delay time,

T =
L0

c
; (2)

to be non-negligible. For example, in LIGO interferometers the cavities are 4km long and the corre-
sponding delay time is roughly 13�s.
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2.2 Equations for Field Dynamics

Multibeam interference of laser in long Fabry-Perot cavities of gravitational wave detectors is far
more complex than a similar process in short Fabry-Perot interferometers with fixed length which are
commonly used for laser spectroscopy. Both the motion of suspended mirrors and the delay times
affect the interference and give rise to a complex dynamics. We describe dynamics of the laser in the
cavity in terms of complex amplitudes of the electric field. These complex amplitudes correspond to
the traveling electro-magnetic waves and are defined at some locations. Usually the amplitudes are
defined at the mirror surfaces. However, the suspended mirrors are moving and such a choice would
require account for Doppler effects. Instead, we define the amplitudes at the reference planes which
are fixed in the inertial coordinate frames.

Figure 2: Notations for fields and reference planes
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Our notations for the amplitudes of the electro-magnetic waves is shown in Fig. 2. The amplitude
of the wave, incident on the front mirror, isEin. The amplitudes of the forward-propagating wave
inside the cavity, defined at the two reference planes, areE1 andE 0

1. Similarly, the amplitudes of the
backward-propagating wave areE2 andE 0

2. The amplitudes of the cavity transmitted and reflected
waves areE3 andE4.

Propagation of the laser inside the cavity is described by simple delay equations:

E 0

1(t) = E1(t� T ); (3)

E 0

2(t) = E2(t� T ): (4)

These and other equations for the complex amplitudes are derived in the Appendix B. The processes
of reflection and transmission of laser at the end mirror are described by the equations:

E2(t) = �rbe�2ikxb(t)E 0

1(t); (5)

E3(t) = tbE
0

1(t); (6)

whererb is the reflectivity andtb is the transmissivity of the end mirror.
Using the superposition principle we obtain the equations for similar processes at the front mirror:

E1(t) = taEin � rae
2ikxa(t)E 0

2(t); (7)

E4(t) = taE
0

2(t) + rae
�2ikxa(t)Ein; (8)
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wherera andta is the reflectivity and the transmissivity of the front mirror. Numerical values for the
reflectivities and the trasmissivities of the mirrors in LIGO cavities are given in the Appendix A.

The equations (5-4) describe the dynamics of laser interacting with the moving mirrors of the
cavity. These equations can be reduced to one equation with one field, which is called the self-
consistent field. All other fields can be expressed in terms of the self-consistent field through the field
equations above.

We choose the forward-propagating field as the self-consistent field. Let the amplitude of the self-
consistent field beE(t) (same asE1(t)). Then the equation for dynamics of the self-consistent field
is

E(t) = taEin + rarbe
�2ikz(t)E(t� 2T ); (9)

wherez(t) is the relative mirror position defined as

z(t) = xb(t� T )� xa(t): (10)

The quantity,L0 + z(t), is the distance between the mirrors in relativistic sense.
Since the speed of light is finite we cannot obtain information about the instantaneous cavity

length defined in eq. (1). However, we can measure the relativistic cavity length,z(t), by observation
of one of the cavity fields. This can be done using the Pound-Drever signal extraction scheme. The
Pound-Drever signal is based on observation of the cavity reflected laser

VP�D � Imfe2ikxa(t)E4(t)g (11)

� ImfE(t)g; (12)

which is defined in terms of the self-consistent field and, therefore, depends on the cavity length,z(t).
In the expression, eq. (10), the delay appears in the coordinate of the end and not the front mirror.

This is because upon entering the cavity the laser first reflects off the end mirror and then reflects off
the front mirror.

2.3 Forces Acting on Mirrors

Dynamics of the suspended mirrors is defined by the forces acting on them. Since we analyze only
longitudinal motion of the mirrors we consider only horizontal components of the forces. The hori-
zontal component of the wire tension, acting on the front mirror, is

�ma!
2
0(xa � x0a); (13)

wherema is the mass of the front mirror and!0 is the pendulum frequency. There is a similar
expression for the end mirror.

The laser circulating in the cavity and the incident laser exert pressure on the mirrors. Let the
radiation pressure on the front and the end mirror beRa andRb. These forces are defined by the
amplitudes of the fields as follows:

Ra =
1

c

n
jEinj2 � jE1j2 � jE 0

2j2 + jE4j2
o
; (14)

Rb =
1

c

n
jE 0

1j2 + jE2j2 � jE3j2
o
: (15)
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Many control schemes, including the control system of LIGO arm cavities, require actuators on
the mirrors. The actuators can be coil-magnet pairs, electro-static boards or other devices. For our
analysis the details of the actuators are not important. We only assume that actuators are perfectly
aligned and apply forces to the mirrors in the direction of the beam propagation. Let the actuator
forces beF act

a andF act
b .

There is also a friction force due to energy losses in the suspension wires and the actuators. We
assume that the friction is proportional to velocity. Then the friction force acting on the front mirror
can be written as

�ma
 _xa; (16)

where
 is the damping coefficient. A similar expression can be obtained for the end mirror. Typically
the damping coefficient is very small:
=!0 � 10�5.

Numerical values for the parameters of LIGO interferometers are given in Appendix A.

2.4 Control Parameter

Let us consider a sum of the pendulum restoring force and the actuator force for the front mirror:

�ma!
2
0(xa � x0a) + F act

a : (17)

There are two parameters here: the position of the suspension point and the actuator force. The mirror
can be controlled through both the actuator and the suspension point. However, the dynamics depends
only on the sum of the two forces, and not separately on each one. Therefore, we combine the two
parameters into a new parameter

ua = x0a +
F act
a

ma!
2
0

: (18)

This is the control parameter for the front mirror. A similar parameter,ub, can be introduced for the
end mirror.

The control parameter has dimension of length and the meaning of an equivalent displacement of
the suspension point. The equivalence is based on the conversion factor(m!2

0)
�1, which for LIGO is

roughly 4.2 millimeter per newton of the actuator force.
Moving the suspended mirrors at high frequencies is easier using the actuator. However, applying

large displacements to the mirror at low frequencies is better through the suspension point. Therefore
in a realistic control system the control parameter,u, may obtain its high frequency component from
the actuator force and its low frequency component from the position of the suspension point.

2.5 Equations of Motion for Mirrors

The equations of motion for the mirrors are

�xa + 
 _xa + !2
0xa = !2

0ua +
Ra

ma

; (19)

�xb + 
 _xb + !2
0xb = !2

0ub +
Rb

mb

: (20)
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These are the equations for a pair of damped harmonic oscillators driven by forces of the radiation
pressure. The oscillators are not independent: they are interacting with each other through the laser
which acts as a spring connecting the mirrors. The “spring” is nonlinear and has time delay.

