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We have evaluated, analytically, the gravitational-wave noise in LIGO due to scattered light that

backscatters o� ba�es far from each mirror (at distances l >
�
120 m), o� the bare vacuum tube wall

near the mirror (l <
�
120 m), and o� objects at the far end of the beam tube.

We �nd that, if there is a several-fold ampli�cation of the ba�e vibrations due to seismic noise

exciting beam-tube normal modes, and if the seismic noise is not substantially below the LIGO

speci�cation, 10�7cmHz�1=2(f=10Hz)�2, then the ba�e-backscatter noise will signi�cantly exceed

the goal of 1/10 the standard quantum limit. This leads to Recommendation 1: Serious consideration

should be given to changing the ba�e material from the same oxidized steel as the walls are made

of, to Martin Black or some other material with a comparably low backscatter probability. This

would lower the backscatter noise by a factor ' 3.

We argue that theoretical estimates cannot be trusted to tell us how the amount of backscatter

from the bare tube wall varies with the incident/backscatter angle �bs at small �bs. (Our convention

is �bs = 0 for grazing incidence.) If, as was assumed in the previous BRO-Weiss-Whitcomb estimates,

the probability dP=d
bs for an incident photon to backscatter into a unit solid angle is proportional

to sin �bs, then we agree that backscatter o� the nearby bare beam-tube wall is not a serious worry.

However, if dP=d
bs is independent of �bs, as we argue it could be, then backscatter o� the bare wall

will produce noise nearly identical to that from all the tube's ba�es, and thus the bare-wall noise

will be a serious issue. These results motivate two recommendations, which we number 2 and 4, and

which we augment by a third recommendation that is important for other aspects of light-scattering

noise: Recommendation 2: The backscatter probability dP=d
bs should be measured for the LIGO

wall material at small angles, 0:005 <
�

� <
�

0:1. Recommendation 3: The wall material's specular

re
ectivity should also be measured for this same range of angles. Recommendation 4: If dP=d
bs

turns out not to fall o� strongly with decreasing �bs, serious consideration should be given to ba�ing

the nearby beamtube wall with Martin-black ba�es.

We �nd that, if objects at the far end of the beam tube backscatter with the same dP=d
bs as the

ba�es, and if they vibrate with the same displacement spectrum, then their backscatter will produce

noise � 2 times greater than that from the ba�es; and their noise would be even larger than this

if (as one measurement of a sample mirror suggests) the test-mass mirrors' scattering is enhanced

over the dP=d
ms = �=�2 law at the tiny angles 1:5 � 10�4 >
�
� >
�
3� 10�5 of the beam tube's far

end. This motivates Recommendation 5: When instrumenting and ba�ing each test-mass chamber,

careful attention should be paid to backscattering of light that arrives from test-mass mirrors at the

far end of the beam tube.
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I. INTRODUCTION AND SUMMARY

The present con�guration for the LIGO beam tube is
shown in Figure 1. The test mass is � 10 or 30 meters
from the end of a bare-walled 1.8 meter diameter tube;
at the gate valve, the tube narrows to 1.2 meters and
its wall remains bare for an additional 100 meters, where
the �rst ba�e is encountered. From there onward, ba�es
hide the tube wall from the view of the test mass. The
ba�es are made of the same oxidized steel as the tube.
In the analysis that follows, for simplicity we treat the

tube as though it had a constant diameter of 1.2 meters,
thereby making an error no larger than a few tens of
percent in the noise due to bare-wall backscatter and no
signi�cant error in noise due to ba�e backscatter.
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FIG. 1. Present con�guration of LIGO beam tube.

Previous studies of scattered light in the LIGO beam
tubes [1,2] have shown that the most serious noise source
is due to ba�e backscatter|i.e., due to light that is scat-
tered, by a test-mass mirror, out of the main beam and
toward a ba�e, and that then backscatters o� the ba�e
and back to the mirror, and then scatters back into the
main beam (cf. Fig. 1). In this report we recompute the
ba�e-backscatter noise, and also noise due to backscat-
ter from the � 120 meters of bare wall preceding the
�rst ba�e and from objects at the far end of the beam
tube. We summarize our conclusions and recommenda-
tions in the following three subsections, and then present
our computations in Sec. II and Appendices A, B and C.

A. Backscatter O� Ba�es

In Sec. II we show that the gravity-wave noise produced
by ba�e backscatter is given by the following formula
[Eq. (31)]:
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Here the various symbols have the following meanings:
The probability for a photon in the main beam to scat-
ter o� a mirror and into a direction making an angle �
to the main beam, per unit solid angle, is assumed (in
accord with previous work [1{3]) to be dP=d
ms = �=�2,
with � ' 10�6. The probability for a photon arriving
at a ba�e from the scattering mirror to backscatter back
toward that same mirror, per unit solid angle, is assumed
(in accord with measurements by the Breault Research
Organization, BRO [4]) to be dP=d
bs = � ' 10�2; and
this is true whether the photon hits the back face of a
distant ba�e or the front face of a more nearby ba�e.
The most distant ba�e is at a distance l1 ' 4km from the
mirror, and the nearest ba�e is at a distance l2 ' 120m.
The mirror is o�set from the center of the beam tube's
cross section by a distance �R, where R = 60cm is the
beam-tube radius; and the function J0(�) (not a Bessel
function), which deals with this o�set, is plotted in Fig.
3 of Appendix C. The spectrum of the ba�es' horizon-
tal vibrational displacement is A(f)~�s(f), where ~�s(f)
is the horizontal seismic noise spectrum and A(f) ac-
counts for ampli�cation due to excitation of beam-tube
normal modes; the quantity �A(f) is an average of A(f)
over all regions of all ba�es, with the average weighted
by the backscattered light amplitude that is returned to
the main beam from each region of a ba�e. We choose
as our �ducial seismic noise spectrum the upper-limit
speci�cation for LIGO sites in the 10 to 100 Hz band,
~�s(f) = 10�7cm=Hz�1=2(f=10Hz)�2. Finally, L = 4km
and � = 0:5�m are the beam-tube length and the wave-
length of the main-beam light.
Equation (1) is in fairly good agreement with Thorne's

previous estimate, Eq. (3.30) of Ref. [1] after Nb in that
estimate is replaced by expression (2.5) of [1] and af-
ter the erroneous factor 1=B in that estimate is deleted.
After these changes, the only signi�cant remaining dif-
ferences between Eq. (1) and the previous estimate are:
(i) the � in Eq. (1) was a 4 in the previous estimate; (ii)

