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Fred: Please have a look at this with a critical eye towards organization and
level of detail; please ignore spelling mistakes or examples of awkward wording
since major revisions will likely be required anyway. — MR.

1 Introduction

Consider a Fabry-Perot interferometer, consisting of two mirrors as shown in
Fig xxx. It is often desirable to maintain the length of such an interferometer
such that a beam of light from a laser resonates in the interferometer. In the
presence of noise from the environment, such as acoustic motion of the cavity
mirrors or laser frequency noise, this requires a control system capable of detecting
the deviations from resonance of the interferometer and of exerting an opposing
influence on the length of the interferometer. For the sake of designing such
a control system, it is necessary to know the transfer function of the system to
be controlled, sometimes called the plant. Suppose that the laser light is phase-
modulated and that a photodiode and demodulator are used as shown to detect
deviations from resonance. Now suppose we cause the mirror to move such that
its position is given by:

x(t) = Re{ze*}
then for sufficiently small z the output of the demodulator will be given by
v(t) = Re{ve**}
= Re{H(s)we"’t}

This is our definition of H(s), the transfer function of the plant. If one is designing
a control system for a more complicated interferometer, the basic issue is the
same: one needs to know the transfer functions from the available inputs to the
available outputs.

We will derive these transfer functions in three stages. First we will show
that a shaking mirror acts as a source of light at frequencies different from the
frequencies of light incident on it. Then we will derive the relation between
the spectral content of the light incident on a photodiode and the output of a
demodulator following that photodiode. Finally we will derive the frequency

dependence of the throughput from the sources of light (the shaking mirrors) to
the interferometer outputs.
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2 Effect of a shaking mirror

Consider a section of one of the laser beams within our interferometer. It
contains electromagnetic radiation travelling in two directions, which we will call
the z and —z directions:

B(z,t) = By Re{@i(yt—kz) + Et) ei(ut+kz)}

We will assume uniform linear polarization throughout, and concern ourselves
only with theycomplex functions of time E,(t) and E;(t), which we will refer to
as the fields traveling in the z and —z directions.

Now consider a mirror which is shaking sinusoidally at an “audio” frequency
w/2n as shown in Figure 1 (we use the term “audio” to denote frequencies lower
than 100 kHz, and therefore much lower than the modulation frequency, which
is typically tens of megahertz).
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Its position is given by
x(t) = Re{Xei@f}

We assume that the amplitude of the motion is very small (|kX| < 1). This
assumption is in fact necessary for our transfer function to be well defined. If the
amplitude were large, then there would not be a linear relationship between the
mirror position and the demodulator voltage. The motion of the mirror modulates

the path length between the incident and reflected field, so that C
........ e state T, (Ma T
Ey = v/RiEqe | | A, <<
~ /Ry Eg[Jo(2kX) + J1(2kX )€™ + J_1(2kX e _ ( ) n \
~ \/RrEo[1 + kXt — kXe—] ) -

Thus for a single frequency of light incident on the mirror, the reflected
beam contains three frequencies, the (“carrier”) frequency of the incident beam
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and two audio sidebands. If the incident beam were already to contain audio
sideband fields, then in principle each of these would result in two additional
audio sidebands, two of which would fall back onto the carrier. However all
four of these additional sidebands are of order (kX )2 so we neglect them. The
result then, is that the newly generated audio sidebands on the carrier add to
those already present.

If there are RF sidebands present in the incident light, then each will produce
a pair of audio sidebands in the reflected light.

3 RF modulation and demodulation
We stated above that the light entering the interferometer is phase modulated.

Eincident = Eoe'T "%

= Jo(T) + Jy(T)e*¥® — Jy(T)et= + ...

The above Fourier series contains an infinite number of terms, but for any finite
modulation index there exists some order N such that we can neglect terms of
order exceeding N Find justification in terms of asymptotic expression for large
orders in A and S Then we write )

Eincident ~ JO(F) + A (F)eint - Ji (P)e_’nt 4.4 JN(I‘)eiNQt - JN(F)e—iNQt

Need to re-check correctness of sign in above, especially for N terms.

