New Folder Name Beam Tube Design

LIGO - BEAM TUBE DESIGN

LIGO-3-1.XLS Rev 1 pg 1 of 29

- INPUT VARIABLES

Tube outside diameter, Do = 49.004 in

Beam Tube section length, L = 19.812 m = 65.000 ft

Beam Tube Span length, Lsp = 18.9484 m = 62.167 ft

Tube thickness, t = 18.9484 m = 18.9484

Insulation Density, Deni = 24 kg/m = 16.127 lbs/ft

Vacuum Stiffener thickness, ts = 0.1875 in
Vacuum Stiffener width, ws = 1.75 in
Vacuum Stiffener spacing, Ls = 29.84 in
Support Stiffener thickness, tss = 0.375 in
Support Stiffener width, wss = 4 in

Mod. of Elast. @ ambient, Ea = 28,300 ksi Table TM-1 @ 70

Mod. of Elast. @ 302 degrees, Eb = 27,000 ksi Table TM-1, Page 664

Coefficient of expansion, e= 9E-06 in/in/F Average from 70 to 300 degrees F

Anchor bolt spacing, Abs = $\frac{30}{100}$ in C. line height of tube, H = $\frac{42.000}{100}$ in Support Collar / Saddle width, b = $\frac{20.000}{100}$ in

Expansion Joint O.D., De = 53.75 in Expansion Joint I.D., Dei = 48.75 in E.J. Concentricity Error, CE = 0.1875 in

Expansion joint axial spring rate, Kej = 9147.6 lbs/in =8316 * 1.1

Spring rate variation, Eej = 10.0%

Spring Rate, K = 10062 lbs/in = Kej * (1 + Eej)

·				_	
SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY	CHKD BY	MADE BY	CHKD BY	SHT 1 OF 29
Maximum Differential Settlements	DATE 3/11/94	DATE 4-94	DATE	DATE	6.5

- TUBE WEIGHT & PROPERTIES

48.75 in Inside Diameter, Di =

Area, $A = 19.501 \text{ in}^2 = PI() * (Do^2 - Di^2) / 4$

 $237.7 \text{ in}^3 = PI() * (Do^4 - Di^4) / 32 / Do$ Section Modulus, S =

5823 in^4 = PI() * (Do^4 - Di^4) / 64 Moment of inertia, l=

 $17.281 \text{ in} = (1/A)^0.5$ Radius of gyration, rg =

Theoretical # of vacuum stiffeners= 27 = Round(L/Ls*12)

Number of stiffeners used, Ns = 25

> 31.200 in = L/(Ns)*12True spacing =

Number of support stiffeners, Nss = 1.5 Per section

4357 lbs = 495 * A/144 * L Shell weight per section =

 $14.987 \text{ lbs} = PI() * ((Do+2*ws)^2-Do^2)/4 * Ts * 495 / 12^3$ Weight per vacuum stiffener = 71.550 lbs = PI() * ((Do+2*wss)^2-Do^2)/4 * Tss * 495 / 12^3 Weight per support stiffener =

482.01 lbs = Weight Vacuun * Ns + Weight support *Nss Stiffener weight per section =

27.5 lbs Estimated Baffle wt / section =

> 4867 lbs, or Total metal weight, DL =

74.87 lbs/ft wd =

1048 lbs = Deni * L Insulation weight per section =

> DL + Insulation = 5915 lbs. or

wdi = 91.00 lbs/ft

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	M1c CHKD BY	MADE BY	CHKD BY	SHT 2 OF 29
Maximum Differential Settlements	DATE 3/11/94	DATE 니-니- 9 년	DATE	DATE	b (g

- ALLOWABLE STRESS PER ASME SECTION VIII DIV 1 UG 23(b)
 - Allowable Stresses @ 300 Degrees F.

Yield Stress, Fy =
$$19,200$$
 psi Table Y1
Tensile Allowable, Sh = 13000 psi Table 1A
Joint Efficiency, Et = 0.7
Compression Allowable UG 23(b)

- Allowable Stresses @ Ambient (100 degrees F)

Yield Stress =
$$25,000$$
 psi Table Y1
Tensile Allowable, Sa = $16,300$ psi Table 1A
Compression Allowable

A = $0.000648 = 0.125 / (Ro/t)$
B = 7800 psi per Figure HA 3, 100 degrees F.

Where B = Fa = Fbx = Fby = Fbxy

- Allowable Stress Increase for Wind and Seismic Allowable increase for wind or seismic is 1.20
- Allowable Axial Stress, Column Buckling per AISC

$$k = \frac{1}{746 \text{ in = Lsp * 12}}$$

$$r = 17.28069 \text{ in = rg}$$

$$kL/r = 43.16958$$

$$Cc = 166.6081 = (2 * PH)^2 * Eb * 1000 / Fy)^0.5$$

$$Fa = 10533 \text{ psi} = \frac{(1 - (kL/r)^2 / 2 / Cc^2)*Fy}{(5/3 + 3*(kL/r)/8/Cc - (kL/r)^3/8/Cc^3)}$$

$$Fa > B, Thus use B = 5900 \text{ psi}$$

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	CHKD BY	MADE BY	CHKD BY	SHT : OF
Maximum Differential Settlements	DATE 3/11/94	DATE	DATE	DATE	(a.)