the function
p
J0(�) was approximated in the previous

estimate by 1=(1� �)3=2 [an approximation that overes-
timated the noise in the worst case, � = 2=3, by about
a factor 3]; (iii) di�erent numerical values were used for
various parameters in the previous estimate.
Expression (1) has the nice feature that it is indepen-

dent of most details of ba�e spacing and height. As the
derivation in Sec. II shows, so long as the entire beam-
tube wall, from a distance l2 to l1 = L, is hidden from the
scattering mirror's view by ba�es, and the ba�e heights
are small compared to the beam-tube radius, then other
details of the ba�e distribution have no signi�cant in-

uence on the noise. Expression (1) also shows that the
noise is not very sensitive to the distance l2 to the near-
est ba�e: If the nearest ba�e were moved inward from
l2 ' 120m to l2 ' 2m, then the noise would increase by
only a factor
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(This assumes that the mirror's scattering probability
remains dP=d
bs / 1=�2 out to angles of a few tenths of
a radian, which it might not.)
The goal of the LIGO ba�e design has been to keep

the total light-scattering noise below 1/10 the standard
quantum limit for a 1 ton test mass in the range 10Hz to
100Hz, i.e. below [1]
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Here m = 1ton is the mass of the test mass.
The ba�e-backscatter noise (1) is 3=4 this goal at 10Hz

and 3=40 at 100Hz, for our �ducial parameters. The most
seriously uncertain parameters are the seismic noise level
~�s(f) and the ampli�cation factor �A(f) due to seismic ex-
citations of beam-tube normal modes. The lowest tube
normal-mode frequency is � 20Hz [9], so some of the
normal modes lie right in the frequency band of greatest
concern, 10 to 100Hz. Moreover, originally all the ba�es
were to have been placed at beam tube supports, thereby
avoiding much ampli�cation; in the current design many
ba�es are not at support points, so ampli�cation has be-
come a serious worry. That worry is mitigated somewhat
by the fact (Sec. II C) that only vibrations (nearly) par-
allel to the beam-tube axis contribute to the noise, and
the largest ampli�cations are likely to be perpendicular
to the axis not parallel. Nevertheless, we should be pre-
pared for the possibility that the ampli�caton �A(f) might
be as large as 10, causing a factor 5 failure to achieve the
noise goal at 10 Hz. On the other hand, low seismic noise
might compensate for this: Seismic measurements at the
two LIGO sites suggest [5] that ~�s(f) might be as small

as 10�8cmHz�1=2(f=10Hz)�2 in the 10 to 100 Hz band,
i.e. 1/10 the �ducial level used in Eq. (1). There is also
uncertainty in the scattering amplitudes � and � and in
the angular scaling law for the mirror scattering, and we
also worry that coherence e�ects in the scattering, which
are not taken into account in our analysis, might push
the noise upward.
In view of these uncertainties and the danger that they

may combine to drive the noise (1) signi�cantly above the
goal (3), we o�er Recommendation 1: Serious consider-
ation should be given to changing the ba�e material to
Martin Black or some other material with a compara-
bly low backscatter probability � <� 0:001. This change
would reduce the scattered-light power by an order of
magnitude and correspondingly would reduce ~hba�es by
a factor 3 at all frequencies. (Vladimir Braginsky in-
forms us that there are various black oxides, including a
black chromium oxide, that might have low backscatter
probabilities.)

B. Backscatter O� Bare Wall

Backscatter o� the bare wall near each mirror was over-
looked in Thorne's previous analysis [1], but was included
in the scattering simulations by BRO [2]. In Sec. II we
compute it analytically.
The scattered light hits and backscatters o� the bare

wall at an incidence/backscatter angle �bs that can be
as small as �o � 0:6m=120m = 0:005radians � 1.
As we shall see below, the resulting gravitational-wave
noise is quite sensitive to how the backscatter probabil-
ity dP=d
bs depends on �bs.
The precise de�nition of dP=d
bs is this: Let a beam

of light hit the wall at an incident angle �bs. (If the light
comes from a mirror at the center of the beam tube's
cross section as in Fig. 1, then �bs is equal to the angle �
shown in that �gure.) Then dP=d
bs is the probability
that any photon in the incident beam will backscatter
into a unit solid angle d
bs centered on the direction
back to the mirror. This dP=d
bs is related to the wall's
bidirectional re
ectance distribution function (BRDF) by
[6]

dP

d
bs

= sin �bs � BRDF : (4)

BRO assumed, in their analysis, that the BRDF is in-
dependent of �bs, and correspondingly that dP=d
bs =
��bs for small �bs; and from their scattering measure-
ments at angles � 1 for the candidate beam-tube mate-
rial, they inferred that � ' 10�2. Some consequences of
this show up clearly in the BRO report [2]. For exam-
ple, in the �gures on pages 9 and 11 of [2], which depict
the intensity dI=dAd
ms(�) [units ergs/(sec cm

2 sterr)]
of the light returning to a centered mirror from an angle
� (which BRO call B), there is a sharp drop by a factor
1=�o ' 200 in going from return angles � < �o that in-
tercept ba�es to return angles � > �o that intercept the
bare beam-tube wall.
It is far from obvious to us that the walls' BRDF is in-

dependent of �bs for small �bs. We know of no empirical
evidence that favors this over, for example, the more pes-
simistic assumption that dP=d
bs is independent of �bs;
nor have we been able to convince ourselves that theory
favors one or the other (or something else in their vicin-
ity), in the walls' regime of (rms roughness) � � � 10�.
[In Appendix A, we discuss the predictions and domains
of validity of the standard theories used to calculate the
BRDF, and we point out a number of reasons why the
standard theories may fail for the LIGO beam tubes in
the relevant regime of 0:005 <� �bs <� 0:1 and � = 10�.]
For these reasons, we believe it would be unwise either