We will consider two types of demodulator: an “inphase” demodulator and
a “quadrature phase” demodulator. These are of course the same kind of device
(typically a double-balanced mixer), but the former is driven (at its local oscillator
input) by the phase-modulating signal, the latter by the same signal delayed ninety
degrees. We will model the effect of these devices as follows: <8

I Vp & | Z puinoltio
V\W’/' ‘O/v VD in(t) = % / Vp(t,) CcOoSs (Qtl)dt,
t—T

t
1

Vogult) = 7 / Vp(¢) sin (QF')d#
t-T




First we will show that the only frequency components of relevance in the
demodulator inputs are those near the modulation frequency. The input voltages to
the demodulators consist of components at harmonics of the modulation frequency:

= fo(t) + fi1(t) cos Ut + fo1(t)sin Qt + fia(t) cos 20 + fya(t)sin20 + -+

where the f;(t) are slowly-varying compared to the time-scale 7', and we can
move them out of the integrals. Then

Vboin(t) = %-(;,—)(sin Ut — sin Q(T - 1))+ fil2(t) };}12(1’)[ in 20t — sin 2Q(¢t — T'))

(sin? Qt — sin® Q(t - T))

QQT
+Z all) bin (= 100 = sin (0 ~ Dt - )]

+ Z (2nfr(1))QT sin ((n + 1)) —sin((n + 1)Q(t — T))]

+ Z (2nfj(1))QT cos ((n — 1)) — cos ((n — 1)Q(t — T))]

— Z Z—zi'ig—)—[cos ((n + 1)) — cos ((n + 1)Q(t — T))]
n=2

The only term in Vp;,(t) not proportional to nlr is the second. It is
proportional to the component of the input voltage which is at the same frequency
and in the same phase as the modulation voltage. In S1m11ar fashion, one can show o
that the only term in Vp 4, (t) not proportional to m'v is —‘1-—(—1 e _{;9,./':'-—/\ 0 " .:/
The field in the light from any output of the 1nterferometer&=:g will contain
6N + 3 frequency components, and the photocurrent is proportional to the square 2
of the modulus of this field: 6{

N 1 2

Z Z Almei(lﬂ-}-mw)t

l=—~N m=-1

Vp =

When expanded, this gives a sum containing (6 +3)2;“ (6N+3) terms of the form
Re{A;mA,,qe"((n-P)9+(m-q)w)} of which we are only interested in those with




n—p=Fland m—-q = Fl:

N-1
Vy = ) 2Re{A] _j Apy e
I=—N
+A] g Al 1T
+A} Ay 1@
+A=Ik 1A1+1 Oei(ﬂ—w)t}

need to fill in some detail herelf we define V; and V, to be complex numbers

such that
Vpin(t) = Re{V;e™'}
Vi qu(t) = Re{V,e™*}
Then
N-1
Vi= Z (A7—1A1+1 o+ AfgAip11 + AoAly oy + AnAly 0)
I=—N
and
N-1
Vo= Y i(Af A0+ Af Ay — AroAfy 1 — AnAf o)
I=—N

4 Transfer Function

Let us return now to the original question: what is the transfer function from
mirror displacement to demodulator voltage? We will show that this transfer
function is proportional to a sum of optical transfer functions corresponding to
transmission from a summing input at the mirror being shaken to the optical
output. we will derive these results assuming N = 1

Consider a system consisting of a source of phase-modulated
light, an interferometer having two inputs and two outputs,
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demodulators.

We will define six fields and three transfer functions. Let Ejr9, Ey —1 and
E1 be the carrier, lower RF sideband and upper RF sideband fields incident on
the shaking mirror. Similarly, let Fro, F 7—1 and E7; be the carrier and RF
fields at the interferometer output. Let Up(w), U—;(w) and U;(w) be the transfer
functions centered on the carrier, lower and upper RF sideband respectively for
transmission from summing in at the shaking mirror to the optical output. In
particular, Up(w) for example, is the complex ratio of the audio sideband fields
near the carrier leaving the output to the fields summed in at the mirror because it
is shaking. For mirror motion at angular frequency wy, the upper audio sideband
of the carrier at the output is related to the amplitude of this sideband summed in at
the mirror by Up(wy); the transmission of the lower audio sideband is proportional
to Uo(—wo).