2.6 Dynamical Regimes

A Fabry-Perot cavity has two intrinsic time scales: one is the delay time,T , the other is the storage
time

� =
2T

j ln(rarb)j
: (21)

Correspondingly, there are two intrinsic frequencies defined by the cavity: the free spectral range
(fFSR = (2T )�1) and the cavity low pass frequency

fcav =
1

2��
: (22)

Therefore, there are three dynamical regimes for the Fabry-Perot cavity.
Let �t be a characteristic time for a dynamic process involving changes in the mirror positions and

fields. Letf be the characteristic frequencies of the process. The three regimes are:

1. decoupled regime:�t� T (f � fFSR),

2. delay regime:T � �t� � (fcav � f � fFSR),

3. adiabatic regime:�t� � (f � fcav).

The first regime corresponds to very fast changes in mirror positions and fields in the Fabry-Perot
cavity. The decoupled regime can be understood on the following example. First the mirrors are at
rest. Then one mirror acquires some velocity, changes its position and stops. If the entire process
takes time less thanT the second mirror becomes affected by the process after the first mirror comes
to rest. Therefore, during such process the mirrors are independent of each other. This is nothing but
a relativistic causality limit. In LIGO interferometers the processes with frequencies above 37.5 kHz
belong to the decoupled regime.

The second regime takes place when the changes in the mirror position are faster than transient
processes in the cavity but not fast enough to decouple the mirrors. In this regime the transients caused
by the mirror motion never die and the cavity never reaches equilibrium. In such a regime the motion
of one mirror is constantly affected by the other mirror and the delays play crucial role. Dynamic
processses in LIGO cavities with frequencies between 100 Hz and 10 kHz belong to this regime.

The third regime takes place when the mirrors move so slow that the laser transients can be ne-
glected. In this case we can think of the laser circulating in the cavity as being in equilibrium with
the mirrors. This is the adiabatic regime. In this regime the delays are not important. The adiabatic
regime takes place in LIGO cavities at frequencies less than 100 Hz.
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2.7 Self-consistent Field in Adiabatic Regime

In the adiabatic regime the mirror motion is so slow that we can neglect the delay time in the equation
for the self-consistent field eq. (9) and obtain a solution:

E(t) =
ta Ein

1� rarbe�2ikz(t)
: (23)

The value of the field in the adiabatic regime is completely defined by the current value of the cavity
length,z(t). The power in the cavity, which we define as the momentum carried by the forward-
propagating wave (P = jEj2) is also a function of the cavity length. The maximum power,Pmax,
depends on the mirror parameters and defines the cavity gain:

Gcav �
Pmax

Pin

=
t2a

(1� rarb)2
: (24)

The power as a function of length is described by the Airy formula

P =
Pmax

1 + F sin2 kz(t)
; (25)

also known as Airy intensity profile (see [17]). The constant,F , is the coefficient of finesse

F =
4rarb

(1� rarb)2
: (26)

The relation between the parameter,F , and the finesse of Fabry-Perot cavity is given in Appendix C.
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3 Normal Coordinates

3.1 Forces due to Radiation Pressure

The suspended mirrors are interacting with each other through the laser in the cavity. Therefore, the
degrees of freedom which correspond to the mirrors are coupled. However, we can formulate the
dynamics in terms of new degrees of freedom which are largely independent of each other. These
new degrees of freedom are similar to the normal coordinates usually appeared in theory of coupled
linear oscillators. Before we formulate the dynamics in terms of the normal coordinates we reduce
the number of fields entering the general expressions for the radiation pressure on the mirrors, equa-
tions (14-15).

The radiation pressure on the end mirror, eq. (15) can be expressed entirely in terms of the self-
consistent field:

Rb(t) =
1

c
(1 + r2b � t2b)jE(t� T )j2: (27)

The radiation pressure on the front mirror is produced by the laser circulating in the cavity and the
laser incident on the cavity, eq. (14). A constant flux of the incident laser produces constant radiation
pressure on the front mirror:

Rin =
1

c
(1 + r2a � t2a)jEinj2: (28)

Therefore, we can write the radiation pressure on the front mirror as the sum:

Ra(t) = �Rb(t� T ) +Rin +�R(t): (29)

In this equation the first term implies that the same force which is pushing the end mirror now will be
pushing the front mirror in the opposite direction after timeT . The second term is proportional to the
power of the incident laser and accounts for the constant radiation pressure from outside the cavity.
The last term,�R(t), which can be called the excess radiation pressure, accounts for the asymmetry
between the mirrors and the interference between the incident laser and the laser circulating in the
cavity. The excess force can also be expressed entirely in terms of the self-consistent field and the
cavity length:

�R(t) =
�

c
jE(t� 2T )j2 � 4

c
tararb Refe�2ikz(t)E�

inE(t� 2T )g; (30)

where� = 1� t2b � r2b (r
2
a � t2a), and the asterisk stands for complex conjugation.

In the adiabatic regime the excess force can be written explicitly as a function of length:

�R = c�1Pmax

� + 4rarb(rarb � cos 2kz)

1 + F sin2 kz
: (31)

Numerical estimates with LIGO parameters show that the excess radiation pressure,�R, is roughly
four orders of magnitude less than the radiation pressure,Rb.

The constant radiation pressure, eq. (28), has no effect on the dynamics, but the excess force,
eq. (30), makes the radiation pressure on the mirrors unbalanced and affects the dynamics.
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3.2 Normal Modes

The normal coordinates are the position of the center of mass and the cavity length:

Z(t) =
maxa(t) +mbxb(t� T )

ma +mb

; (32)

z(t) = xb(t� T )� xa(t): (33)

Note that both normal coordinates are affected by the delay due to the finite time of laser propagation
in the cavity.

Similarly, we introduce the control parameters for the new coordinates:

U(t) =
maua(t) +mbub(t� T )

ma +mb

+
Rin

c(ma +mb)!
2
0

; (34)

u(t) = ub(t� T )� ua(t)�
Rin

cma!
2
0

: (35)

To make the subsequent formulas simplier we hid the constant radiation pressure into the new control
parameters. Also we define the reduced mass in a usual way:

� =
mamb

ma +mb

: (36)

In normal coordinates the dynamical equations are the equation for the center of mass and the
equation for the cavity length:

�Z + 
 _Z + !2
0Z = !2

0U +
�R

ma +mb

; (37)

�z + 
 _z + !2
0z = !2

0u+
Rb

�
� �R

ma

: (38)

We see that the radiation pressure mostly affects one degree of freedom: the cavity length,x(t). This
is because the pressure on the front mirror is roughly equal and opposite to the pressure on the end
mirror if we neglect the constant pressure from outside. The motion of the center of mass is affected
by the radiation pressure only through the excess force.