(i) to accept the BRO assumption dP=d
bs / �bs, or (ii)
to rely on theory (which predicts in some regimes expo-
nentially small backscatter at grazing incidence [9,10])
to tell us the angular dependence of dP=d
bs. We must
be prepared for the possibility that dP=d
bs is indepen-
dent of �, for example, rather than being proportional to
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� as assumed by BRO; and as we shall see below, these
two possibilities lead to signi�cantly di�erent noise levels,
with di�erent recommendations for the ba�ing. These
di�erences motivate our
Recommendation 2: The backscatter probability

dP=d
bs should be measured for the LIGO wall mate-
rial at small angles, 0:005 <� � <� 0:1. [As an important
side issue, we make Recommendation 3: The specular
re
ectivity plus forward scattering of the wall material
should also be measured for this same range of angles,
to test the assumption that the re
ectivity plus forward
scattering is high for � <� 0:01 but falls sharply as � in-
creases above this value; this assumption and the details
of the fallo� are crucial to the present choice of where to
place the �rst ba�e, and as we discuss in Appendix A,
the theory of the fallo� is not fully reliable.]
Since we do not know the actual angular dependence of

the wall's backscatter probability, in Sec. II we evaluate
the gravity-wave noise under two �ducial assumptions:
dP=d
bs = � ' 0:01 which we shall call pessimistic, and
(dP=d
bs = ��), which we shall call optimistic.
In the pessimistic case, our calculations give a wall-

noise formula identical to that, Eq. (1), for ba�e noise;
and the formula and numbers are identical to what would
result if the near wall were fully ba�ed instead of being
left bare, and are essentially the same as the noise from
the now-planned ba�e con�guration:
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(5)

cf. the paragraph following Eq. (33). Here the notation is
the same as in Eq. (1), except that now l1 is the distance
to the end of the bare wall (' 120m) rather than to the
end of the ba�es, and l2 is the distance to the beginning
of the bare wall (' 2m) rather than to the beginning of
the ba�es. Because the wall noise (5) and ba�e noise
(1) are incoherent with respect to each other, they add

in quadrature; the net noise is
p
2 times that of either

the wall or the ba�es alone.
If this pessimistic case is correct, then wall backscatter

presents the same dangers as ba�e backscatter: the tube-
vibration ampli�cation factor �A(f) might be as large as
10, and other parameters might be larger than our es-
timates, thereby seriously violating the noise goal (3).
A factor 3 improvement can be achieved in the case of
ba�e noise by changing the ba�e material to Martin
black or something like it. To achieve the same factor 3
improvement for wall noise (in the pessimistic case), it
will be necessary to ba�e the nearby wall with Martin
black. Thus, we are led to Recommendation 4: Pending

measurements of dP=d
bs in the range 0:005 <� � <� 0:1,
serious consideration should be given to extending the
beam-tube ba�ing up to the test mass vacuum chamber
instead of beginning it only ' 120 meters down the tube
as now planned.
In the optimistic case dP=d
bs = ��bs, our calcula-

tions give [Eq. (34)]
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Here the notation is as in Eq. (1), with two exceptions:
�2 = l2=R � 0:5 is the angle of incidence/backscatter
at the nearest location on the bare wall for the case of
mirrors at the center of the beam-tube cross section, and
the function J1(�) describing the e�ects of o�setting the
mirror from the tube center is a little di�erent from the
J0(�) of Eqs. (1) and (5) (it is the curve labeled n = 1 in
Fig. 3 rather than n = 0).
The dependence on the distance l2 = R�2 to the be-

ginning of the beam tube is indicative of the fact that, in
this optimistic case, the most serious noise comes from
the nearest portions of the tube. This reminds us of the
importance of controlling scattered light from surfaces
even closer, in the test-mass chambers.
A comparison of Eq. (6) with Eqs. (3) and (1) shows

that in this optimistic case dP=d
bs / �bs, the bare-wall
noise is adequately far below the scattered-noise goal,
and ba�ing the nearby wall with Martin black would
not reduce it further.

C. Backscatter O� Objects at the Far End of the

Beam Tube

Since the mirror scattering is so sharply peaked to-
ward small angles � � 1, we must pay attention to
light scattered into the far end of the beam tube (angles
� <� R=L ' 1:5� 10�4, but � > Rmirror=L ' 3� 10�5 so
the light misses the far mirror). This light can backscat-
ter o� the walls of the far test-mass chamber or o� ob-
jects in it, and return to the originating mirror to produce
gravity-wave noise.
We have evaluated the resulting noise spectrum under

the following assumptions: (i) The backscattering sur-
faces have the same backscatter probability as the ba�es,
dP=d
bs = � ' 0:01. (ii) The backscattering surfaces vi-
brate longitudinally with the same noise spectrum as the
ba�es ~�(f) = A(f)~�s(f). (iii) The backscattering sur-
faces subtend the entire area of the beam tube's end,
except that of the end mirror. (iv) The mirror's scatter-
ing probability retains the same form dP=d
ms = �=�2

in the far-end region 3 � 10�5 <� � <� 1:5 � 10�4 as it
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has in the ba�e region � >� 1:5 � 10�4. This fourth as-
sumption may be overly optimistic: measurements of a
sample mirror [3] suggest that at the tiny scattering an-
gles 3�10�5 <� � <� 1:5�10�4, the scattering probability
might be enhanced over the 1=�2 form.
These assumptions lead to the following noise spec-

trum [cf. Eq. (36) and associated discussion]
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Here Rmirror ' 12cm is the mirror radius. Note that
for mirrors at the center of the beam tube (� = 0), this
scattering noise is twice as large as that (1) due to the
ba�es, and for mirrors 2/3 of the way to the beam-tube
wall (� = 2=3), it is the same as the ba�e noise. This
leads to our Recommendation 5: When instrumenting
and ba�ing each test-mass chamber, careful attention
should be paid to backscattering of light that arrives from
test-mass mirrors at the opposite end of the beam tube.

II. DERIVATION OF NOISE SPECTRA

In this section we derive the noise spectra (1), (5)
and (6) quoted above, including their dependence on
the various parameters and scattering probabilities. Our
derivations are via a more direct route than was used in
Thorne's previous report [1].
The backscatter processes are su�ciently simple that

the following analysis should be quite reliable and accu-
rate, modulo the (considerable) uncertainties in various
parameters and the scattering probabilities.

A. Gravity-Wave Noise in Terms of Scattered Light

Returned to Main Beam

In this subsection we shall derive a general expression
for the gravitational-wave noise spectrum ~h2(f) in terms
of the power and spectrum of the light scattered back into
the interferometer's main beam. To simplify our deriva-
tion, we shall pretend that the gravity-wave signal is all
produced in just one of the interferometer's two arms.
In other words, we shall take the true gravity-wave sig-
nal, which is deposited partially in arm 1 and partially in
arm 2 (with the division between arms depending on the
direction to the source and on the signal's polarization),
and shall computationally put the entire signal into arm
1. Then we shall use that arm-1 signal as a tool in com-
puting, in gravity-wave units, the scattered-light noise
produced in arm 1; and �nally we shall assert (as should

be obvious) that the same amount of noise power must
be produced in arm 2 as in arm 1.
When the gravitational wave h(t) interacts with the

interferometer, exerting its entire force on arm 1, it dis-
places the end test mass of arm 1 by an amount �L =
h(t)L relative to the corner test mass, where L = 4km
is the arm length; and it does nothing to arm 2. If
 mb is the main-beam electric �eld in arm 1 impinging
on the end mass's mirror, then the displacement �L in-
duces a phase shift 2k�L � 1 on the main-beam light
(where k = 2�=� is the light's wave number). The grav-
ity wave thereby augments onto the main beam the new
�eld � mb = i2k�L mb = i(2kL)h mb; i.e.,

