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Abstract

We present an analysis of the centrifugal coupling of a simple pendulum to a dissi-
pative support. We show that such a coupling leads to an amplitude dependent quality
factor. For amplitudes which could be present in laser interferometer gravitational wave
detector suspensions, this mechanisrﬁ could limit the quality' féctor of the test mass sus-
pension significantly to 101 and should be considered in the design of advanced LIGO

type detectors.




1. Introduction

Large scale laser interferometer gravitational wave detectors are being planned(see J.
Hough et al 1989; A. Brillet, A. Giazotto et al 1992; the Australian proposal 1990; D. G.
Blair, D. M. McClelland and H. Bachor 1992; H. Bachor et al 1990) and constructed (A.
Abramovici et al 1992). Such detectc.>rs require ext.remely low amplitudes of vibrational
noise in their mirror suspensions. The chief sources of noisé are seismic vibrations and
thermal noise. The former can, in principle, be reduced to arbitrarily low levels by suitable
f.ilte’r.desig.n. Thermal noise however is generated internally, by the accoustic losses in the
mirror and by the losses in the mirror suspension. Internal mirror losses generally give
rise to a thermal noise peak in the kHz range (assuming a suitable shape for the mirror).

Pendulum losses give rise to a noise amplitude which, in the frequency range ~ 1-100 Hz.

is generally expected to dominate the noise of a large scale detector.

In Figure 1 we show the predicted thermal noise of a 100 kg, 1 Hz pendulum for
a range of Q-factors. There would clearly be a great advantage in using pendula with
Q-factors> 10'°. Losses in such pendula are normally considered to arise from elastic
losses in the flexure or hinge from which the pendulum is supported. However, even if the
elastic loss was reduced to nearly zero using suitable materials and configurations, losses in
practice can remain due to the coupling of the pendulum to its support structure. There
are two ways in which this coupling can arise. One is a simple linear horizontal coupling
of the suspension point to its support structure. This can be modelled by conventional
linear analysis and is accounted for in most isolation system designs. The second is a loss
which arises from the centrifugal(vertical) coupling of the pendulum to vertical losses in
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the support structure. This is a non-linear problem, surprisingly difficult to solve. Here we
present the solution to this problem, and give examples of the limiting Q-factor in various
situations.

The dominant and relevant effect of a high quality factor is to rc;,duce the thermal
noise of the pendulum suspension. The dependence of the thérmal noise spectral density
on the quality factor has been derived earlier (see J. Hough et al 1989). The thermal noise
is given in terms of the quantity A% where the tilde denotes the Fourier transform of the
quantity below it. The quantity h is the metric perturbation of the gravitational wave one

is trying to detect. The thermal noise is given in terms of this metric peturbation. Thus,

16kTw, o

h? ~
thermal 7nQeffw4lz

Here & is the Boltzmann cons’tan"c, T the absolute temperature, ! the length of the arm of
the laser interferometric dete:ctor and w the frequency of the thermal noise. The A falls
off as Q:f%f and therefore a .lfxigher-Qe 77 has the effect of reducing the thermal noise. If we
observe the noise profiles for bu'rst or continuous wave sources (see J. Hoﬁgh et al 19895 of
laser interferometric gravitational wave detectors, the thermal noise is present at the lower
end of the band of detectable frequencies. Increasing the Q. s will push this thermal curve
‘downwards’ reducing the noise at lower frequencies near the seismic cut-off. This will have
the effect of increasing the signal to noise ratios for sources which emit gravitational waves
predominantly at lower frequencies. For example coalescing binaries which radiate more

power at lower frequencies will have their signal to noise enhanced if the quality factor is

boosted.




2. The equations of motion

We consider here a simple model of a seismic isolator which consists of a pendulum
attached to a spring. The spring motion has a dissipative element in it while the dissipation
in the pendular motion is neglected. We set up the classical equations for the system which
turn out to be non linearly coupled. We then solve this systém of equations gumerically
and find that under the assumption that the amplitudes of the motion are small, analytic
approximations are possible and an analytic but approximate solution can be derived. We
finally compute an effective quality factor for the pendular mqtion which now depends on
time because the motion is not damped according to the usual expone1.1t'ial law.

Consider the system as shov;/n in the figure 2. The two dynamical variables are z and
8 which are defined as follows: z is the extension of the spring beyond its normal length

and 6 is the angular displacement of the pendulum. The Lagrangian for the system is,
1,2 2,2, 1242 . .
L= 5]\/1(33 —ws’z® +1°0%) ~ Mlisin 026 + Mg(x + lcos 6) (2.1)

where M is the mass of the bob of the pendulum, ! is the length Iof the pendulum, wy is the
natural frequency of the spring and g is the accelaration due to gravity. We assume that
the damping of the spring is proportional to the velocity which means that the damping
force @ is of the form,

M

QIJ = _271':1 ( .