3.3 Center of Mass and Observability

Dynamics of the center of mass of free cavity is defined exclusively by the excess radiation pressure,
which, in turn, is defined by the cavity length,z(t). As a result, changes in the cavity length excite
motion of the center of mass. On the contrary, arbitrary motion of center of mass has no effect on the
cavity length. Therefore we can ignore the dynamics of the center of mass and focus on the cavity
length. However, few important points must be taken into account before we abandon the motion of
the center of mass.

Although small motion of the center of mass (� 1�m) has no effect on the detector performance,
large motion (� 0.1 mm) will cause variations of the actuator gains. Therefore, the motion of the
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cavity center of mass must be suppressed to the extent defined by the actuator’s range. In particular,
we must avoid exciting the motion of the center of mass by a control system. In gravitational wave
detectors the control system suppresses motion of the mirror under seismic disturbances by applying
forces to the mirrors through the actuators. Therefore the control system can excite the motion of the
center of mass, unless the control signals are synchronized:

�ua(t) = �
mb

ma

�ub(t� T ): (39)

Unlike the cavity length the center of mass is not observable in a strict relativistic sense. To
obtain information about the cavity’s center of mass requires setting up an inertial frame, which is
impossible for the ground based gravitational wave detectors. This poses a problem of observability
for control of the Fabry-Perot cavity, which can be stated as follows. The cavity length is known with
high precision (better than10�13m) but the center of mass can only be measured approximately (up
to 1�m). Therefore the cavity length can only be controlled approximately. Since the two degrees of
freedom are largely independent poor observability and control of the center of mass do not affect the
dynamics of the cavity length. Therefore, as long as the motion of the center of mass remains small,
it can be ignored.

3.4 Cavity Length

The degree of freedom most important for understanding the response of Fabry-Perot cavity as a part
of the gravitational wave detector is the cavity lengthz(t).

In the following discussion of the cavity length dynamics we neglect the excess radiation pressure,
�R. To simplify following formulas we make the approximation:1 + r2b � t2b � 2 in the eq. 27 and
write the radiation pressure on the end mirror as

Rb(t) =
2

c
jE(t� T )j2: (40)

This is a good approximation for high reflective mirrors, such as the end mirrors of LIGO cavities.
The dynamics of the cavity length is independent of the dynamics of the center of mass and can

be studied separately. The equations for the cavity length dynamics include only the cavity length and
the self-consistent field:

�z + 
 _z + !2
0z = !2

0u+
2

c�
jE(t� 2T )j2; (41)

E(t) = ta Ein + rarb e
�2ikz(t) E(t� 2T ); (42)

The iteration equation (42) allows us to calculate the amplitudeE(t) at discrete times. The time step
is the cavity round-trip time,2T . The value of the amplitude between the steps can be found by
delaying its value at the last iteration.

These equations are equivalent to the equations of the dynamics of the Fabry-Perot cavity with
front mirror fixed and the end mirror suspended from wires, provided the mass of the end mirror is
equal to the reduced mass.
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4 Equilibrium States

4.1 Static Solutions

Equilibrium states of the cavity are static solutions of the equations (41) and (42). For static states
these equations simplify and can be written as

�!2
0(z � u) =

2

c
jEj2; (43)

E =
taEin

1� rarbe�2ikz
: (44)

The complex field,E, can be eliminated from the equations (43) and (44) and the equilibrium condi-
tion can be written entirely in terms of the cavity length:

�!2
0(z � u) =

Rmax

1 + F sin2 kz
: (45)

HereRmax is the maximum radiation pressure on the end mirror which corresponds to the maximum
power in the cavity:

Rmax =
2

c
Pmax: (46)

The equation (45) shows that in equilibrium the radiation pressure is balanced by the pendulum restor-
ing force.

Numerical values of the power and the radiation pressure in LIGO Fabry-Perot cavities are given
in the Table 1.

Table 1: Power and radiation pressure in LIGO Fabry-Perot cavities

Pin(W ) Pmax(W ) Fmax(N)

40m LIGO Prototype 0:25 160 1:1� 10�6

4km LIGO 90 12000 7:8� 10�5

4.2 Strength of Radiation Pressure

To characterize strength of the radiation pressure we introduce a dimensionless parameter

� =
kRmax

�!2
0

; (47)

wherek = 2�=� is the wave number,� is the reduced mass and!0 is the pendulum frequency. The
parameter� shows how strong the radiation pressure is compared to the pendulum restoring force.
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This parameter allows us to characterize nonlinearities induced by the radiation pressure quantita-
tively. As a measure of nonlinearities, the parameter� is similar to the Reynolds number in fluid
dynamics.

The parameter� also allows us to establish equivalence of the equilibrium states of different
Fabry-Perot cavities. Namely, the equilibrium states of a Fabry-Perot cavity with high circulating
power and heavy mirrors are equivalent to those of a cavity with low power and light mirrors if the
two cavities have the same�.

The parameter� has a simple geometric interpretation. From the equilibrium condition, eq. (45),
we see that the maximum increase in the cavity length due to radiation pressure is�=k. Therefore,
�=� is the maximum number of fringes the mirrors can be pushed apart by the radiation pressure.

We can think of� as a function of the incident power

� =
2kGcav

c�!2
0

Pin; (48)

whereGcav is the cavity gain, eq. (24). Therefore, the simplest way to change the parameter� is to
vary the input power of the Fabry-Perot cavity.

4.3 Equilibrium Condition

The equilibrium states depend on properties of Airy function:

A(�) =
1

1 + F sin2 �
: (49)

A discussion of Airy function can be found in ref. [17]. Some of the properties of Airy function are
given in the Appendix C.