� mb

 mb

= i(2kL)h : (8)

When light scatters o� one of the test-mass mirrors,
then backscatters o� some small region of a vibrating
ba�e or bare wall thereby acquiring a phase shift �(t),
then hits the mirror again and scatters back into the main
beam, it augments onto the main beam a new �eld � mb

given by

� mb

 mb

=

�
�Imb

Imb

�1=2

ei� =

�
�Imb

Imb

�1=2

(cos� + i sin�) :

(9)

Here Imb is the power (ergs/sec) of the light in the main
beam, and �Imb is the rate (ergs/sec) at which the scat-
tered light is returning to the main beam.
By comparison with Eq. (8) we see that the imaginary

part of expression (9) simulates the e�ect of a gravita-
tional wave; the simulated wave �eld is obviously

h(t) =

�
�Imb

Imb

�1=2 S(t)
2kL

; (10)

where

S(t) � sin[�(t)] : (11)

Since �(t) 
uctuates randomly, so does S(t) and thence
h(t). Equation (10) implies that the spectral density of
the resulting gravity-wave noise is related to that of S by

�~h2(f) =
�Imb

Imb

�
�

4�L

�2

~S2(f) : (12)

Here we have used k = 2�=�.
To reiterate, Eq. (12) is the gravity-wave noise spec-

trum expressed in terms of the the total power Imb of
the main beam in arm 1, the power �Imb of backscat-
tered light returning to the main beam from some small
region of a ba�e or bare tube wall, the spectral density
~S2(f) of the sine of the phase 
uctuations of this scat-
tered light, the light wavelength � = 4 � 10�5cm, and
the arm length L = 4km. Because the ba�es and wall
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are randomly rough, the backscattered light from di�er-
ent locations will superpose incoherently when it returns
to the main beam, with light from each region having a
possibly di�erent spectral shape ~S2(f). To compute the

total noise spectrum ~h2(f), we must add up the contri-

butions �~h2(f) [Eq. (12)] from all regions of backscatter,
including backscatter onto all four mirrors of the inter-
ferometer (since as noted earlier an equal amount of noise
power is produced at the mirrors of arm 2 as at those of
arm 1).

B. Rate of Addition of Light to Main Beam, and

Resulting Noise

Main-beam light, hitting one of an arm's mirrors, scat-
ters o� it toward the ba�es or bare wall at a rate gov-
erned by the scattering probability per unit solid angle
dP=d
ms. (The subscript \ms" stands for \mirror scat-
tering".) This probability depends on the direction into
which the light is scattered, and it is de�ned by the re-
lation

dI

d
ms

= Imb

dP

d
ms

: (13)

Here Ims is the main-beam power, and dI=d
ms is the
energy scattered per unit time into a unit solid angle
d
ms about the direction of interest; cf. Fig. 1. (We do
not, until the end of this subsection, assume that the
scattering is axisymmetric, i.e. that it depends only on
the angle � of the chosen direction to the main beam.)
Consider the light scattered into a tiny solid angle �
ms

around the direction of interest. Each photon of this
light has some probability dP=d
bs of scattering back
toward the mirror, in a unit solid angle d
bs. The value
of this backscatter probability depends on whether the
photon hits a ba�e, or hits the bare wall; and if it hits
the wall, the probability may also depend on the photon's
incidence angle (which must equal the backscatter angle
since the photon is required to return to the mirror).
The total energy 
ux (erg cm�2 s�1) returning back to
the mirror from the tiny solid angle �
ms is obviously�

d�I

dA

�
= Imb

dP

d
ms

�
ms
dP

d
bs

1

r2
; (14)

where r is the distance between the mirror and the loca-
tion of backscatter.
There is a certain cross section �ms for the mirror to

scatter this impinging light 
ux back into the main beam.
If we multiply expression (14) by this cross section, we
obtain the rate (ergs/sec) that the solid angle �
ms is
sending backscattered light into the main beam:

�Imb = Imb

dP

d
ms

�
ms

dP

d
bs

1

r2
�ms : (15)

Not surprisingly, there is a reciprocity relation that links
the mirror's probability per unit solid angle dP=d
ms to

scatter a photon out of the main beam and into the direc-
tion of interest, and the cross section �ms for that same
mirror to scatter an incoming photon from that same
direction back into the main beam. That reciprocity re-
lation is given by

�ms = �2
dP

d
ms

; (16)

where � is the wavelength of the light. We derive this
relation in Appendix B.
By combining this reciprocity relation with Eq. (15),

we obtain the following very general expression for the
rate at which energy is scattered back into the main beam
from a tiny solid angle �
ms in any direction of interest:

�Imb

Imb

=
�2

r2

�
dP

d
ms

�2
dP

d
bs

�
ms : (17)

By then inserting expression (17) into (12), we obtain
the following formula for the noise produced by the light
that backscatters from the tiny solid angle �
ms:

�~h2(f) =

�
�

r

�2�
�

4�L

�2�
dP

d
ms

�2
dP

d
bs

~S2(f)�
ms :

(18)

To reiterate: �~h2(f) is the contribution to the spectral
density of gravity-wave noise produced by light that scat-
ters o� a mirror into the tiny solid angle �
ms, dP=d
ms

is the mirror's probability to scatter main-beam pho-
tons into a unit solid angle in the direction of �
ms, r
is the distance from the mirror to the backscatter surface
along the direction of �
ms, dP=d
bs is the probability
for a photon arriving at the backscatter surface to get
backscattered into a unit solid angle in the direction of
the mirror, ~S2(f) is the spectral density of the sine of the
phase 
uctuations � put onto the light by vibrations of
the backscatter surface, � is the wavelength of the light,
L is the length of an interferometer arm; and the total
noise is obtained by adding up expression (18) over all
scattering solid angles �
ms for all four mirrors of the
interferometer.
In the following subsections we shall assume, for sim-

plicity, that the mirror is at the center of the beam tube's
cross section and that it scatters light axisymmetrically
so dP=d
ms is a function only of �, the angle between
the scattered-light direction and the main beam (Fig.
1). (In Appendix C we shall treat mirrors that are o�-
set from the center of the beam tube.) Similarly, we
shall assume that the beam tube's backscattering is ax-
isymmetric, so dP=d
bs and ~S2(f) depend only on �,
the angle of the scattered-light rays to the main beam,
i.e. to the axis of symmetry. Note that this axisymme-
try implies [aside from small corrections of order (baf-

e height)/(beam tube radius R), which we shall ignore]
that the distance r from the mirror to the backscatter sur-
face is R= sin � ' R=�. We shall also assume that the four

