LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -CALIFORNIA INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Draft I

LIGO-T960158-00 - D Sep. 26, 96

RESPONSE OF SUSPENSION SYSTEM TO PITCH MOTION OF SUSPENSION POINT

Seiji Kawamura

Distribution of this draft:

This is an internal working note of the LIGO Project..

California Institute of Technology LIGO Project - MS 51-33 Pasadena CA 91125 Phone (818) 395-2129 Fax (818) 304-9834 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project - MS 20B-145 Cambridge, MA 01239 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

LIGO-T960158-00

Let us think about the suspension system shaken in pitch around the suspension point. As shown in Fig. 1, the mass (of mass *M*) is suspended by the wire (of length *l*) at the release point which is distance *d* above the center of mass. The suspension sensor/actuators are mounted on the suspension support structure at a distance of *a* above and below the center of mass. These sensor/actuators damp the mass pseudo-critically using a signal proportional to the relative position of the mass to the sensor itself. The actuators also apply a DC force on the mass, which depends on this relative position. Therefore, the motion of the sensor/actuators causes the test mass to shake. θ_1 , θ_2 , and θ_3 denote the pitch angle displacement of the suspension support structure, the test mass, and the wire, respectively. x_2 , and x_3 denote the position displacement of the test mass, and an average position displacement of the suspension's sensor/actuators.

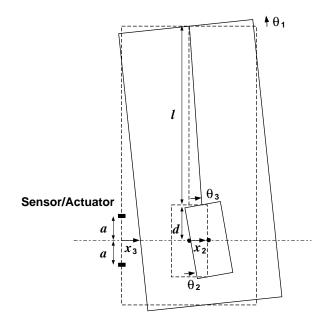


Figure 1: Side view of the suspension system showing the pitch motion of the suspension support structure around the suspension point.

The equations of motion of the mass for x_2 and θ_2 are, respectively:

$$-g\theta_{3} - \tilde{k}_{x} \cdot \frac{d}{dt}(x_{2} - x_{3}) + \alpha(x_{2} - x_{3}) = \frac{d^{2}x_{2}}{dt^{2}}$$
$$g(\theta_{3} - \theta_{3})d - \tilde{k}_{\theta} \cdot \frac{d}{dt}(\theta_{2} - \theta_{1}) + \alpha(\theta_{2} - \theta_{1})a^{2} = I \cdot \frac{d^{2}\theta}{dt^{2}}$$

where *I* is a normalized¹ moment of inertia, *g* is the acceleration of gravity, \tilde{k}_x and \tilde{k}_{θ} are normalized low-pass-filter operators for damping force along *x* and θ , respectively, α is a normalized DC

force change per unit displacement, i.e.,
$$\alpha = \frac{\left(\frac{dF_{DC}}{dx}\right)}{M}$$
. There are simple geometrical relations:

$$\theta_3 = \frac{x_2 - d\theta_2}{l}$$
 and $x_3 = \theta_1(l+d)$.

The DC force and torque are neglected. The wire resonances are not considered here.

The parameters in our case are:

•
$$I = \frac{D^2}{16} + \frac{L^2}{12} = 4.740 \times 10^{-3} \text{m}^2$$
 (D=0.25 m: diameter, L=0.1 m: Thickness)

- l = 0.45 m (The pendulum frequency is 0.74 Hz.)
- d = 0.0068 m (The pitch frequency is 0.60 Hz.)

•
$$K_x = \frac{a}{(s-p_1)(s-p_2)\dots(s-p_n)}$$
 (Laplace transform of \tilde{k}_x);

 $a = 8.980 \times 10^{16}$, $p_n = -1.688 \pm 75.19j$, $-4.898 \pm 67.83j$, $-7.634 \pm 53.83j$,

 $-9.623\pm34.56j$, 10.66 \pm 11.91
j, (Chebychev 10 pole, 1 dB, 12Hz; Gain at DC is 4 for pseudo-critical damping.)

•
$$K_{\theta} = \frac{a}{(s-p_1)(s-p_2)\dots(s-p_n)}$$
 (Laplace transform of \tilde{k}_{θ});

$$a = 1.122 \times 10^{14}$$
, $p_n = -1.688 \pm 75.19j$, $-4.898 \pm 67.83j$, $-7.634 \pm 53.83j$,

 $-9.623\pm34.56j$, $-10.66\pm11.91j$, (Chebychev 10 pole, 1 dB, 12 Hz; Gain at DC is 0.005 for pseudo-critical damping.)