Let us introduce the phase variables for the cavity length and the control parameter:

� = kz; (50)

� = ku: (51)

In terms of the phase variables the condition for equilibrium, eq. (45), becomes

1

�
(�� �) = A(�): (52)

By solving this equation we can find equilibrium states,�, for any given value of the control param-
eter,�. Even more important is an inverse application of the equilibrium condition. Namely, we can
turn any state,�, into an equilibrium state by adjusting the control parameter,�, according to

� = �� �A(�): (53)

An operation point for the Fabry-Perot cavity is an equilibrium state, at which we want to maintain
the cavity. We select the operation point by specifying the phase,�0, and by adjusting the control
parameter according to the eq. (53).
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In LIGO interferometers the operation point is chosen at the maximum of Airy function(�0 =

�n), wheren is integer. To obtain an equilibrium state at these points we must have the control
parameter set to the following values

u =
�

2

�
n� �

�

�
: (54)

Since all the peaks of Airy function are equivalent the different values of the control parameter,
which correspond to different values ofn, are all equivalent. The least absolute value of the control
parameter corresponds ton = round(�=�). Since the control parameter is a linear combination of the
actuator force and the displacement of the suspension point, eq.(18), this condition can be achieved in
two ways. We can either apply the forces to the mirrors or shift the suspension points. The larger the
actuator forces the higher the noise in the actuators. Therefore, it is desirable to operate the cavities
with as less force on the mirrors as possible.

4.4 Graphical Construction of Equilibrium States

The equilibrium states are given by the nonlinear equation, eq. (52), which cannot be solved analyti-
cally. However, we can analyze the equilibrium states using a graphical construction. The graphical
method for finding the equilibrium states appears in several papers, for example, in ref. [18]. In our
approach we use the graphical method not only to show approximate locations of the equilibrium
states but also to derive exact statements about equilibrium and stability of the Fabry-Perot cavity.

The graphical construction is to plot the functions in the left and the right sides of the equation (52)
and look for their intersections. The left side of the equation is the pendulum restoring force in
dimensionless units. It corresponds to a straight line shown on Fig. 3. The line has the slope��1 and
the intercept�. The right side of the equation is the Airy function, which is the radiation pressure
normalized to unity at its maximum. The points, where the straight line intersects the Airy function,
are the equilibrium states. In Figure 3 there are three equilibrium states:�1; �2 and�3.

4.5 Condition for Multistability

A Fabry-Perot cavity is multistable if it has more than one equilibrium state, which belong to the
same value of the control parameter. To derive a condition for multistability consider a line tangential
to the Airy profile at some point,�0. The slope of the tangent line isA0(�0), the derivative of Airy
function at this point. The highest slope of the tangent line corresponds to the maximum value of the
derivative

maxfA0g � 3

8

p
3F; (55)

which is derived in Appendix C. If the slope of the straight line, which represents the pendulum
restoring force, is greater than the maximum slope, the line intersects the Airy profile at only one
point. Otherwise, the straight line and Airy profile can have several common points. Therefore, there
is a critical value of the parameter�, for which a qualitative change in the equilibrium states occurs.
This critical value is defined by the maximum slope

�cr =
1

maxfA0g �
8

3
p
3F

; (56)
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Figure 3: Graphical Construction of Equilibrium States
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and depends only on the finesse of the Fabry-Perot cavity. These geometric arguments lead us to the
condition for multistability. The Fabry-Perot cavity is

stable, if � < �cr
multistable, if � > �cr.

LIGO Fabry-Perot cavities are multistable:� = 3:9, which is greater than the critical value,
�cr = 0:012.

4.6 Bifurcations

At low radiation pressure (� < �cr) the cavity has only one equilibrium state. If we increase the
radiation pressure and reach the critical point (� = �cr) the equilibrium state splits into three states,
as shown in Fig. 4. Two of the new states are stable and one is unstable. Such a phenomenon is
common in nonlinear physics and is called the pitchfork bifurcation [19], [20].

If we keep increasing the radiation pressure, at some point another bifurcation occurs and more
equilibrium states are created. We can continue the process and obtain an infinite number of bifur-
cations in the Fabry-Perot cavity. The values of the parameter�, at which these bifurcations occur,
can be found from the graphical construction shown on Fig. 5. These values are�n � �n where
n = 1; 2; : : : is the order of the bifurcation. In terms of power the condition for thenth order bifurca-
tion to occur is

Pmax =
1

4
c�!2

0�n: (57)

Exact number of equilibrium states depends not only on the parameter�, but also on the control
parameter,u.
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Figure 4: Pitchfork bifurcation
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Figure 5: Higher order bifurcations
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5 Stability and Hysteresis

5.1 Multistability of Fabry-Perot cavity

Fabry-Perot cavity with suspended mirrors is a multistable dynamical system. There are multiple
equilibrium states in the cavity which correspond to the same value of the control parameter. Some of
them are stable and some are unstable. A multistable cavity being brought near unstable equilibrium
state moves to a nearest stable equilibrium state, which belongs to the same value of the control
parameter.

Multistability of the Fabry-Perot cavity manifests itself in multi-valued functions describing the
cavity state. For example, the equilibrium cavity length,z, is a multi-valued function of the control
parameter,u. This function is defined implicitly:

z = u+
�

k
A(kz); (58)

and is shown on Fig. 6.
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Figure 6: Multistability of cavity length
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A similar multistable response appears if we vary the input power,Pin, within a wide range, but
keep the control parameter fixed. This way we obtain the power in the cavity,P , as a multi-valued
function of the input power. Such function also is defined implicitly:

P =
GcavPin

1 + F sin2
�
ku+ 2kP

c�!2
0

� : (59)

The plot of this function for a particular value of the control parameter (u = �2Pmax
c�!2

0

) is shown on
Fig. 7. This is a typical multistability curve similar to those, which frequently appear in studies of the
bistable optical devices [21], [22].

Both plots above have retrograde segments which correspond to unstable equilibrium states of the
cavity. In general any state on a retrograde part of a multistable curve is unstable [20].

The formula which describes the power inside the cavity as a function of the input power, eq. (59),
is equivalent to the corresponding formulas for the fixed length cavity filled with a non-linear medium.
The index of refraction of such medium has a quadratic nonlinearity

n(E) = n0 + n2jEj2; (60)

wheren0 andn2 are the coefficients of the nonlinear index of refraction. A review of the extensive
research which had been done on the cavities with the quadratic nonlinearity can be found in [21].
Here we obtain an exact condition for this equivalence. In the equation (59) the phase is a function of
the power:

� = ku+
2k

c�!2
0

jEj2: (61)

Similar dependence appears in the cavity with fixed length but filled with the nonlinear medium. The
equivalence is achieved if the length of the cavity with the nonlinear medium,l0, is tuned according
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Figure 7: Multistability of power in Fabry-Perot cavity. The parameters chosen so that the curve goes
through the LIGO operation point
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to the equation:

n2l0 =
2k

c�!2
0

: (62)

Therefore, equilibrium states of a cavity with suspended mirrors are equivalent to those of a cavity
filled with the nonlinear medium if its length is tuned according to eq. (62). This equivalence allows
us to extend some results obtained for the cavities with the medium to our case of the cavity with
suspended mirrors.