- CALCULATE WIND LOAD PER ASCE 7-88 (Livingston, LA)

- CALCULATE WIND LOAD PER ASCE 7-88 (Hanford, WA)

F =

$$F = Qz * Gh * Cf * Af \\ Qz = 4.1472 = 0.00256*Kz * (1*V)^2 \\ Kz = 0.80 , Assume exposure C \\ I = 1.00 \\ V = 45 mph$$
 Figure 1 Table 8 Table 8 Table 12
$$Cf = 0.739 \quad h / D = 0.0853 \\ h = (Do / 2 + H)/12 \\ D = L \\ D' / Do = ws / Do = 0.03571$$

$$Af = 4.083667 \ Sqft / ft = Do / 12$$

$$F = 16.53 \ lbs / ft = ww \\ F = 1074 \ lbs / section$$

SUBJECT	OFFICE:	NOE-C	REVISION:		REFE		DE NO 0212	
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	M ₇ C CHKD BA	MADE BY	CHKD BY	SHT	بر	OF	29
Maximum Differential Settlements	DATE 3/11/94	DATE 4.4.94	DATE	DATE		b	.€	

- CALCULATE SEISMIC LOAD PER UBC (Livingston, LA)

$$V = Z * I * C / Rw * W$$

$$Z = 0$$

$$I = 1.0$$

$$C = 2.75$$

$$Rw = 3$$

$$C/Rw = 0.916667 > 0.075 \text{ use:} 0.91667$$

$$W = 91.00 \text{ lbs/ft} = DL + Insulation}$$

$$V = 0.0500W = 0.05W \text{ mimimum per ASCE 7-88, 9.11.2}$$

$$V = 4.55 \text{ Lbs/ft}$$

$$V = 295.8 \text{ Lbs per section}$$

- CALCULATE SEISMIC LOAD PER ASCE 7-88 (Hanford, WA)

$$V = Z * I * C / Rw * W$$

$$Z = 0.2$$

$$I = 1.0$$

$$C = 2.75$$

$$Rw = 3$$

$$C/Rw = 0.916667 > 0.075 \text{ use:} 0.91667$$

$$W = 91.00 \text{ lbs/ft} = DL + Insulation}$$

$$V = 0.1833W$$

$$V = 16.68 \text{ Lbs/ft} = \text{wseis}$$

$$V = 1084.4 \text{ Lbs per section}$$

- CALCULATE SNOW LOAD PER ASCE 7-88 (Hanford, WA only)

Ps =
$$9.828 = Cs * Pf$$

Cs = 0.65 Angle is 35 degrees, 90-(180-70)/2, Figure 8b

Width = 46.049 in = Do * Sin 70 Per 7.4.3, slope > 70 no load

Snow Load per foot, wsn = 37.71 lbs/ft = Ps * Width
Snow load per section = 2451 lbs

Snow load per section =	245) 108

SUBJECT	OFFICE:	NOE-C	REVISION:		REFE		CE NO 0212	
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	CHKD BY	MADE BY	CHKD BY	SHT	5	OF	29
Maximum Differential Settlements	DATE 3/11/94	DATE 4.4.94	DATE	DATE		L	. ণ	

- DETERMINE REACTIONS, STRESSES AND DEFLECTIONS FOR INDIVIDUAL LOAD CASES

- Nomenclature

Rfx1 = Reaction, fixed support, x direction (horizontal), case 1

Rgy2 = Reaction, guided support, y direction (vertical), case 2

Rfz1 = Reaction, fixed support, z direction (axial), case 1

Mx1 = Moment about the horizontal axis due to vertical loads, Case 1.

My2 = Moment about the vertical axis due to horizontal loads, Case 2.

fa9c = Stress, axial, case 9, compression, (if tension t is used instead of c)

- Reactions Based on RISA2D

Fixed support = 7.029 kips, per RISA2D

1/2 of guided support = 2.41 kips, per RISA2D

Total, two spans = 11.849 kips, per RISA2D

% Fixed support, Kf = 0.593215

(Percentage of 2 spans)

% Guided support, Kg = 0.406785

Moments based on RISA2D

Maximum Moment = 43480 lb-ft, at fixed support

91 lbs/ft, DL + Insulation, used in RISA2D Based on,

True DL + Insulation = wdi =

91.00

Estimated Moment = $43961 \text{ lb-ft} = \text{wdi} * (\text{Lsp ft})^2 / 8$

Moment correction factor, Km =

0.989 = RISA2D moment / Estimated moment

- Deflections based on RISA2D

Midspan Deflection = 0.079 in

> Based on, 91 lbs/ft, DL + Insulation, used in RISA2D

True DL + Insulation = wdi =

91.00

Estimated Deflection =

0.081 in = wdi * Lsp / 4 / 185 / Eb / I * 12 / 3 / 1000

Moment correction factor, Kd =

0.978 = RISA2D deflection / Estimated deflection

SUBJECT	OFFICE:	NOE-C	REVISION:		REFE	RENCE NO 930212	
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	CHKD BY	MADE BY	CHKD BY	SHT	≎ OF	<u> </u>
Maximum Differential Settlements	DATE 3/11/94	DATE	DATE	DATE		6.10	

- CASE 1: Dead Load Reactions, Stresses and Deflections

FIXED SUPPORT

$$Rfx1 =$$

$$Rfy1 = 5774 lbs = Kf * 2 * L * wd$$

$$Rfz1 =$$

GUIDED SUPPORT

$$Rgx1 = 0$$

$$Rgy1 = 3959 lbs = Kg * 2 * L * wd$$

MOMENTS & BENDING STRESS

$$Mx1 = 35774 \text{ lb-ft} = wd * (Lsp)^2 / 8 * Km$$

$$fbx1 = 1806 psi = Mx1 * 12 / S$$

$$My1 = 0$$

$$fby1 = 0 psi = My1 * 12 / S$$

MIDSPAN DEFLECTION

- CASE 2: Dead Load plus Insulation Reaction, Stresses and Deflections

FIXED SUPPORT

$$Rfx2 = 0$$

$$Rfy2 = 7018 lbs = Kf * 2 * L * wdi$$

$$Rfz2 = 0$$

GUIDED SUPPORT

$$Rgx2 = 0$$

MOMENTS & BENDING STRESS

$$Mx2 = 43480 \text{ lb-ft} = \text{wdi} * (Lsp)^2 / 8 * Km$$

$$fbx2 = 2195 psi = Mx2 * 12 / S$$

$$My2 = 0$$

$$fby2 = 0 psi = My2 * 12 / S$$

MIDSPAN DEFLECTION

Dely2 (302)=
$$0.079 \text{ in} = \text{wdi} * \text{Lsp}4 / 185 / \text{Eb} / \text{I} * 12^3 / 1000 * \text{Kd}$$