Then the fields at the output are:

1 1
2 ETIeiIQ + Z EM . (kXUl(w)ei(w-l-lQ)t _ kXUl(__w)ei(w—-lQ)t)
I=-1 =1

and from equation with A’s in it
Vi=- (EM __1kXU_1(—w))*ET0 + E}_IEM ()kXUo(w)
- ET_I(EM()]CXU()(—(.O))* + EM_lkXU_l(w)E%O
— (EpokXUp(—w)) Ery + ET o Ep1kX Uy (w)
— Epo(Epy 1kX UL (—w))* + Ep ok X Up(w)ET

We see that V; is of the form

Vi=)_ ali(w) + Ui (-w)




In the examples which we will consider in a later section, we will have
Ui (—w) = Ug(w)
and

Uj(w) = const.
U_1(w) = const.

in the frequency range of interest to us. Then
H; = B + DUy(w)

The constants B and D can most easily be determined from an analysis of the
very-low-frequency behavior of the system.

S Transmission of Optical Cavities

We will analyze the transmission of two types of optical cavity: a simple
two-mirror cavity and a compound or “coupled” three-mirror cavity. The reason
the transmission is interesting to us is that (near the carrier and RF sideband
frequencies) it is proportional to the transfer functions Ux(w) we need. This can
be seen from the fact that the summing in of audio sideband light due to the
shaking of a mirror is equivalent to the summing in of light incident from outside
the interferometer. In both cases the total electric field is the incident field times
the reflectivity of the mirror, plus whatever field is being summed in.

Consider first the simple cavity illustrated in Figure xxx.

1 2
5k =
sl o

If the cavity is illuminated from the left with a field of the form

El — eiwt




then we can write
Ey=t1FEy —rE;
E; = rge—i(¢+wr)E2
Ey = tye—i0+wn)2p,
Es =ri1E1 4+t E3

where ¢ is the phase lag accumulated by light at the optical center frequency
(w = 0) and 7 = 2l/c is the round-trip travel time, with [ being the length of
the cavity.

We have chosen the reflectivity of both mirrors to be negative on the right
and positive on the left. Now we solve for Fy and Ej:

t
F)= ———rF
2 1+T‘17‘2€"'¢ !
t1tae /2
B, = b2

T 14 riroe=19 !

If the cavity is resonant at w = 0 (¢ = =) and if wr < 1 the first expression
simplifies to

{2
Ey ~
2T 1o r1ra(l — iwT)

_ io 1
T l—riry 14 25y
Ty :

which, if we substitute s for iw and define

1- rire
We =

rreT
can be written in the more familiar form:

12 1

Ey ~
2 1—T1T21+wic

Here w./2x is the cavity corner frequency.
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Similarly, the transmitted field can be shown to be
tito 1 %

Eq =
4 l1—ryrg 14 Tvs:
and the reflected field
1 —rt
Es5 > —rep 7
where
t%rg
Ted = — T2
1 —Tirs
Let us proceed now to the case of the coupled cavity shown in Fig xxx
1 2 3
N =
S |
We know from above that
1 — 8
E3 =€ 1(¢1+wn) —Tc2 ﬁzwc E2
14 wic
where
t%r3
Tea = — T3
1 —rorg
Now if we define
1-— T—_flfwc
Te = —Tc2
1+ &
and
. = taols 1- 3—;—2
T 1l—rors 1+ wi,_.
then

E2 = tlEl - 7‘1E3
E3 = 7.661'(451+4~"I'1)E2
Eq = 01+on)/2y p,

Es =riEy+t Es



3]

By = 1 4 rqr e—t$1+wn) <€’@O VM\/-AQ/
t
= I_Téwc
1- 7‘1"62‘1?1_"__(1 - .STI)
5] (1 + wic)
= 14+ 2 - rlrcz(l - %wic)(l — s71)
u - —@—i 1-— ST1) =
1+ ID: — rire2 (1 T2 'wc)(
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