6



mirrors have the same scattering probability dP=d
ms

and see walls and ba�es with the same backscatter prob-
abilities dP=d
bs.
With these assumptions and using � � 1, the total

noise spectrum produced by all the backscattered light
[the sum of (18) over all solid angles �
ms] becomes

~h2(f) =

�
�

R

�2�
�

4�L

�2

�
Z �2

�1

�
dP (�)

d
ms

�2
dP (�)

d
bs

~S2(f; �)8��3d� : (19)

The constant in the integration element is 8� rather than
2� because we must integrate over the light scattered
from four mirrors, not just one. The limits of integration
for the entire 60cm-radius beam tube beyond the gate
valve (Fig. 1) are �1 = R=L = 60cm=4km = 1:5 � 10�5

and �2 ' (60cm=20m) = 0:03; and similarly for the 90cm-
radius section of beam tube (Fig. 1).

C. Phase Shift Produced by Backscatter

The light scattered o� a mirror into some tiny solid
angle �
ms hits and backscatters o� some small portion
of a beam tube wall or ba�e. By its vibrations, that
\backscatter surface" puts a time-varying phase shift
�(t) onto the backscattered light. We shall resolve the

surface's vibrational displacement ~�(t) into a scalar com-
ponent �k parallel to the incoming and backscattered

light rays, and a vectorial component ~�? perpendicular
to the rays; see Fig. 2.

rays 

ξ 

rays 

backscatter surface 

ξ 
| | 

(a) 

(b) 
1 

2 

3 

4 

A 
B 

C 

A 
B 

C 

! 
! 

! 

⊥ 

FIG. 2. Backscatter of light o� a small portion of a vibrat-

ing ba�e or beam-tube wall.

The parallel displacement �k lengthens each round-trip
ray by 2�k (cf. Fig. 2a), thereby putting onto the light a
phase shift

�k = 2k�k = 4�
�k

�
: (20)

The perpendicular displacement 2~�? lengthens the var-
ious rays by di�erent amounts (Fig. 2b), but the average

lengthening is 2�n?= sin �, which can be far larger than j~�j
for � � 1. (Here �n? is the projection of ~�? into a plane
that is normal to the smoothed (averaged) backscatter
surface and parallel to the rays.) At �rst sight one might
expect (as we did) that this average ray lengthening will
produce a phase shift �? = 2k�n?= sin � on the backscat-
tered light. As Stan Whitcomb has pointed out to us,
this is not so; and, in fact, the true phase shift �? is
negligible compared to that �k due to the parallel dis-
placement.
To understand why, consider �rst the idealized situa-

tion where the incoming light is precisely planar. Then

the displacement ~�? is equivalent to mapping ray 1 of Fig.
2b into ray 2, and ray 2 into ray 3, and ray 3 into ray 4, so
point A gets mapped into A0, B into B0, and C into C 0.
Because the incoming light is planar, it is unchanged by
this mapping; i.e., all the rays are equivalent. Therefore,
the backscattered light must be completely unchanged by
this mapping, except for a transverse displacement every-

where by ~�?. Since the magnitude of this displacement
is <� 0:01�m and the backscattered light, upon reach-
ing the mirror, varies in amplitude and phase only on
scales >� (Fresnel length) �

p
�r >� 1mm (where r > 1m

is the distance between backscatter surface and mirror),
the fractional displacement-induced change in the scat-
tered light's phase is

�? <�
j~�?jp
�r

<�
0:01�m

1mm
= 10�5 : (21)

Now, the incoming light at the backscatter surface is
not truly planar. However, since it originated at the mir-
ror a distance r away, it can vary signi�cantly in phase
only on lengthscales >�

p
�r; and correspondingly, the

perpendicular surface displacement changes the phase
of the incoming light, as seen at a �xed point on the
backscatter surface (e.g. A = A0), by an amount no larger
than Eq. (21); and this in turn will put a phase shift on
the backscattered light no larger than (21). Thus, Eq.
(21) is an approximate upper bound on the net phase
shift produced by the backscatter surface's perpendicu-
lar displacement.
The ratio of the phase shifts induced by displacements

perpendicular and parallel to the incoming rays [Eqs. (21)
and (20)] is

j�?j
j�kj

<�
p
�=r

4�

j~�?j
j�kj

� 1 ; (22)
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since j~�?j=j�kj � 1. Therefore, the parallel phase shift
dominates, and the net phase shift is

� = �k = 4�
�k

�
: (23)

The displacement �k is produced by seismic motions of
the ground beneath the beam tube. Consequently, the
scattering surface will vibrate with a spectrum

~�k(f) = A(f)�s(f) ; (24)

where

~�s(f) � 10�7cmp
Hz

�
10Hz

f

�2

(25)

is the spectrum of horizontal seismic motions and A(f) is
an ampli�cation factor, due to seismic excitations of the
beam-tube normal modes. The ampli�cation A(f) will
vary from one location on the beam tube to another, but
presumably at most locations it will fall in the range � 1
to � 10.
By combining Eqs. (23) and (24), we obtain for the

spectrum of the backscattered light's phase 
uctuations

~�(f) = 4�A(f)
~�s(f)

�
: (26)

The gravity-wave noise is proportional to S(t) �
sin[�(t)], where the zero of phase, by convention, is dis-
placed �=2 from the phase of the main-beam light. The
backscattered light's absolute phase, with this conven-
tion, consists of a piece �slow that varies slowly with time
(at f � 10Hz) and also varies from one region of the
beam-tube wall or ba�e to another, plus a piece �fast

that varies in the frequency band of interest, f >� 10Hz:
� = �slow +�fast. Correspondingly,

S = sin(�slow +�fast) ' sin(�slow) + cos(�slow)�fast ;

(27)

where we have used the fact that the rms 
uctuations of
�fast are small compared to unity. The spectral density
of this S at the fast frequencies of interest is

~S2(f) = hcos2(�slow)i~�2
fast(f) = 8�2A2(f)

~�2s (f)

�2
; (28)

where we have used the value hcos2(�slow)i = 1=2 for
cos2(�slow) averaged over time and over locations on the

scattering surface, and have used Eq. (26) for ~�fast.