SUBJECT	OFFICE:	NOE-C	REVISION:		930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	CHKD BY	MADE BY	CHKD BY	SHT OF 29
Maximum Differential Settlements	DATE 3/11/94	DATE 4-4-94	DATE	DATE	6.11

- CASE 3: Snow Load Reaction, Stresses and Deflections (Hanford, WA)

FIXED SUPPORT

Rfx3 =

Rfv3 = 2908 lbs = Kf * 2 * L * wsn

0

Rfz3 =

GUIDED SUPPORT

Rgx3 = 0

Rgy3 = 1994 lbs = Kg * 2 * L * wsn

MOMENTS & BENDING STRESS

 $Mx3 = 18020 \text{ lb-ft} = wsn * (Lsp)^2 / 8 * Km$

fbx3 = 910 psi = Mx3 * 12 / S

My3 = 0

fby3 = 0 psi = My3 * 12 / S

MIDSPAN DEFLECTION

Dely3 (amb)= 0.031 in = wsn * Lsp^4 / 185 / Ea / I * 12^3 / 1000 * Kd

- CASE 4: Wind Load Reaction, Stresses and Deflections (Livingston, LA)

FIXED SUPPORT

Rfx4 = 1275 lbs = ww * 2 * L * Kf

Rfy4 = 0

Rfz4 = 0

GUIDED SUPPORT

Rgx4 = 874 lbs = ww * 2 * L * Kg

Rgy4 = 0

MOMENTS & BENDING STRESS

Mx4 = 0

fbx4 = 0 psi = Mx4 * 12 / S

 $My4 = 7896 \text{ lb-ft} = ww * (Lsp)^2 / 8 * Km$

fby4 = 399 psi = My4 * 12 / S

MIDSPAN DEFLECTION

Delx4 (amb)= $0.014 \text{ in} = \text{ww} \cdot \text{Lsp} \cdot 4 / 185 / \text{Ea} / 1 \cdot 12 \cdot 3 / 1000 \cdot \text{Kd}$

REVISION: REFERENCE NO. NOE-C OFFICE: SUBJECT 930212 CHKD BY MADE BY CHKD BY LIGO - BEAM TUBE DESIGN MADE BY MIC OF 29 RJW SHT Configuration 3, K = 8316 + 20%DATE DATE DATE Maximum Differential Settlements DATE 6.12 4-4-94 3/11/94

- CASE 5: Seismic Reaction, Stresses and Deflections (Hanford, WA), X Direction (Horizontal)

FIXED SUPPORT

Rfx5 = 1287 lbs = wseis * 2 * L * Kf

Rfy5 = 0 Rfz5 = 0

GUIDED SUPPORT

Rgx5 = 882 lbs = wseis * 2 * L * Kg

Rgy5 = 0

MOMENTS & BENDING STRESS

Mx5 = 0

fbx5 = 0 psi = Mx5 * 12 / S

 $My5 = 7971 \text{ lb-ft} = \text{wseis} * (Lsp)^2 / 8 * Km$

fby5 = 402 psi = My5 * 12 / S

MIDSPAN DEFLECTION

Delx5 (amb)= 0.014 in = wseis * Lsp^4 / 185 / Ea / I * 12^3 / 1000 * Kd

- CASE 6: Seismic Reaction, Stresses and Deflections (Hanford, WA), Z Direction (Axial)

FIXED SUPPORT

Rfx6 = 0

Rfy6 = 0

Rfz6 = 2169 lbs = wseis * 2 * L

GUIDED SUPPORT

Rgx6 = 0

Rgy6 = 0

MOMENTS & BENDING STRESS

Mx6 = 0

fbx6 = 0 psi = Mx5 * 12 / S

My6 = 0

fby6 = 0 psi = My6 * 12 / S

MIDSPAN DEFLECTION

Dely6 (amb)= 0.000 in

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	M1c CHKD BY	MADE BY	CHKD BY	SHT ^a OF ²⁹
Maximum Differential Settlements	DATE 3/11/94	DATE 4-4-94	DATE	DATE	b.13

- CASE 7: Vacuum

Bellows effective area = $2062.9 \text{ sq in} = PI()*((De+Dei)/2)^2/4$

Tube pressure area = $1866.55 \text{ sq in} = PI()*((Di))^2/4$

Bellows pressure area = 196.35 sq in =Bellows effective - tube area

Axial force, Pzp = 2886 lbs = 14.7*Bellows pressure area, pos.=tension

Axial Stress due to vacuum, fav7 = 148.0 psi = Pzp / A, pos. = tension

FIXED SUPPORT

Rfx7 = 0 lbs

Rfy7 = 0

Rfz7 = 0

GUIDED SUPPORT

Rgx7 = 0 lbs

Rgy7 = 0

fbx7 = fby7 = 0

Dely7 = 0

SUBJECT	OFFICE:	NOE-C	REVISION:		930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY	CHKD BA	MADE BY	CHKD BY	SHT 15 OF 29
Maximum Differential Settlements	DATE 3/11/94	DATE 4-4-94	DATE	DATE	6.14

- CASE 8: Differential Settlement of Fixed Support
 - Reactions Based on RISA2D with 1" differential settlement

Fixed support = -2.37 kips, per RISA2D 1/2 of guided support = 2.47 kips, per RISA2D

Based on, 1 lbs/ft, DL, used in RISA2D

FIXED SUPPORTS

Rfx8 = -2447 lbs = (RISA2D fixed) - DL * 2 * L * Kf

Rfy8 = -2447 lbs = (RISA2D fixed) - DL * 2 * L * Kf

GUIDED SUPPORTS

Rgx8 = 4887 lbs = 2 * (RISA2D guided) - DL * 2 * L * KgRgy8 = 4887 lbs = 2 * (RISA2D guided) - DL * 2 * L * Kg

- Moments based on RISA2D with 1" differential settlement

Maximum Moment = 71360 lb-ft, at fixed support

Based on, 1 lbs/ft, DL + Insulation, used in RISA2D

Mx8 = My8 = 70882 lb-ft = (RISA2D Moment) - DL * Lsp^2 / 8 * Km

fbx8 = fby8 = 3579 psi = Mx8 * 12 / S

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212	
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	CHKD BY	MADE BY	CHKD BY	SHT ¹¹ OF 2	a.
Maximum Differential Settlements	DATE 3/11/94	DATE	DATE	DATE	6.15	

- CASE 9: Expansion Joint Forces at 302 Degrees F.