[S]
O]
~—~

where T is the damping time constant. We now use the Euler-Lagrange equations to get

the equations of motion. The z - equation is,

X+ —?—X +ws? X = sin 66 + cos 6% + w,?, (2.3)
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where, X = £ and w,? = 4. The equation may be simplified somewhat further by defining

anothér variable z where,

2
Wy

z=X —

(2.4)

wg?
Since 6 is normally very small only terms quadratic in 8 can be retained, the equation for

z then becomes,

(3]
()]
A —a

z+;z+w,22=99+62 . _ (2.

The equation for the second variable 6 can again similarly be obtained from the Lagrangian

by the Euler-Lagrange equations. We assume that the'da,mping‘for the 8 motion can he

neglected. Therefore, there is no generalised force for this gen:aralised coordinate. With
these assumptions, the 8 equation is,

§ + wysin 6 = sin 6% (2.6)

-

In terms of z and for § very small, the equation for 4 is,

§+wp29=9}:'. (2.

[R]
-1
~—

We can still make a further simplification by going over to a dimensionless time coordinate.
We may choose to measure time in terms of either of the frequencies w, or wp. Suppose

we take the former, defining,

T =wgt Q=lw,'r , a =2 (2.8)
2 Wi
we have the following dynamical equations,
o1 . .
I+ —z+z=060+6 (2.9¢)
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6+ a%f =63 (2.90,

where-the dot is the time derivative with respect to the dimensionless time T. The aim s
to compute the quality factor Qcsf of the 8 motion.

To make further progress, we need to know roughly the numerical values of w,,w,, andr
(or an equivalent set of quantities).. The equations aré too complex to solve in full
generality. However, if the actual values are known for these parameters then it is possible
to obtain approximate analytic solutions.

. The above equations are nonlinearly coupled and do not possess any exact solutions.

" Therefore we may guess approximate analytic solutions by first solving the equations nu-

merically. There are basically only two parameters, namely, o and @. All the other

quantities have been thrown into the background by resorting to dimensionless units.
‘3. The numerical solution

The numerical method we resort to is the fourth order Runge-Kutta which consists of
converting each of the above coupled second order differential equations to two first order
equations. To this end we define, § = Q and 2 = v, then we have a set of four first order

differential equations,

=0, :=v, Q=—a%d+f, v=7Ff (3.1)
where,
2 _ a2 2_2_
£(8,2,0,0) = L= v/Q (3.2)

1-62
Supplying the values to the four variables at an initial time o determines the solution

to the problem. We however need to choose the time step judicially. It should be small
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enough to take care of the variations in the parameters adequately, but at the same time
the step should be large enough so that the number of operations are reduced. It is found
that the variation in the parameteré is more or less sinusoidal. We take about 20 time
steps for the smallest cycle which is so for the variables z and v. We restrict our attention
to the problem when 6 is small. This simplifies the problem'a.r;d we can get approximate
analytic solutions for large times when the transients have died out. We have experimented
with several initial values for the parameters (with the proviso §y << 1 where 8y = 8(to))
and have found that the solutions have certain common features thgt are of interest to
us. With this in mind we make.the following choice for the initial values (denoted by the

subscript ‘0’ ) for the variables:

Z0 = Vg = .Qo = 0, 90 = 005 (33)

-

We assume several values of a and Q and solve the equations numerically. Although the

values we have chosen do not correspond to actual situations, observing the salient features

of the solutions provides useful guidelines in searching for analytic solutions.
We observe the following features:

(i) At early times 6 ~ 6p cosat. At late times the motion is seen to be damped. We haye

taken the computation far enough upto T = 10 so that the damping is appreciable.

(ii) For lower values of a and 6, the damping is slower and is not easily seen. For such
values we have taken the computation upto T" ~ 10°. However the results are not
qualitatively different.

(iii) The z- motion consists of two superimposed oscillatrions:

(a) The cycles are at a frequency 2c. This is due the quadratic nonlinearity, namely, 62
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forcing the z motion.

(b) On these oscillations is superimposed a transient of about unit frequenpy which is
damped at the rate e~7/2Q. At late times the transients die out and the spring
o;cillates with the frequency 2a.

At late times both the § and z oscillations are slowly d{amped. The damping is not
exponential but slower and is quantified in the next section. It is remarkable that in the

regime of interest, analytic solutions to this system of equations are possible.
4. The -analytic solution
A. The transients and the particular solution

Since the § displacement is small we start with a trial solution
~ 8(T) = 6 cos(aT) (4

so that at T' = 0 the 6 displacement is maximum, namely, 8; = 8y. 8; here is assumed
t.o be constant although it happens to be a slowly varying function of time on the time
scale of the rate of damping. For a few cycles this assumption is alright during which little
) decéy in the amplitude occurs. The oscillation time scale is of course of the order of a~!.
This solution assumes that 67 ~ 0 which is justified later. We further proceed to compute

the right hand side of the z equation from equation (4.1). Thus,

1.
i+ =2+ 2=—a’6? cos2aT (4.2)

Q

which means that the z motion is forced at twice the frequency of the 8 oscillation. The

total solution for z(t) is obtained as a superpostion of the transient solution and the forced
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solution. Thus,

z(t) = ztransient(t) + zforced(t) (43)

where,

Ziransient = e_T/2Q(A1 cos ﬁT + Az sin ﬂT) (44)

where, § = (1- Z%)% ,and 4; and A; are to be determined from initial conditions imposed

on the full solution. The forced solution is,
Zforced = 21 cos(2aT + @;) : (4.5)

where,

2a

Qe @ A=1-4) 47 (40)

21 = —a’83 /A , tan®, =

Again here the behaviour of z; is analogous to ;. The transient solution dies out in the
timescale Q™! so that at late times (7 >> Q~!) only the forced solution survives.