D. Noise Spectrum for Light Backscattered from

Ba�es

For concrete evaluations of the noise spectrum, we shall
assume a mirror scattering probability [1,3]

dP

d
ms

=
�

�2
with � = 10�6 : (29)

The ba�es are inclined at a 35o angle to the beam-tube
wall, so the incidence and backscatter angles are �B =
35o + � ' 35o. Since �B is essentially independent of
�, we can treat the ba�es' backscatter probability as a
constant, the same for all regions of all ba�es, which we
will denote �: �

dP

d
bs

�
ba�e

= � : (30)

If the ba�es are made from the same material as the
beam tube, as currently planned, then � ' 0:01 [4]; if
they are made from Martin Black, then � ' 0:001 [8].
By inserting Eqs. (28), (29) and (30) into (19), per-

forming the integral, and taking the square root, we ob-
tain the following ba�e-backscatter-induced noise spec-
trum:

~h(f) =

�
4��2� ln

�
l1

l2

�
J0(�)

�1=2
�A(f)

�

R

~�s(f)

L

=
3� 10�25

Hz1=2

�
10Hz

f

�2

�A(f)

p
J0(�)

2

�
�

0:01

�1=2

(31)

�
�

ln(l1=l2)

ln(4km=120m)

�1=2 ~�s(f)

10�7cmHz�1=2(f=10Hz)�2
:

Here l1 = 4km and l2 ' 120m are the distances from
the mirror to the farthest and nearest ba�es, �A(f) is the
mean ba�e vibration ampli�cation factor (suitably av-
eraged over all ba�es), and we have inserted a function
J0(�) which deals with the possibility (not included in
the above calculation) that the mirrors are o�set from
the center of the beam tube. This J0(�) is derived in Ap-
pendix C; its argument � is the fraction of the tube radius
by which the mirrors are o�set, and its value varies from
J0(0) = 1 for mirrors at the tube center to J0(2=3) = 3:3
for mirrors 2/3 of the way to the edge of the tube (about
as near the edge as mirrors are likely to be placed).
The second and third lines of Eq. (31) are the spectrum

quoted and discussed in Sec. I [Eq. (1)]. The parameters
contained therein correspond to the present ba�e design.
By switching from wall material for the ba�es (� = 0:01)
to Martin Black (� = 0:001), we can reduce the ba�e

noise by 1=
p
10 ' 1=3. If the ba�es extend all the way

in to the test-mass chamber instead of beginning ' 120m
down the tube, the logarithmic term increases by about
a factor 2, so the ba�e noise ~h goes up by

p
2 ' 1:4.

E. Noise Spectrum for Light Backscattered from

Bare Tube Wall

As was noted in Sec. I.A, the wall's backscatter
probability dP=d
bs is not known at the small inci-
dence/backscatter angles � of concern to us. Accordingly,
we shall explore the consequences of two possibilities:
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dP

d
bs

= � = 0:01 \pessimistic," (32)

dP

d
bs

= �� = 0:01� \optimistic." (33)

In both cases we take � = 0:01 in accord with BRO mea-
surements at large incidence angles � [4]. By inserting
Eqs. (28), (29), and (32) or (33) into (19), performing
the integral, and taking the square root, we obtain the
wall-backscatter-induced noise spectrum.
For the pessimistic case, dP=d
bs = �, the spectrum

is identical to that for ba�es, Eq. (31), but with the
distances in the logarithm changed to l1 = (distance from
mirror to end of bare wall) ' 120m and l2 = (distance
from mirror to beginning of bare wall) ' 1:2m.
For the optimistic case, the ln(l1=l2) = ln(�2=�1) term

in (31) gets replaced by �2 � �1 ' �2 = R=l2 and the
J0(�) gets replaced by a slightly di�erent function, J1(�)
(Appendix C), so

~h(f) =
�
4��2��2J1(�)

�1=2 �A(f)
�

R

~�s(f)

L

=
0:8� 10�25

Hz1=2

�
10Hz

f

�2

�A(f)

p
J1(�)

1:5

�
�

0:01

�1=2

�
�
�2

0:5

�1=2 ~�s(f)

10�7(f=10Hz)�2
(34)

Note that the noise is dominated by the portion of the
beam-tube wall closest to the mirror.
These are the spectra quoted and discussed in Sec. I

[Eqs. (5) and (6)].

F. Noise Spectrum for Light Backscattered from Far

End of Beam Tube

Turn, now, to light backscattered from objects at the
far end of the beam tube. We assume that the mirror's
scattering law retains the form dP=d
ms = �=�2 at the
tiny angles � of the tube's far end, and that all surfaces
encountered there backscatter with the same probability
as the ba�es, dP=d
bs = � ' 0:01, and vibrate longitu-
dinally with the same displacement spectrum as the baf-

es, ~�(f) = A(f)~�s(f). By inserting these assumptions
and Eq. (28) into Eq. (18) and integrating over solid an-
gle, we obtain the following expression for the scattering
noise:

~h2(f) = 2�2�
�2

L2

~�2s
L2

Z
A2��4d
ms : (35)

If the mirrors are centered in the beam tube, then the
integral is over an annulus of solid angles ranging from
�1 = Rmirror=L ' 3 � 10�5 to �2 = R=L ' 1:2 � 10�4;

and the result (ignoring 1=�2
2
compared to 1=�1

2) is

~h(f) =
p
2��2� �A(f)

�

Rmirror

~�s(f)

L

=
3� 10�25

Hz1=2

�
10Hz

f

�2
�

10�6

�
�

0:01

�1=2

�A(f)

�
~�s(f)

10�7cmHz�1=2(f=10Hz)�2
: (36)

This is the spectrum quoted in Eq. (7).
If the mirrors are displaced from the beam-tube center

by a fraction � of the tube's radius, then the solid-angle
integral in (35) gives expression (36) multiplied by

�
1� R2

mirror

R2
J0(�)

�1=2

; (37)

cf. Appendix C. Numerically, this correction is within a
few percent of unity for all relevant �, which is why we
have omitted it in Eq. (7).

ACKNOWLEDGMENTS

We thank Jean-Yves Vinet, Rainer Weiss, and Stan
Whitcomb for a number of very helpful conversations and
e-mail exchanges. This research was supported by NSF
grant PHY-9213508.