Thermal growth hot,
$$x = 3.257$$
 in = e * 2 * L * 12 * Tch

FIXED SUPPORT

$$Rfx9 = 0 lbs$$

$$Rfy9 = 0$$

GUIDED SUPPORT

$$Rax9 = 0$$

$$Rgy9 = 167.8 lbs = Rfz9 * H / Lsp / 12 / 2$$

$$fbx9 = fby9 = 0$$

$$Delx9 = Dely9 = 0$$

- CASE 10: Expansion Joint Forces at 100 Degrees F.

FIXED SUPPORT

$$Rfx10 = 0 lbs$$

$$Rfy10 = 0$$

GUIDED SUPPORT

$$Rgx10 = 0$$

$$Rgy10 = 21.7 lbs = Rfz10 * H / Lsp / 12 / 2$$

$$fbx10 = fby10 = 0$$

$$Delx10 = Dely10 = 0$$

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO.
					930212
LIGO - BEAM TUBE DESIGN	MADE BY	CHKD BY	MADE BY	CHKD BY	
Configuration 3, K = 8316 + 20%	RJW	<i>با</i> :د			SHT 12 OF 29
Maximum Differential Settlements	DATE	DATE	DATE	DATE	
	3/11/94	4.94			6.10

- CASE 11: Expansion Joint Forces at -16 Degrees F.

Maximum Bellows spring rate, K = 10062 lbs/in = Kej * (1 + Eej)

Est. temp. change below 70, Tchc = 86 degrees Fahrenheit

Thermal shrinkage, xs = -1.207 in = e * 2 * L * 12 * Tchc

Longitudinal Tension force, Pbt = 12150 lbs = K * xs

fa11t = 623 psi = -Pbt / A Positive is tension

FIXED SUPPORT

Rfx11 = 0 lbs Rfy11 = 0

Rfz11 = 2209 lbs = -2 * Eej * Kej * xs

GUIDED SUPPORT

Rgx11 = 0

Rgy11 = 62.2 lbs = Rfz11 * H/Lsp/12/2

fbx11 = fby11 = 0Delx11 = Dely11 = 0

SUBJECT	OFFICE:	OFFICE: NOE-C			REFERENCE NO. 930212	
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY	CHKD BY	MADE BY	CHKD BY	SHT 15 OF 29	
Maximum Differential Settlements	DATE 3/11/94	DATE 4-4-94	DATE	DATE	6.17	

- LOAD COMBINATIONS FOR MAXIMUM REACTIONS, STRESS AND DEFLECTIONS COMBINATION 1 - DL + Insulation + Vacuum + 302 F (Case 2 + 7 + 9)

FIXED SUPPORTS

Rx = 0 lbs = Rfx2 + Rfx7 + Rfx9 (laterial) Ry = 7018 lbs = Rfy2 + Rfy7 + Rfy9 (Vertical)

Rz = 5959 lbs = Rfz2 + Rfz7 + Rfz9 (axial)

Rmax per bolt = 3509 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 3509 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 0 lbs = Rgx2 + Rgx7 + Rgx9

Ry = 4980 lbs = Rgy2 + Rgy7 + Rgy9 (Vertical)

Rmax per bolt = 2490 lbs = Ry/2 + Rx * H / Abs Rmin per bolt = 2490 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.000 in = Delx2 + Delx7 + Delx9 Delta y (302) = 0.079 in = Dely2 + Dely7 + Dely9

Max Delta = 0.079 in = (Delta x ^2 + Delta y ^2)^0.5

TUBE STRESSES

fac = -1533 psi, fav7 + fa9c , neg = compression

fbx = 2195 psi = fbx2 + fbx7 + fbx9fby = 0 psi = fby2 + fby7 + fby9

Md = 7966 in-lbs = fac * A * (Max Delta + CE)

fd = 33.5 psi = Md/S

COMBINED STRESS (compression)

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 5900 psi for compression from page 3

fac / Fa = 0.260 fbx / Fbx = 0.372 fby / Fby = 0.000

fd / Fbxy = 0.006SUM = 0.638 < 1.00

M = 0.638 < 1.00 Tube is adequate

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212			
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20% Maximum Differential Settlements	MADE BY RJW	M1(CHKD BY	MADE BY	CHKD BY	SHT 14 OF 19			
	DATE 3/11/94	DATE 4.4.94	DATE	DATE	6.18			

- DL + Insulation + Settlement + Vacuum + 302 F (Case 2+7+8+9)

SETTLEMENT WITH COMBINATION

Delta x, x8 = 0 in Maxset = 0.579 = $(x8^2 + y8^2)^0.5$ Delta y, y8 = 0.579 in

FIXED SUPPORTS

Rx = 0 lbs = Rfx2 + Rfx7 +x8 * Rfx8 + Rfx9 Ry = 5601 lbs = Rfy2 + Rfy7+ y8 * Rfy8 + Rfy9 Rz = 5959 lbs = Rfz2 + Rfz7 + Rfz9 Rmax per bolt = 2800 lbs = Ry/2 + Rx * H / Abs Rmin per bolt = 2800 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 0 lbs = Rgx2 + Rgx7 + x8*Rgx8 + Rgx9 Ry = 7810 lbs = Rgy2 + Rgy7 + y8*Rgy8 + Rgy9 bolt = 3905 lbs = Ry/2 + Rx * H / Abs

Rmax per bolt = $3905 \text{ lbs} = \frac{\text{Ry}}{2} + \frac{\text{Rx} + \text{H}}{\text{Abs}}$ Rmin per bolt = $3905 \text{ lbs} = \frac{\text{Ry}}{2} - \frac{\text{Rx} + \text{H}}{\text{Abs}}$