- $a = 0.085 \,\mathrm{m}$
- $\alpha = 0.093$ N/mkg ($F_{DC} = 0.01$ N (corresponding to 40 µm), 10% change per 1mm;

$$\frac{\left(\frac{dF_{DC}}{dx}\right)}{F_{DC}} = 10^2 / \text{m}, M = 10.7 \text{ kg})$$

^{1.} For this document, "normalized" is defined as "divided by the mass".

The transfer functions from θ_1 to x_2 and θ_2 were calculated using the "block diagram method" in simulink of matlab (Fig. 2)¹.

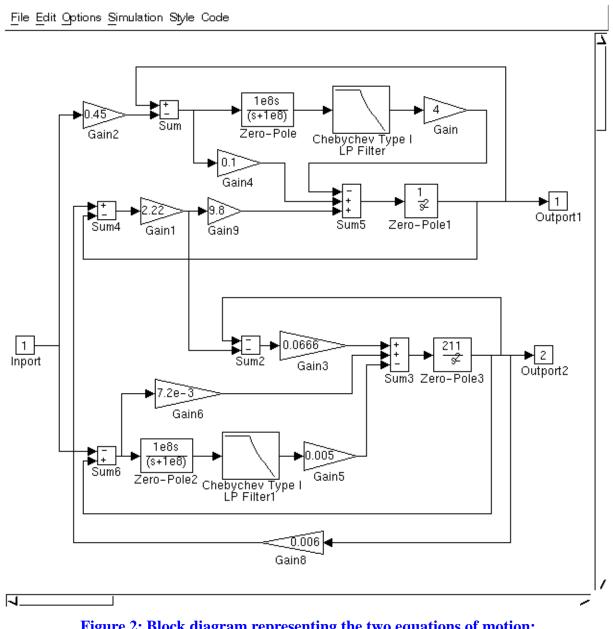


Figure 2: Block diagram representing the two equations of motion; Inport: θ_1 , Outport1: x_2 , Outport2: θ_2 .

 $^{1. \ {\}rm \sim} seiji/DET suspen/pendresponse/pitchto.m \ is the simulink file \ for \ it.$

The two transfer functions obtained are shown in Fig. 3 together with the transfer functions without the DC force changing effect. Some important features of the transfer functions are:

- Around the resonance frequencies, the test mass motion is comparable with that of the sensor/ actuators both in position and pitch.
- At low frequencies, both transfer functions approach asymptotes due to the DC force changing effect.
- At high frequencies, both transfer functions have slopes of f⁻² due to the DC force changing effect.
- The transfer function from θ_1 to θ_2 at 40 Hz is $\sim 3 \times 10^{-5}$.
- The transfer function from θ_1 to x_2 at 40 Hz is ~10⁻⁶.

It can be shown by the last feature¹ that in order to suppress the test mass displacement noise below $5 \times 10^{-20} \text{m}/\sqrt{\text{Hz}}$ at 40 Hz, the pitch motion of the stack top plate must be less than $5 \times 10^{-14} \text{rad}/\sqrt{\text{Hz}}$ at 40 Hz.

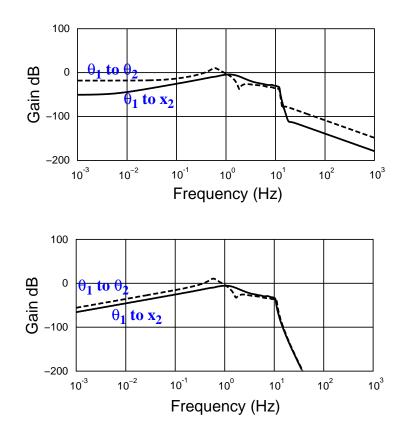


Figure 3: Transfer function from θ_1 to θ_2 and x_2 with the DC force changing effect (top) and without it (bottom).

^{1.} The transfer function from θ_1 to θ_2 at 40 Hz of $\sim 3 \times 10^{-5}$ does not set a stringent requirement, assuming that the beam spot offset from the center of mass is 1 mm.