5.2 Hysteresis of Mirror Position

The instability causes jumps and a hysteresis to appear. In this section we describe the mirror jumps
and the hysteresis in the mirror position in the Fabry-Perot cavity.

Assume that one mirror is at rest and the other is moving. Let this motion be so slow that the cavity
remains in equilibrium. We can produce such motion by a slow change of the control parameter. The
motion of the mirror is shown on the parameter-state diagram, Fig. 8.

Let “A” be a starting point. As we increase the value of the control parameter the mirror moves
steadily from point “A” through pointH1 to pointH2. As the mirror reaches pointH2 a sudden
transition to pointH3 occurs. This jump happens because both pointsH2 andH3 belong to the same
value of the control parameter but pointH2 is unstable. After the mirror reaches pointH3, it resumes
its steady motion and reaches the point “B”. The sequence of states is

A! H1 ! H2 ! H3 ! B: (63)

The jumpH2 ! H3 is accompanied by a rapid build-up of power in the cavity, and, therefore, takes
time of the order of the storage time to complete.
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Figure 8: Hysteresis and instability region
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In the reverse process we drag the mirror in the opposite direction by changing the control param-
eter back. On the way back the mirror does not retract its path. Instead, it follows a sequence

B ! H3 ! H4 ! H1 ! A: (64)

The reverse motion of the mirror also has a jump but at a different place: pointH4. The transition
H4 ! H1 is accompanied by a rapid drop of power in the cavity. Thus a slow sweep of the mirror
across the resonance is an irreversible process, known as hysteresis.

The comlete cycle:
H1 ! H2 ! H3 ! H4 ! H1; (65)

is the hysteresis loop, which is typical for nonlinear systems.
A similar hysteresis appears if we keep the control parameter fixed but vary the input power. Such

hysteresis was observed by Dorsel and collaboraters and is described in [6].

5.3 Boundaries of Instability

The states on the retrograde segments of the multistability curve on Fig 6 and Fig 7 are unstable.
These states form an instability region which is confined by the two tangent lines with the slope��1,
as shown on Fig. 8. The boundaries of the instability region are defined by the equation

A0(�) =
1

�
: (66)

There are two solutions of this equation, which are left and right boundaries of the instability region.
In the large-F approximation the instability region is

�
�
2�

F

� 1

3

< �0 < �
1

2�F
: (67)
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The left boundary corresponds to low power inside the Fabry-Perot cavity. The right boundary is
located very close to the peak of the Airy function and corresponds to high power. For example, in
4km Initial LIGO interferometers the right boundary of the instability is�0 = �7:5�rad. Thus the
separation between the right boundary and the peak is very small, roughly10�3 of the width of Airy
function.
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6 Hamiltonian Dynamics

6.1 Conditions for Adiabatic Motion

Motion of the mirrors belongs to the adiabatic regime only if it is slow; the characteristic time of
such motion must be much greater than the cavity storage time. We define the characteristic time
differently for small- and large-amplitude mirror motions.

We consider the amplitude small if it is less than the width of the resonance. Usually such motion
is oscillatory. Then the characteristic time is equal to the period of these oscillations,Tosc. Therefore,
the motion is adiabatic ifTosc � � .

Large-amplitude mirror motion takes place when the changes in the cavity length are greater
than the width of resonance,xw. During such motion the relative velocity of the mirrors,v, can be
considered constant within the time the mirrors pass through a resonance. Then the characteristic
time is the time it takes for the length to change by the width of one resonance:xw=v. Therefore, the
motion is adiabatic ifxw=v � � . This condition can also be seen as a requirement on the relative
velocity of the mirrors. Namely, the large-amplitude mirror motion is adiabatic ifv � vad, wherevad
is the adiabatic threshold velocity:

vad �
xw

�
� c�

�FL0

: (68)

The threshold velocity depends only on the parameters of the cavity and the wavelength of the laser.
For LIGO Fabry-Perot cavitiesvad = 7:4� 10�7 m/s.

6.2 Effective Potential

In the adiabatic regime the field inside the cavity,E(t), is completely defined by the length,z(t), see
eq. (23). Therefore, we can eliminate the field and consider only the dynamics of the length. The
equation for the length dynamics becomes

�z + 
 _z = �!2
0(z � u) +

Rmax

�
A(kz); (69)

where� is the reduced mass andRmax is the maximum radiation pressure defined by eq. (46). This
equation describes the relative motion of the mirrors driven by the pendulum restoring force and the
radiation pressure. A similar equation for the Fabry-Perot cavity with one suspended mirror appeared
earlier in refs. [6], [10], [11].

The pendulum restoring force is generated by the usual quadratic potential

Vp(x) =
1

2
�!2

0(z � u)2; (70)

which depends on the control parameter,u. The force due to the radiation pressure is generated by a
potential

Vrad(z) = �
Rmax

k

arctan[
p
F + 1 tan(kz)]p
F + 1

; (71)

which is derived in the Appendix C.
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The sum of the two forces is generated by the effective potential

Ve�(z) = Vp(z) + Vrad(z): (72)

Thus the relative motion of the mirrors interacting with the electro-magnetic field in the cavity is
equivalent to the motion of a particle with the reduced mass in the field of the effective potential.
Such representation is valid only in the adiabatic regime, when the delay time can be neglected.
Beyond the adiabatic regime the delay time becomes important and the field depends on history of
mirror’s motion within the storage time.

A remarkable property of the adiabatic regime is that the dynamics is hamiltonian. In other words,
we can define a total energy for the motion in the effective potential:

E =
� _z2

2
+ Ve�(z): (73)

Thus the Fabry-Perot cavity in the adiabatic regime is a hamiltonian system. Since there is friction
(
 > 0) the energy is not conserved:

_E = �
� _z2 < 0: (74)

However, the friction in suspension systems of the gravitational wave detectors is very small. Con-
sequently the energy changes very little (less than a part per million) over a period of the pendulum.
Therefore, on time scales of the order of few seconds and even minutes we can think that the energy
is conserved.

Note that if there is no friction (
 = 0) the energy of the motion in the effective potential, eq. (73),
is conserved but the combined energy of the mirrors and the electro-magnetic fields in the cavity is
not conserved. The cavity, being multistable, has to release or absorb energy to move from unstable
to stable states.