MIDSPAN DEFLECTION

Delta x (302) = $0.000 \text{ in} = 0.5 \times \text{x8}$

Delta y (302) = 0.369 in = Dely2 + 0.5 * y8

Max Delta = $0.369 \text{ in} = (\text{Delta x }^2 + \text{Delta y }^2)^0.5$

TUBE STRESSES

fac = -1533 psi, fav7 + fa9c , neg = compression fbx = 4267 psi = fbx2 + fbx7 + y8 * fbx8 + fbx9 fby = 0 psi = fby2 + fby7 + x8 * fby8 + fby9

Md = 22910 in-lbs = fac * A * (Max(Max Delta or maxset) + CE) fd = 96.4 psi = Md / S

COMBINED STRESS (compression)

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 5900 psi for compression from page 3

fac / Fa = 0.260 fbx / Fbx = 0.723 fby / Fby = 0.000 fd / Fbxy = 0.016

SUM = 0.999 < 1.00

Tube is adequate

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO.
	l				930212
LIGO - BEAM TUBE DESIGN	MADE BY	CHKD BY	MADE BY	CHKD BY	
Configuration 3, K = 8316 + 20%	RJW	MIC			SHT 5 OF 59
Maximum Differential Settlements	DATE	DATE	DATE	DATE	
,	3/11/94	.4.4.94			6.19

- DL + Insul + Seis x + Dif settle + Vac + 302 F (Case 2+5+7+8+9)

SETTLEMENT WITH COMBINATION

Delta x, x8 = 0 in Maxset = 0.788 = $(x8^2 + y8^2)^0.5$ Delta y, y8 = 0.788 in

FIXED SUPPORTS

Rx = 1287 lbs = Rfx2 + Rfx5 + Rfx7 +x8 * Rfx8 + Rfx9 Ry = 5089 lbs = Rfy2 + Rfy5 + Rfy7+ y8 * Rfy8 + Rfy9 Rz = 5959 lbs = Rfz2 + Rfz5 + Rfz7 + Rfz9

Rmax per bolt = 4346 lbs = Ry/2 + Rx * H / Abs Rmin per bolt = 743 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 882 lbs = Rgx2 + Rgx5 + Rgx7 + x8*Rgx8 + Rgx9Ry = 8831 lbs = Rgy2 + Rgy5 + Rgy7 + y8*Rgy8 + Rgy9

Rmax per bolt = 5651 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 3180 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.014 in = Delx5 + 0.5 * x8 Delta y (302) = 0.473 in = Dely2 + 0.5 * y8

Max Delta = $0.473 \text{ in} = (Delta \times ^2 + Delta y ^2)^0.5$

TUBE STRESSES

fac = -1533 psi, fav7 + fa9c , neg = compression fbx = 5772 5015 psi = fbx2 + fbx5 + fbx7 + y8 * fbx8 + fbx9

fby = 402 psi = fby2 + fby5 + fby7 + x8 * fby8 + fby9

Md = 29157 in-lbs = fac * A * (Max(Max Delta or maxset) + CE) fd = 122.7 psi = Md / S

COMBINED STRESS (compression)

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 7080 psi = 1.2 * B from page 3

fac / Fa = 0.216fbx / Fbx = 0.708

fby / Fby = 0.057fd / Fbxy = 0.017_

SUM = 0.999 < 1.00

Tube is adequate

REFERENCE NO. REVISION: NOE-C OFFICE: SUBJECT 930212 MADE BY **CHKD BY** CHKD BY MADE BY LIGO - BEAM TUBE DESIGN ○ OF 20 RJW スに Configuration 3, K = 8316 + 20%DATE DATE DATE DATE Maximum Differential Settlements هبه . ي 4.4 2 3/11/94

- DL + Insul + Seis z + Dif settle + Vac + 302 F (Case 2+5+7+8+9)

SETTLEMENT WITH COMBINATION

Delta x, x8 = 0 in

Maxset = $0.756 = (x8^2 + y8^2)^0.5$

Delta y, y8= 0.756 in

FIXED SUPPORTS

Rx = 0 lbs = Rfx2 + Rfx6 + Rfx7 +x8 * Rfx8 + Rfx9 Ry = 5168 lbs = Rfy2 + Rfy6 + Rfy7+ y8 * Rfy8 + Rfy9

Rz = 8128 lbs = Rfz2 + Rfz6 + Rfz7 + Rfz9

Rmax per bolt = 2584 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 2584 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 0 lbs = Rgx2 + Rgx6 + Rgx7 + x8*Rgx8 + Rgx9

Ry = 8675 lbs = Rgy2 + Rgy6 + Rgy7 + y8*Rgy8 + Rgy9

Rmax per bolt = 4337 lbs = Ry/2 + Rx * H / Abs Rmin per bolt = 4337 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.000 in = 0.5 * x8

Delta y (302) = 0.457 in = Dely27 + 0.5 * y8

Max Delta = $0.457 \text{ in} = (Delta \times ^2 + Delta y ^2)^0.5$

TUBE STRESSES

fac = -1644 psi, fav7 + fa9c - Rfz6 / A , neg = compression

fbx = 4901 psi = fbx2 + fbx5 + fbx7 + y8 * fbx8 + fbx9fby = 402 psi = fby2 + fby5 + fby7 + x8 * fby8 + fby9

Md = 30247 in-lbs = fac * A * (Max(Max Delta or maxset) + CE)

fd = 127.3 psi = Md / S

COMBINED STRESS (compression)

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 7080 psi = 1.2 * B from page 3

fac / Fa = 0.232

fbx / Fbx = 0.692

fby / Fby = 0.057

fd / Fbxy = 0.018

SUM = 0.999 < 1.00

Tube is adequate

REFERENCE NO. NOE-C REVISION: OFFICE: SUBJECT 930212 CHKD BY MADE BY CHKD BY MADE BY I IGO - BEAM TUBE DESIGN OF 2ª SHT WIC Configuration 3, K = 8316 + 20%RJW DATE DATE DATE DATE Maximum Differential Settlements 6.2 4.4.94 3/11/94