APPENDIX A: DOMAIN OF VALIDITY OF

THEORETICAL CALCULATIONS OF THE BRDF

There are two well known theories that have been used
to calculate the BRDF or equivalently the scattering
probability dP=d
 for rough surfaces, as a function of
the incoming and outgoing angles, and in terms of the
spectrum of surface height 
uctuations. The �rst is the
smooth-surface theory which is valid when the rms sur-
face roughness � is small compared to a wavelength. This
is the theory used to predict the scattering from mirrors;
see, e.g. [6,3]. It does not apply to scattering o� the beam
tube walls for which � ' 10�.
The second is the rough-surface theory developed by

Beckmann and Spizzichino [7], which requires for its va-
lidity that the radii of curvature of the scattering surface
be large compared to a wavelength. The predictions of
this theory have been summarized by Weiss [10]. There
are two di�erent limits of the Beckmann-Spizzichino the-
ory, depending on the Rayleigh roughness parameter [10]

g =

�
4�� sin(�bs)

�

�2
; (A1)

the \smooth" limit g � 1 and the \rough" limit g �
1. For backscattering o� the tube wall, the transition
between the two limits is at a distance from the mirror
of z � 80m.
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The rough limit is relevant to backscatter from the
nearby tube wall. In this limit the Beckmann-Spizzichino
theory reduces to a geometric optics theory of light re-

ecting specularly o� a surface with a distribution of lo-
cal surface slopes. If we assume that � <� �, where � is
the transverse lengthscale over which the surface height

uctuations become uncorrelated, then in the rough limit
the theory predicts that the backscatter is exponentially
small at small backscatter angles [10]. However, there
are two reasons why the theory may fail in this regime:
(i) As pointed out by Weiss [9], the statistical proper-
ties of the surface height 
uctuations are assumed to
be Gaussian, and this may not be the case. [Gaus-
sian surface height 
uctuations do not imply a Gaussian
surface autocovariance function; the rough limit of the
Beckmann-Spizzichino theory is valid for any choice of
autocorrelation function.] (ii) If there is signi�cant power
in the spectrum of surface 
uctuations on scales compa-
rable to a wavelength, the theory will be invalid. It is
not known whether this is the case or not for the beam
tube walls. [The Beckmann-Spizzichino theory typically
does not agree very well quantitatively with experimen-
tal measurements of surface autocovariance functions and
surface BRDF's [6].]
In the smooth regime g � 1, there are, in addition to

the above, other reasons why the theory may be invalid:
(iii) Shadowing of one part of the surface by another is
not taken into acount and may be important. In fact
we would expect shadowing to become more and more
important in the limit �bs ! 0. (iv) the usual criterion
for the validity of the theory is that rc � �, where rc
is the local radius of curvature of the surface. However,
for small �bs there is an additional spatial lengthscale
present: �=�bs. While it is clear that the theory is valid
in the regime rc � �=�bs, it is not obvious to us that
this is the case for � � rc <� �=�bs. In particular, it is
claimed in Ref. [7] p.29 that rc � �=�bs is a necessary
condition for the theory to be valid. [As an aside, we
also note that in the regime rc � �, � � �, �bs >� 1,
the Beckmann-Spizzichino theory predicts an incorrect
distribution of scattered light, as can be seen by compar-
ing with the predictions of the smooth-surface theory re-
ferred to above, which is based on solving the Helmholtz
equation perturbatively in powers of �=�.]
These theoretical uncertainties motivate our recom-

mendations 2 and 3, to measure the beam-tube wall's
BRDF and its specular re
ectivity plus forward scatter-
ing in the limit of small incidence angles.

APPENDIX B: RECIPROCITY RELATION FOR

SCATTERING INTO AND OUT OF MAIN BEAM

In this appendix we derive the reciprocity relation (16)
that relates the probability dP=d
ms for an interferome-
ter's mirror to scatter photons out of the main beam and
into some direction of interest, to the cross section �ms

for the same mirror to scatter photons arriving from the
same direction back into the main beam.
Since the scattering o� a very good mirror is produced

by mirror irregularities that leave the light's polarization
unchanged, we can ignore polarization e�ects in our anal-
ysis and describe the light by a complex scalar electric
�eld,  z(~y)e

ikz . Our notation is that of paraxial optics:
~y is a location in the plane z = constant a distance z from
the mirror along the optic axis, and the �eld  z(~y)e

ikz

is propagating in the +z direction, away from the mirror
(\rightward"). We normalize  z such that j zj2 = dI=dA
is the light's energy 
ux (power per unit area).
The interferometer's arm cavity supports normal

modes labeled by two integers m and n. We de-
note the modes' rightward propagating eigenfunctions by

 ̂z;mn(~y); they are orthonormal at every z, and most im-
portantly at the mirror's location z = 0:

Z
 ̂�z;mn ̂z;m0n0d2y = �mm0�nn0 : (B1)

The interferometer's main beam is excited in the m = 0,
n = 0 mode, and as it propagates rightward from the
mirror, its �eld is

 z;mb =
p
Imb ̂z;00 : (B2)

The factor
p
Imb guarantees that the integral of j z;mbj2

over the transverse plane is equal to the total power Imb

carried by the main beam. At the mirror location z = 0,
the phase fronts of the normal modes and of the main
beam match the shape of the mirror (aside from tiny
mirror irregularities which produce the light scattering);
as a result, when light re
ects o� the mirror, its normal-
mode �elds and its main-beam �eld get phase conjugated:
When traveling toward the mirror, the main-beam �eld

is
p
Imb ̂

�
z;00e

�ikz ; when traveling away from the mirror,

it is
p
Imb ̂z;00e

ikz .
Now consider what happens when the main-beam �eld

re
ects o� the mirror, taking account of the mirror's
tiny imperfections. The imperfections with surface wave-
lengths �? � (L=Rm)� ' 1cm scatter light toward the
beam-tube ba�es and walls or toward non-mirror objects
at the other end of the tube; and imperfections with sur-
face wavelengths larger than this scatter light toward the
mirror at the other end of the tube, thereby producing
mode-mode mixing. The mirror imperfections scatter
main-beam light in these manners by putting onto the
re
ected �eld a tiny ~y-dependent phase shift '(~y), so the
�eld leaving the mirror, i.e. at z = 0, is

p
Imb ̂0;00(~y)e

i'(~y) : (B3)

By propagating the �eld (B3) down the beam tube using
the standard free-space propagator of paraxial optics, or
equivalently by using the theory of Fraunhofer di�rac-
tion, we infer that the �eld scattered to a transverse lo-
cation ~y in the plane a distance z down the tube is
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 z(~y)e
ikz

=

Z �ik
2�z

eikzeik(~y�~y
0)2=2z

p
Imb ̂0;00(~y

0)ei'(~y
0)d2y0 :

(B4)

Here the integral is over the transverse location ~y0 at
z = 0, i.e. at the mirror plane. The energy 
ux scattered
through the point (z; ~y) is j z(~y)j2, and the scattering
probability dP=d
ms(z; ~y) is this energy 
ux, multiplied
by z2 to convert it into a power per unit solid angle, and
divided by Imb; the result is

dP (z; ~y)

d
mb

= ��2

����
Z
eik(~y�~y

0)2=2z ̂0;00(~y
0)ei'(~y

0)d2y0
����
2

;