6.3 Global Properties of Effective Potential

The effective potential as a function of cavity length depends essentially on three parameters:F , �
and�. This can be seen if we write the effective potential in terms of dimensionless parameters:

Ve� =
�!2

0

k2

"
(�� �)2

2
� �

arctan(
p
F + 1 tan�)p
F + 1

#
: (75)

The overall constant provides correct dimensions to the potential, but otherwise is irrelevant. The
parameter� and the control parameter� can be dynamically adjusted, but the coefficient of finesse,
F , cannot be. Therefore, we only consider how the effective potential changes with respect to arbitrary
changes in the two parameters:� and�.

Global properties of the effective potential are defined by one parameter only,�. For� < �cr the
potential has only one minimum and for� > �cr there are several local minima. Effective potential
for two different values of� is shown on Fig. 9. The plots correspond to stable and multistable
Fabry-Perot cavities.

The effective potential as a function of two parameters establishes a connection between the dy-
namics of the Fabry-Perot cavity in the adiabatic regime and the dynamical systems of the catastrophe
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Figure 9: Effective Potential as Function of�
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theory [23]. The catastrophe theory studies singularities (abrupt changes) in equilibrium states of a
dynamical system caused by a continuous change of its parameters. The pitchfork bifurcation, as
described above, is one of the examples of such singularities.

6.4 Minima and Maxima of the Effective Potential

The control parameter,�, allows us to fine tune the effective potential. By changing the control
parameter we can shift the positions of local minima and maxima of the potential.

To illustrate this consider the following example. Let the operation point be�1 as shown on
Figure 10.

To make this state an equilibrium we have to adjust the control parameter according the eq. (53).
This is equivalent to solving the following equation:

dVe�

d�

�����
�=�1

= 0: (76)

Since at the point,�1, the effective potential has minimum

d2Ve�

d�2

�����
�=�1

> 0 (77)

this state is stable. From the figure we see that if we choose the operation point at�2, we obtain
the same control parameter and arrive at the same effective potential. However, at the point�2 the
effective potential has a local maximum

d2Ve�

d�2

�����
�=�2

< 0: (78)

Therefore, the equilibrium state at�2, is unstable.
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Figure 10: Minimum and Maximum of the Potential
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Thus, stable equilibrium positions correspond to local minima and unstable equilibrium positions
correspond to local maxima of the effective potential. By adjusting the control parameter we can turn
any state into a stable equilibrium if that state is outside the instability region, eq.(67).
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7 Resonance of Cavity Length

7.1 Resonant Frequency

A stable equilibrium state of the cavity corresponds to a local minimum of the effective potential. Let
the minimum of the effective potential be atz0. The small-amplitude mirror motion near this equi-
librium state produces harmonic oscillations of the cavity length. The frequency of such oscillations,

0, is defined by the curvature of the potential at the minimum:


2
0 = ��1d

2Ve�

dz2

�����
z0

; (79)

The oscillations of length due to motion of a single mirror, confined in one of the minima of the
effective potential were observed by Dorsel et al [6, 7].

Since there are multiple equilibrium states, there are multiple frequencies for the oscillations of
the cavity length. Each minimum of the effective potential has its own frequency. These are the
resonant frequencies of the cavity length, if the cavity is driven by the external sinusoidal force. At
high radiation pressure these frequencies substantially deviate from the pendulum frequency,!0. We
find that the frequencies can be expressed entirely in terms of the parameter� and the location of the
minimum:


2
0(�0) = !2

0 [1� �A0(�0)]; (80)

where�0 = kz0 andA0(�0) is the derivative of the Airy function (Appendix C). The plot of
0=2�
as a function of the phase�0 with LIGO parameters is shown in Fig. 11.

Figure 11: Frequency of length oscillations as function of operation point
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The frequency reaches maximum at the right inflection point of the Airy profile. The maximum
frequency is


0(�in
) = !0

�
1 +

�

�cr

�1=2
: (81)

In LIGO Fabry-Perot cavity the maximum frequency is 15.7 Hz.
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7.2 Adjustment of Resonance Frequencies

The resonances of cavity length make the Fabry-Perot cavity a narrow-band transducer between me-
chanical and optical signals. This observation was made by Dorsel and collaborators [8]. They also
suggested that a resonant frequency can be tuned by changing the power of the incident laser. The
adjustment of the incident power, which are equivalent to the adjustments of the parameter� is not
the only way to tune the resonant frequency. We can also vary the control parameter. By changing the
control parameter we can shift the minimum of the effective potential and thus change the resonant
frequency corresponding to that minimum.

On the other hand we may require that the operation point remains fixed as we tune the resonant
frequency. This can be done if we vary the two parameters,� and �, simultaneously so that the
equilibrium condition is preserved. For this we need to accompany any change�� by the change in
the control parameter as follows

�� = �A(�0) ��: (82)

This way we change the curvature of the effective potential at the minimum without changing the
location of that minimum.

Figure 12: Fine tuning of effective potential
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The result is the resonant frequency as a function of the control parameter


2
0(�) = !2

0

"
1� (�0 � �)

A0(�0)

A(�0)

#
: (83)

The fine tuning of the effective potential and the corresponding frequencies are shown in Fig. 12.
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7.3 Plateaus of the Effective Potential

By tuning the parameters,� and�, we can make the effective potential more and more flat at one of
its minima and even form a plateau:

d2Ve�

dz2
= 0: (84)

One way of creating the plateau is to tune the control parameter,�. In this method we flatten the
potential by bringing the minimum closer to the nearest local maximum. This method of obtaining
the plateau by merging the local minimum with the nearest local maximum has a drawback. Namely,
in this method we bring the operation point closer and closer to the instability region, eq. (67).

Another way of forming the plateau at the minimum is to start with lower power (� < �cr) and
gradually increase the power until the bifurcation occurs (� = �cr). In this method we begin with a
stable cavity: the effective potential has only one minimum. We have to adjust the control parameter
so that the operation point coincides with this minimum:

d3Ve�

dz3
= 0: (85)

By increasing the incident power� ! �cr, we make the potential more and more flat at the minimum.
At the bifurcation point (� = �cr) the plateau is formed.

7.4 Period of Anharmonic Oscillations

The oscillations of length in almost flat potential are anharmonic and can have very large period. At
the critical point the potential is of fourth order:

Ve�(z) = Ve�(z0) +
1

4!
V

(4)
e� (z0)(z � z0)

4: (86)

The period of the anharmonic oscillations in the fourth order potential is

Tosc = �2
�
1

4

�"
6�

�V
(4)
e� (z0)

# 1

2 1

a
; (87)

wherea is the amplitude of the oscillation. Since the amplitude of mirror motion and correspondingly
the amplitude of the length oscillations is very small (of the order of a few�m), the period can be
very large.