- DL + Wind + Dif Set + 100 F (Case 1 + 4 + 8 + 10)

SETTLEMENT WITH COMBINATION

Delta x, x8 = 0 in Maxset = 0.965 = $(x8^2 + y8^2)^0.5$ Delta y, y8 = 0.965 in

FIXED SUPPORTS

Rx = 1275 lbs = Rfx1 + Rfx4 +x8 * Rfx8 + Rfx10 Ry = 3413 lbs = Rfy1 + Rfy4+ y8 * Rfy8 + Rfy10 Rz = 771 lbs = Rfz1 + Rfz4 + Rfz10

Rmax per bolt = 3491 lbs = Ry/2 + Rx * H / Abs Rmin per bolt = -78 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 874 lbs = Rgx1 + Rgx4 + x8*Rgx8 + Rgx10Ry = 8697 lbs = Rgy1 + Rgy4 + y8*Rgy8 + Rgy10

Rmax per bolt = 5572 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 3125 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.014 in = Delx4 + 0.5 * x8Delta y (302) = 0.545 in = Dely1 + 0.5 * y8

Max Delta = $0.545 \text{ in} = (Delta \times ^2 + Delta y ^2)^0.5$

TUBE STRESSES

fac = -217 psi, fav4 + fa10c , neg = compression fbx = 5260 psi = fbx1 + fbx4 + y8 * fbx8 + fbx10fby = 399 psi = fby1 + fby4 + x8 * fby8 + fby10

Md = 4885 in-lbs = fac * A * (Max(Max Delta or maxset) + CE) fd = 20.6 psi = Md / S

COMBINED STRESS (compression)

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 5900 psi for compression from page 3

fac / Fa = 0.037 fbx / Fbx = 0.891 fby / Fby = 0.068 fd / Fbxy = 0.003

SUM = 0.999 < 1.00

Tube is adequate

REFERENCE NO. OFFICE: NOE-C REVISION: SUBJECT 930212 CHKD BY MADE BY CHKD BY LIGO - BEAM TUBE DESIGN MADE BY SHT I OF 29 MJC RJW Configuration 3, K = 8316 + 20%DATE DATE DATE Maximum Differential Settlements DATE 6.22 4-4-94 3/11/94

- DL + Insulation + Vacuum + 100 F (Case 2 + 7 + 10)

FIXED SUPPORTS

Rx = 0 lbs = Rfx2 + Rfx7 + Rfx10 (laterial) Ry = 7018 lbs = Rfy2 + Rfy7 + Rfy10 (Vertical)

Rz = 771 lbs = Rfz2 + Rfz7 + Rfz10 (axial)

Rmax per bolt = 3509 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 3509 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 0 lbs = Rgx2 + Rgx7 + Rgx10

Ry = 4834 lbs = Rgy2 + Rgy7 + Rgy10 (Vertical)

Rmax per bolt = 2417 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 2417 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.000 in = Delx2 + Delx7 + Delx10 Delta y (302) = 0.079 in = Dely2 + Dely7 + Dely10

Max Delta = $0.079 \text{ in} = (Delta \times ^2 + Delta y ^2)^0.5$

TUBE STRESSES

fac = -69 psi, fav7 + fa10c , neg = compression

fbx = 2195 psi = fbx2 + fbx7 + fbx10fby = 0 psi = fby2 + fby7 + fby10

Md = 360 in-lbs = fac * A * (Max Delta + CE)

fd = 1.5 psi = Md/S

COMBINED STRESS (compression)

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 5900 psi for compression from page 3

fac / Fa = 0.012fbx / Fbx = 0.372fby / Fby = 0.000

fd / Fbxy = 0.000SUM = 0.384 < 1.0

0.384 < 1.00 Tube is adequate

REFERENCE NO. NOE-C REVISION: OFFICE: SUBJECT 930212 CHKD BY MADE BY CHKD BY LIGO - BEAM TUBE DESIGN MADE BY OF 29 SHT 19 MJC RJW · Configuration 3, K = 8316 + 20%DATE DATE DATE Maximum Differential Settlements DATE 4.23 4-4-94 3/11/94

- DL + snow + Dif Set + -16 F (Case 1 + 3 + 8 + 11)

SETTLEMENT WITH COMBINATION

Delta x, x8 = 0 in Maxset = 1.044 = $(x8^2 + y8^2)^0.5$ Delta y, y8 = 1.044 in

FIXED SUPPORTS

Rx = 0 lbs = Rfx1 + Rfx3 +x8 * Rfx8 + Rfx11 Ry = 6128 lbs = Rfy1 + Rfy3+ y8 * Rfy8 + Rfy11 Rz = 2209 lbs = Rfz1 + Rfz3 + Rfz11

Rmax per bolt = 3064 lbs = Ry/2 + Rx * H / Abs Rmin per bolt = 3064 lbs = Ry/2 - Rx * H / Abs

GUIDED SUPPORTS

Rx = 0 lbs = Rgx1 + Rgx3 + x8*Rgx8 + Rgx11Ry = 11118 lbs = Rgy1 + Rgy3 + y8*Rgy8 + Rgy11

Rmax per bolt = 5559 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 5559 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.000 in = 0.5 * x8

Delta y (302) = 0.615 in = Dely1 + Dely3 +0.5 * y8 Max Delta = 0.615 in = (Delta x ^2 + Delta y ^2)^0.5

TUBE STRESSES

fat = 623 psi, fa11t, pos = tension

fbx = 6452 psi = fbx1 + fbx3 + y8 * fbx8 + fbx11fby = 0 psi = fby1 + fby3 + x8 * fby8 + fby11

Md = 14962 in-lbs = fac * A * (Max(Max Delta or maxset) + CE) fd = 63.0 psi = Md / S

COMBINED STRESS

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 5900 psi for compression from page 3
Tension Allowable = 9100 psi = Sh * Et, for tension from page 3