(B5)

where we have used k=2� = ��1.
Next consider what happens when light with an energy


ux dI=dA arriving from the point (z; ~y) impinges on the
mirror. The incoming �eld at the mirror (z = 0) is

 in =
p
dI=dAeik(~y�~y

0)2=2z : (B6)

Upon re
ecting in the mirror, this light will acquire the
phase shift '(~y0) due to the mirror's imperfections, plus
an additional phase shift due to the mirror's desired
curved shape. To avoid dealing with the desired curved
shape (which for normal modes just complex conjugates

 ̂ but for the �eld  in adds some inhomogeneous non-
complex-conjugating phase), we shall put the phase shift
' onto the light mathematically just before it hits the
mirror, and then resolve the resulting light into leftward-
propagating normal modes of the optical cavity:

 in(~y
0)ei'(~y

0) =
X
m;n

cmn ̂
�
0;mn(~y

0) : (B7)

The coe�cient c00 is the amplitude for the mirror imper-
fections' phase shift ' to scatter the incoming light into
the m = 0, n = 0 normal mode, i.e., into the main beam.
This coe�cient can be evaluated using the orthonormal-
ity relation (B1):

c00 =

Z
 in(~y

0)ei'(~y
0) 0;00(~y

0)d2y0 : (B8)

The squared modulus of c00 is the power �Imb that the
incoming light is putting into the main beam; and this
power divided by the incoming energy 
ux dI=dA is the
cross section �ms(z; ~y) for light arriving from (z; ~y) to
scatter into the main beam. Combining Eqs. (B8) and
(B6), we deduce that this cross section is

�ms(z; ~y) =
jc00j2
dI=dA

=

����
Z
eik(~y�~y

0)2=2z ̂0;00(~y
0)ei'(~y

0)d2y0
����
2

: (B9)

By comparing this expression for the cross section
�ms(z; ~y) with Eq. (B5) for the scattering probability
dP=d
ms(z; ~y), we obtain the reciprocity relation

�ms(z; ~y) = �2
dP (z; ~y)

d
ms

: (B10)

The backscatter locations (z; ~y) considered in the body
of this paper actually lie in the mirror's Fresnel di�rac-
tion region (the mirror radius Rm is large compared

to
p
�z) and not the Fraunhofer region, which is why

we have kept the quadratic terms in the phase fac-
tor k(~y � ~y0)2=2z instead of using only the linear term
�k~y0 � (~y=z). This means that in principle the cross sec-
tion �ms(z; ~y) and scattering probability dP (z; ~y)=d
ms

could depend not only on the (vectorial) scattering di-
rection ~y=z but also on distance z from the mirror. In
the body of this report we have tacitly assumed (for lack
of any experimental data, and as may well be the case)
that the spectrum of the mirror's deformations is su�-
ciently uniform and isotropic across the mirror that, in
both the Fresnel and Fraunhofer regions, �ms(z; ~y) and
dP=d
ms(z; ~y) depend only on the scalar scattering angle
� = j~yj=z and not signi�cantly on distance z.

APPENDIX C: SCATTERING NOISE FOR

OFF-CENTER MIRRORS

Let ~h(f ; �) be the gravity-wave noise spectrum due to
light backscattering from either ba�es or the tube wall
when the mirrors are o�set from the center of the beam
tube by a distance �R, where R is the beam-tube radius.
In this appendix we show that

~h(f ; �) =
p
Jn(�) ~h(f ; 0); (C1)

where the factor Jn(�) by which the noise power ~h2 is
increased due to o�-centered mirrors is

Jn(�) =
1

2�

Z 2�

0

d�hp
1� �2 sin2 �+ � cos�

i2�n ; (C2)

and where n is the power that appears in the backscatter
probability, dP (�)=d
bs = ��n. For ba�es n = 0; for
bare pipe wall n = 0 in the \pessimistic" case, and n = 1
in the \optimistic" case. The noise-amplitude increase
factor

p
Jn(�) is shown in Fig. 3.

Our starting point is the fundamental formula (12) for
the noise from light that backscatters toward an end mir-
ror from a tiny solid angle �
ms. This formula is valid
whether or not the mirror is at the center of the beam
tube. Adopt spherical polar coordinates (�; ') centered
on the mirror, so that the axis � = 0 is parallel to the
beam-tube symmetry axis but displaced from it by a dis-
tance �R, and so that the beam-tube symmetry axis is
in the direction ' = 0 when � 6= 0. Then the distance
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from the beam axis � = 0 to the wall of the beam tube
in the direction ' is RG(') where

G(') =

�q
1� �2 sin2 '+ � cos'

�
: (C3)

In the formula (12), the quantities dP=d
ms, dP=d
bs

and ~S2(f ; �) depend only on � and not on '. The only
quantity that depends on ' is the distance r from the
mirror to the backscattering point, which is given by

r = r(�; '; �) =
RG(')

�
: (C4)

[In the case of ba�e backscatter, we ignore small correc-
tions of order (ba�e height)/ (tube radius) � 0:1].
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FIG. 3. The factor
p
Jn(�) by which the noise amplitude

is increased when the mirrors are o�set from the beam-tube

center by a distance �R (where R is the beam-tube radius).

The curve n = 0 applies to ba�es and to the bare beam-tube

wall in the \pessimistic" case dP=d
bs = constant; n = 1 is

for the bare wall in the \optimistic" case dP=d
bs / �.

Upon integrating Eq. (12) over solid angle we �nd that
the total noise spectrum takes the form

~h2(f ; �) =

Z Z
D(�)

d�d'H(�)
1

r2(�; '; �)
; (C5)

where D(�) is the domain of integration and H(�) is some
function which is independent of � and '. Suppose that
the domain of integration corresponds to backscattering
from distances z down the beam tube in the range z2 �
z � z1. Let �1 = R=z1, �2 = R=z2. Then the domain of
solid angle D(�) of integration for o�-centered mirrors is
0 � ' � 2� and, for each ', �1G(') � � � �2G('). By
combining Eqs. (C4) and (C5) we obtain

~h2(f ; �) =
1

R2

Z 2�

0

d'
1

G(')2

Z �2G(')

�1G(')

H(�)�2 d�: (C6)

The function H(�) acquires its � dependence from the
solid-angle integration element (one factor of �), and

from the scattering probabilities ((dP=d
ms)
2 / ��4 and

dP=d
bs / �n):

H(�) = H0=�
3�n: (C7)

Equations (C1) and (C2) can now be obtained by insert-
ing Eq. (C7) into Eq. (C6).
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