In practice it is unlikely that the cavity is maintained exactly at the bifurcation point. More likely
the long period oscillations are obtained slightly below the critical point� < �cr. In this case the
potential is not quartic, nonetheless the oscillations have long period, which can be found from a
general expression

Tosc =
q
2�

z2Z
z1

dz

[E � Ve�(z)]1=2
; (88)

wherez1 andz2 are the turning points of the oscillations. Both equations (87) and (88), appear in
books on Mechanics, for example in ref. [24].

29



In Table 2 we show numerical values of frequencies of the oscillations in the nearly flat potential
for LIGO Fabry-Perot cavities. The flatness of the potential is characterized by the deviation of the
parameter� from its critical value. The table shows that we can achieve period substantially greater

Table 2: Period of anharmonic oscillations in almost flat potential

amplitude (m) period (s)
a � = 0:96 �cr � = 0:98 �cr � = �cr

10�8 1.34 1.34 1.33
10�9 2.31 2.36 2.41
10�10 6.39 8.74 23.2
10�11 6.68 9.44 234.2

than the pendulum period (2�=!0 � 1:3 s). This method of obtaining very long period by taking
advantage of the radiation pressure is an interesting alternative to the very long suspension.
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8 Implications for Control System

8.1 Pound-Drever Locking Servo

The operation point of the cavity is a stable equilibrium position which correspond to a minimum
of the effective potential. Due to the ambient seismic motion the actual state of the cavity is moving
around the operation point. Often the minimum of the effective potential is not deep enough to confine
the state. In such case a negative feedback control system (servo) is used to keep the cavity state within
one minimum. The dynamics of the cavity with the control system is described by the same equations
as before but the control parameter,u, becomes a function of the cavity length.

In LIGO interferometers the control function,u(z), is proportional to the Pound-Drever signal,
eq. (11).

u(z) / ImfE(t)g: (89)

This signal is a function of the cavity lengthx and does not depend on the cavity center of mass.
There is no explicit analytic expression for the functionu(z), eq. (89), which is valid for all

dynamical regimes. However, in the adiabatic regime we can obtain a simple formula

u(z) = �
�
G

2k

�
sin 2kz

1 + F sin2 kz
+ u0; (90)

whereG is the gain andu0 is the dc-bias of the control system. The minus sign in eq. (90) accounts
for the negative feedback.

If the deviation of the cavity length from the nearest fringe is lesss than the width of the resonance
the control signal becomes linear:

u(z) � �G
 
z � n

�

2

!
+ u0; (91)

wheren is the order of the fringe. For large-amplitude mirror motion the control function is nonlinear
and so is the control system.

8.2 Multistability in Presence of Servo

Since the control law eq. (90) is a periodic function of the cavity length the cavity with the servo is
multistable. To study multistability in dynamics of the cavity with the control system we introduce
the static servo potential

Vsvo(z) = ��!2
0

zZ
0

u(z0)dz0 (92)

/ ln(1 + F sin2 kz): (93)

In the adiabatic regime the dynamics of the cavity with the servo can be described by the combined
potential

Ve� + Vsvo =
�!2

0

k2

"
(�� �)2

2
� �

arctan(
p
F + 1 tan�)p
F + 1

� G

2F
lnA(�)

#
; (94)
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where the dc-bias is conviniently assigned to the pendulum potential (� = ku0).
Thus the servo is a nonlinear device. The effect of the servo is cotrolled by the gain,G, and can be

made stronger than the effect of the radiation pressure. Fig. 13 shows the sum of the radiation pressure
potential and the servo potential for three different values of the servo gain:G = 102; 103; 104. On

Figure 13: Radiation Pressure and Servo Potential
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the first plot the sum of the two potentials looks like a staircase which is characteristic of the radiation
pressure potential. Here the effect of the servo is negligible compared to the effect of the radiation
pressure. On the second plot the “staircase” shows dips created by the servo. Here the effect of the
servo is comparable to the effect of radiation pressure. On the third plot the dips are bigger than the
steps, and the servo dominates the radiation pressure.

8.3 Equilibrium and DC-bias

Stable equilibrium states of the cavity with the servo are the minima of the combined potential:

d

dz
(Ve� + Vsvo) = 0: (95)

This condition can also be seen as a requirement on the dc-bias. Namely, a cavity state,z0, becomes
an equilibrium if the dc-bias is set according to the equation:

u0 = z0 �
�

k
A(kz0)

�
1 +

G

2�
sin 2kz0

�
: (96)

From this equation we see that, in general, the dc-bias is connected to the gain of the servo. There-
fore, changes of the servo gain should be accompanied by the corresponding changes of the dc-bias.
Otherwise the equilibrium condition will be lost and the equilibrium state will change. There is one
exception to this rule. In the case when the operation point is chosen at the peak of the Airy function
(z0 = �

2
) the dc-bias becomes independent of the gain:

u0 = n
�

2
� �

k
: (97)
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Although opeation points correspond to different fringes (differentn) are all equivalent the dc-bias
is different for different fringes.

8.4 Stability Provided by Servo

The negative feedback control system can turn an unstable state of the cavity into a stable one. It can
also provide greater stability margins to the already stable cavity. These effects of the servo can be
analyzed with the help of the servo potential.

The frequency of the cavity length oscillations in the presence of the servo is


2
0 � ��1 d

2

dz2
(Ve� + Vsvo) (98)

= !2
0

n
1� �A0(�0) +GA2(�0)[1� (F + 2) sin2 �0]

o
; (99)

By adjusting the gain we can vary this frequency in a wide range. We can also turn the unstable state
(
2

0 < 0) into a stable one (
2
0 > 0). In particular we can make stable any state of the cavity within

a width of the fringe (j�0j < �w). This can be done by choosing a sufficiently high servo gain. For
LIGO parameters such gain isG = 1800.
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9 Conclusions

The suspended mirrors in Fabry-Perot cavity can be described as a pair of harmonic oscillators driven
by nonlinear forces of the radiation pressure. The oscillators are not independent; they interact with
each other through the laser circulating in the cavity. The normal coordinates for the coupled os-
cillators are the position of their center of mass and the cavity length. The radiation pressure has
almost no effect on the motion of the center of mass, but affects strongly the dynamics of the cavity
length. To understand universal properties of the Fabry-Perot cavity as a nonlinear dynamical system
we introduce two parameters. These parameters determine qualitative behavior of the dynamics of the
cavity length common to all Fabry-Perot cavities. The first parameter determines whether the cavity
is multistable or not. There is a critical value for this parameter, at which the bifurcation occurs, and
the cavity becomes multistable. The second parameter is a generalized control force. It determines
the locations of the equilibrium states. If the control parameter varies within a wide range the equi-
librium state of the cavity follows a hysteresis loop. We analyze stability of the equilibrium states
and identify the instability region. The instability is explained in terms of the effective potential:
stable states correspond to local minima of the effective potential and unstable states correspond to
local maxima. Each minimum of the effective potential defines the resonant frequencies of the cavity
length oscillations. These resonances make the cavity a narrow band detector of any disturbances
which affect optical path of the laser in the cavity, such as mechanical vibrations of the mirrors. The
resonance frequencies can be tuned by changing both of the parameters.