COMPRESSION TENSION

fa(c or t) / Fa = -0.106 0.068

fbx / Fbx = 1.094 0.709

fby / Fby = 0.000 0.000

fd / Fbxy = 0.011 0.007

SUM = 0.999 < 1.00 0.784 < 1.00 Tube is adequate

REFERENCE NO. NOE-C REVISION: OFFICE: SUBJECT 930212 CHKD BY MADE BY CHKD BY MADE BY LIGO - BEAM TUBE DESIGN ₩ OF 2 SHT MJC Configuration 3, K = 8316 + 20% RJW DATE DATE DATE DATE Maximum Differential Settlements 6.27 4-4-94 3/11/94

```
LIGO - BEAM TUBE DESIGN
                                                                                                                      Pg 25
                                             - DL + Insulation + Settlement + Vacuum + 100 F (Case 2+7+8+11)
                 COMBINATION 12
                       SETTLEMENT WITH COMBINATION
                                                                                    1.224 = (x8^2 + y8^2)^0.5
                                                                     Maxset =
                                                       0 in
                              Delta x, x8 =
                                                   1.224 in
                              Delta y, y8=
                       FIXED SUPPORTS
                                                        0 lbs = Rfx2 + Rfx7 + x8 * Rfx8 + Rfx11
                                                    4023 lbs = Rfy2 + Rfy7+ y8 * Rfy8 + Rfy11
                                       Rv =
                                                    2209 lbs = Rfz2 + Rfz7 + Rfz11
                                       Rz =
                                                    2011 \text{ lbs} = \frac{\text{Ry}}{2} + \frac{\text{Rx}}{\text{H}} + \frac{\text{Abs}}{\text{Abs}}
                          Rmax per bolt =
                                                    2011 \text{ lbs} = \text{Ry/2} - \text{Rx} + \text{H/Abs}
                           Rmin per bolt =
                       GUIDED SUPPORTS
                                                        0 \text{ lbs} = \text{Rgx2} + \text{Rgx7} + \text{x8*Rgx8} + \text{Rgx11}
                                       Rx =
                                                   10856 \text{ lbs} = \text{Rgy2} + \text{Rgy7} + \text{y8*Rgy8} + \text{Rgy11}
                                       Ry =
                                                    5428 \text{ lbs} = \frac{Ry}{2} + \frac{Rx * H}{Abs}
                           Rmax per bolt =
                                                    5428 \text{ lbs} = \text{Ry/2} - \text{Rx} + \text{H/Abs}
                           Rmin per bolt =
                        MIDSPAN DEFLECTION
                                                    0.000 \text{ in} = 0.5 \times x8
                            Delta x (302) =
                                                    0.691 \text{ in} = \text{Dely2} + 0.5 * y8
                            Delta y (302) =
                                                    0.691 in = ( Delta x ^2 + Delta y ^2 )^0.5
                               Max Delta =
                        TUBE STRESSES
                                                      771 psi, fav7 + fa11t , pos = tension
                                        fat =
                                                    6576 \text{ psi} = \text{fbx2} + \text{fbx7} + \text{y8} * \text{fbx8} + \text{fbx11}
                                       fbx =
                                                         0 \text{ psi} = \text{fby2} + \text{fby7} + \text{x8 * fby8} + \text{fby11}
                                        fby =
                                                   21223 in-lbs = fac * A * ( Max(Max Delta or maxset) + CE)
                                        Md =
                                                     89.3 \text{ psi} = Md / S
                                         fd =
                        COMBINED STRESS
                                    fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00
                                                                           5900 psi for compression from page 3
                                    Where B=Fa=Fbx=Fby=Fbxy=
                                                                           9100 psi = Sh * Et, for tension from page 3
                                    Tension Allowable =
                                                                       TENSION
                                           COMPRESSION
                                                                          0.085
                             fa(c or t) / Fa =
                                                   -0.131
                                                                          0.723
                                                    1.115
                                  fbx / Fbx =
                                                                          0.000
                                                    0.000
                                  fby / Fby =
                                                                          0.010
                                                    0.015
                                  fd / Fbxy =
                                                                                             Tube is adequate
                                                                          0.817 < 1.00
                                                    0.999 < 1.00
                                      SUM =
                                                                                                        REFERENCE NO.
                                                                       NOE-C REVISION:
                                                            OFFICE:
 SUBJECT
                                                                                                               930212
                                                                                              CHKD BY
                                                                        CHKD BY
                                                                                  MADE BY
                                                             MADE BY
       LIGO - BEAM TUBE DESIGN
                                                                                                        SHT 25 OF 29
                                                                         MIC
                                                               RJW
       Configuration 3, K = 8316 + 20%
                                                                                                DATE
                                                                          DATE
                                                                                    DATE
                                                               DATE
       Maximum Differential Settlements
                                                                                                                 6.29
                                                                        4-4-94
                                                             3/11/94
```

LIGO-3-1.XLS Rev 1

SETTLEMENT WITH COMBINATION

Delta x, x8 = 0 in

Maxset = $1.438 = (x8^2 + y8^2)^0.5$

Delta y, y8= 1.438 in

FIXED SUPPORTS

Rx = 1287 lbs = Rfx2 + Rfx5 + Rfx7 + x8 * Rfx8 + Rfx11Ry = 3499 lbs = Rfy2 + Rfy5 + Rfy7 + y8 * Rfy8 + Rfy11

Rz = 2209 lbs = Rfz2 + Rfz5 + Rfz7 + Rfz11

Rmax per bolt = $3551 \text{ lbs} = \frac{\text{Ry}}{2} + \frac{\text{Rx} + \text{H}}{\text{Abs}}$ Rmin per bolt = $-52 \text{ lbs} = \frac{\text{Ry}}{2} - \frac{\text{Rx} + \text{H}}{\text{Abs}}$

GUIDED SUPPORTS

Rx = 882 lbs = Rgx2 + Rgx5 + Rgx7 + x8*Rgx8 + Rgx11Ry = 11902 lbs = Rgy2 + Rgy5 + Rgy7 + y8*Rgy8 + Rgy11

Rmax per bolt = 7186 lbs = Ry/2 + Rx * H / AbsRmin per bolt = 4716 lbs = Ry/2 - Rx * H / Abs

MIDSPAN DEFLECTION

Delta x (302) = 0.014 in = Delx5 + 0.5 * x8Delta y (302) = 0.798 in = Dely2 + 0.5 * y8

Max Delta = $0.798 \text{ in} = (Delta \times ^2 + Delta y ^2)^0.5$

TUBE STRESSES

fat = 771 psi, fav7 + fa11t, pos = tension

fbx = 7342 psi = fbx2 + fbx5 + fbx7 + y8 * fbx8 + fbx11fby = 402 psi = fby2 + fby5 + fby7 + x8 * fby8 + fby11

Md = 24441 in-lbs = fac * A * (Max(Max Delta or maxset) + CE)

fd = 102.8 psi = Md/S

COMBINED STRESS

fat/Fa + fbx/Fbx + fby/Fby + fd/Fbxy < = 1.00

Where B=Fa=Fbx=Fby=Fbxy= 7080 psi = 1.2 * B from page 3

Tension Allowable = 10920 psi = 1.2*Sh * Et, from page 3

COMPRESSION TENSION
fa(c or t) / Fa = -0.109 0.071
fbx / Fbx = 1.037 0.672
fby / Fby = 0.057 0.037
fd / Fbxy = 0.015 0.009

SUM = 0.999 < 1.00 0.789 < 1.00 Tube is adequate

REFERENCE NO. NOE-C REVISION: OFFICE: SUBJECT 930212 MADE BY CHKD BY CHKD BY MADE BY LIGO - BEAM TUBE DESIGN SHT 26 OF 29 MTC RJW Configuration 3, K = 8316 + 20% DATE DATE DATE Maximum Differential Settlements DATE 4.30 4-4.94 3/11/94

DATE

6.31

DATE

DATE

4-4-94

DATE

3/11/94

Maximum Differential Settlements

- CHECK RIM BENDING PER ROARK & YOUNG 4th Ed, TABLE XIII CASE 13

 $Mo = (p / 2 / landa^2) * (A / (A + t*c + 2 * t / landa)$

p = 14.7 psi, internal pressure

Landa = $0.7277 = (3 * (1-0.3^2)/(((Do+t)/2)^2 * t^2))^0.25$

A = 1.5 sq in = tss * wss

t = 0.127 in = t

c = 0.375 in = tss

Mo = 10.976 in lbs / in

Stress = $4083 \text{ psi} = 6 * M / t^2 < 3 * S = 17700 \text{ psi}$

SUBJECT	OFFICE:	NOE-C	REVISION:		REFERENCE NO. 930212
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY	M1C CHKD BY	MADE BY	CHKD BY	SHT 28 OF 29
Maximum Differential Settlements	DATE 3/11/94	DATE 4-4-94	DATE	DATE	6.32

- SUMMARY - Vertical Differential Misalignment Only

	Fixed	supports	(lbs)	Guided Support (lbs)		Settlem	ent (in)	Unity	
Combination	Rx	Ry	Rz	Rx	Ry	Х	у	Comp	Tension
1 1	ol	7018	5959	0	4980	0	0	0.638	
2	0	5601	5959	0	7810	0	0.579	0.999	
3	1287	5089	5959	882	8831	0	0.788	0.999	
4	0	5168	8128	0	8675	0	0.756	0.999	
5	1275	3413	771	874	8697	0	0.965	0.999	
6	0	7018	771	0	4834	0	- 0	0.384	
7	o	4541	771	0	9780	0	1.012	0.999	
8	1287	4010	771	882	10840	0	1.229	0.999	
9	0	4093	2939	0	10674	0	1.195	0.999	
10	0		2209	1	11118	0	1.044	0.999	0.784
11	1275	1	2209	1	9818	0	1.186	0.999	0.785
12	0	4023	2209	1	10856	0	1.224	0.999	0.817
13	1287	3499	2209	1	1 : 1	0	1.438	0.999	0.789
14	0	3565	4378	i i	1	0	1.411	0.999	0.769
'7	J				_				

COMBINATIONS

- 1 DL + Insulation + Vacuum + 302 F (Case 2 + 7 + 9)
- 2 DL + Insulation + Settlement + Vacuum + 302 F (Case 2+7+8+9)
- 3 DL + Insul + Seis x + Dif settle + Vac + 302 F (Case 2+5+7+8+9)
- 4 DL + Insul + Seis z + Dif settle + Vac + 302 F (Case 2+5+7+8+9)
- 5 DL + Wind + Dif Set + 100 F (Case 1 + 4 + 8 + 10)
- 6 DL + Insulation + Vacuum + 100 F (Case 2 + 7 + 10)
- 7 DL + Insulation + Settlement + Vacuum + 100 F (Case 2+7+8+10)
- 8 DL + Insul + Seis x + Dif settle + Vac + 100 F (Case 2+5+7+8+10)
- 9 DL + Insul + Seis z + Dif settle + Vac + 100 F (Case 2+5+7+8+10)
- 10 DL + snow + Dif Set + -16 F (Case 1 + 3 + 8 + 11)
- 11 DL + wind +Dif set -16 F (Case 1 + 4 + 8 + 11)
- 12 DL + Insulation + Settlement + Vacuum + 100 F (Case 2+7+8+11)
- 13 DL + Insul + Seis x + Dif settle + Vac + -15 F (Case 2+5+7+8+11)
- 14 DL + Insul + Seis z + Dif settle + Vac + -16 F (Case 2+5+7+8+11)

SUBJECT	OFFICE: NOE-C		REVISION:		REFERENCE NO. 930212	
LIGO - BEAM TUBE DESIGN Configuration 3, K = 8316 + 20%	MADE BY RJW	CHKD BY	MADE BY	CHKD BY	SHT 29 OF 29	
Maximum Differential Settlements	DATE 3/11/94	DATE 4.4.94	DATE	DATE	6.33	