The nonlinear dynamics, described in this paper, provides grounds for building a control system
for the Fabry-Perot cavities in the interferometric gravitational detectors. Our calculations are a basis
for a more realistic analysis of the cavity dynamics with stochastic noise sources. Our results can also
be used in the studies of Fabry-Perot cavities near quantum limit.
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A Parameters of LIGO Fabry-Perot Cavities

The following table shows the transmissivities and the losses for the 40m and 4 km LIGO mirrors.

Table 3: Transmissivity and reflectivity of LIGO mirrors

Mirror # parameter 40m Prototype 4km LIGO
input mirror ta 0:0758 0:1732

ra 0:9971 0:9849

end mirror tb 0:0035 0:0045

rb 0:999944 0:999965

Other parameters for LIGO cavities are listed in the following table

Table 4: Parameters of 40m and 4km LIGO cavities

Parameter (units) Symbol 40m Prototype 4km LIGO
laser wavelength (m) � 5:14� 10�7 1:06� 10�6

cavity length (m) L0 38:5 4000
delay time (s) T 1:28� 10�7 1:33� 10�5

storage time (s) � 8:60� 10�5 1:74� 10�3

free spectral range (Hz) fFSR 3:89� 106 3:75� 104

cavity low-pass freq. (Hz) fcav 1:85� 103 91:2
cavity gain Gcav 645 130

coefficient of finesse F 4:47� 105 1:71� 104

phase width (rad) �w 1:49� 10�3 7:64� 10�3

displacement width (m) xw 1:22� 10�10 1:29� 10�9

Finesse Finesse1051 205
mirror mass (kg) ma 1:53 10:8

pendulum frequency (Hz) !0=2� 1:0 0:77
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B Derivation of Field Equations

We approximate the electro-magnetic wave by a plane scalar wave described by the complex function,
f(x; t), which is a solution of the 1-dimensional wave equation:

1

c2
@2f

@t2
� @2f

@x2
= 0: (100)

Let f1(x; t) be the wave function corresponding to the right-moving wave in the cavity andf2(x; t)

be the wave function corresponding to the left-moving wave.
The reference planes are located atx = 0 andx = L0. We define the amplitudes at the reference

planes as

f1(0; t) = E1(t)e
i!t; (101)

f1(L0; t) = E 0

1(t)e
i!t: (102)

Similarly, we define the amplitudes for the left-moving wave:

f2(0; t) = E 0

2(t)e
i!t; (103)

f2(L0; t) = E2(t)e
i!t: (104)

Since the wave functions satisfy the wave equation their values at different locations can be obtained
by delay:

f1(L0; t) = f1

�
0; t� L0

c

�
; (105)

f2(0; t) = f2

�
L0; t�

L0

c

�
: (106)

Therefore, the amplitudes at the two reference planes are related to each other:

E 0

1(t) = E1

�
t� L0

c

�
e�ikL0 ; (107)

E 0

2(t) = E2

�
t� L0

c

�
e�ikL0 : (108)

If we assume that there is integer number of half-wave length in the nominal lengthL0 we obtain the
equations (3-4).

The reflection off the end mirror can be obtained from the continuity of the wave function at the
mirror surface:

f2(L0 + xb; t) = �rbf1(L0 + xb; t): (109)

Therefore, at the refrence planex = L0:

f2

�
L0; t+

xb

c

�
= �rbf1

�
L0; t�

xb

c

�
: (110)

This equation can now be written in terms of the amplitudes:

E2

�
t+

xb

c

�
= �rbE 0

1

�
t� xb

c

�
e�2ikxb: (111)

If we neglect the small time delay due to the mirror motion,xc=c, we obtain the equation (5). Other
equations can be derived similarly.
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C Some properties of Airy function

Here we present few basic properties Airy function, which are used throughout this paper. The Airy
function,

A(�) =
1

1 + F sin2 �
; (112)

is a postitive, periodic function of� with the period�. The Airy function depends on one parameter,
F , a positive number called the coefficient of finesse. Fig. 14 shows Airy functions with different
coefficients of finesse.

Figure 14: Airy Profile

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

phi

F = 1000

F = 100

F = 10

F = 1

The half-width,�w, is the phase, at which the Airy function equals to half of its maximum value

�w � arcsin
1p
F + 2

� 1p
F
: (113)

The full width is equal to2�w. Finesse is the ratio of the separation between the peaks to the full
width of the peak

Finesse � �

2�w
� �

2

p
F : (114)

A slope of a tangent line to Airy function at point� is defined by the derivative of Airy function

A0(�) = � F sin 2�

(1 + F sin2 �)2
: (115)

The inflection points of Airy function can be found by solving the equation:A00(�) = 0. They are
located at��inf , where

cos 2�inf =
1

2F

�p
9F 2 + 4F + 4� F � 2

�
: (116)
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The greatest slope the tangent line achieves at the left inflection point� = ��inf . This maximum
slope is

A0(��inf) =
h
1
2
(F + 2)

p
9F 2 + 4F + 4� 3

2
F 2 � 2F � 2

i1=2
�
1
4

p
9F 2 + 4F + 4� 3

4
F � 3

2

�2 : (117)

The expression for the inflection points, eq. (116), and the maximum slope, eq. (117), are quite
complicated, therefore, it useful to find simple approximate formulas for these quantities. For high
finesse cavities (largeF - limit) such approximations can be easily found:

�inf � 1p
3F

; (118)

A0(��inf) � 3

8

p
3F: (119)

Any straight line, which has a slope greater than the maximum slope, intersects the Airy function at
only one point. If the slope of the line is less than the maximum slope the line can intersect the Airy
function at more than one point.

The integral of Airy function can be found in terms of elementary functions

�Z
0

A(�0)d�0 =
arctan(

p
F + 1 tan�)p
F + 1

: (120)

This expression is used in defining the potential for the radiation pressure in the adiabatic approxima-
tion.
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