The trial solution for 6(T) as given in equation(4.1) can be justified in the following
way. We observe that if we choose @ ~ 1 or less and Q ~ 1 to 100 then z ~ o?6?. Since
the z motion is also sinusoidal with frequency 2a , Z ~ a*62. Thus, the term 83 will be of
the order of a6} which is very small. Therefore the assumption of neglecting this term in
our trial solution for 8 is not unjustified.

B. Damped motion

The motion is damped since the system loses energy because of the dissipation in the
spring. We analyse the damping from energy considerafions. We need to evaluate first
the total é,verage energy of the system and then relate it to the rate of loss of average
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energy. Since the dissipative element is in the spring the system loses energy only through
the z- m;)tion. However, the §- motion will also be damped because of the coupling. The

instantaneous energy is the Hamiltonian of the system and is given in dimensionless units

by,
_ 1l 1. TINE ST ST .
E_5 +§a —-'692-{—22 +2a9_ , (4.7)
We now substitute the late time solutions,
z=2z1(T)cos(2aT + &;) , 6=6,(T)cosaT (4.8)

where ) and 2; are ‘slowly’ varying functions on the timescale of a=! in equation {4.7)

and compute the average energy per cycle of the oscillations. We however need to consider

the average energy per cycle of the variables. The calculation leads to,

(E) = (a®6% — %a‘*ef + 20561472 4 %oﬂe;—’ (4.9)

&

Since 6; has been assumed to be small, (E) ~ %aﬂef. The rate of loss of energy is computed
by first differentiating the expression for the Hamiltonian and then using the equations of

motion. We then have,

The average loss of energy per unit time can then be computed from equations (4.6) and
(4.8) and averaging the trigonometric functions over unit time. Thus,

d 5 20564

7B =g (4.11)

From the equations (4.9) and (4.11) we get a differential equation for the decay of the

average energy, or equivalently for the amplitude 6, :

d
LAy B

dT

4at6t
A?2Q
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Solving this equation with the initial conditions T =0, § = §,, we have,

bo

91(T) = ET:F—) (4.130)
where,
1 40[498 :
BTY=(01Q+4+e)z |, e= 0
The decay of the z-motion is obtained from equation (4.6). We get, '
a?6?

Therefore we notice that the z motion is damped at a faster rate than the § motion.
This behaviour remains true for various values of o, Q and 6, as has been verified on the
computer and cross checked with the above formulae. But if « and 6 are very small then

enormous length of time is required on the computer to produce appreciable damping as

can be seen from the foregoing discussion. The analytic solution then helps in predicting .

the damping profile.

C. The effective Q for the pendular motion

Consider a damped simple harmonic oscillator with natural frequency wg and damping
time constant 7. Then the time dependence of the amplitude is ~ e~*/7¥iwof  The quality
factor @ is then given by the formula: Q = %wor. In terms of the dimensionless time T
the effective quality factor Q.5 for general damped motion, which is not necessarily an

exponential decay, is given by,

Qs = Jal-2=(inby (1)) (414
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Using equation (4.13a), the above expression leads to the result,

Qes=a (4.15)

(14 €T)
—
Therefore in this case the quality factor is a function of time which is to be expected since

the damping is not exponential. We observe that, the Q. increases with time. At early

times, i.e. when €¢I < 1 the Qs is given by,

e A%Q
Qess € 4a36? (4.16)

We observe that at early times Q. f 1s a-constant and hence in this regime the system
behaves like a normal damped 1}@1‘1110ni<:h os;:i_lla.tof ie. the amplitudej f; decays exponen-
tially with time 6 (T) ~ e=*7/2Qss. However when T ~ ¢! the decay of the amplitude
1s slower than the exponential rate. Figure(3) compares the decay of the amplitudes o.f the
two oscillators:

‘(a) exponentially damped,

(b) pendular, which corresponds to the system under consideration.

In the figure, a = 0.3,Q = 2 and 6, = 0.01 which corresponds to ¢ ~ 10~¢. It is

convenient to use logarithmic scales for depicting the behaviour. We plot —logio(—l0g106; )

verses log1pT. The usual case qf the exponentially damped oscillator appears as a straight
line with slope =-1. This curveis labelled as ezponential. The intercept on the vertical axis
turns out to be log10Qess — logm(%alogloe) — logi0(—log1060) which increases with Q..
We observe that when T' ~ ¢~! ~ 10° the pendular curve departs from the exponential
a;ld the decay is slower.

For the case of the spring constant k ~ 107 kg.sec™? |, M ~ 10% kg , | ~ 1 metre and

@ say 10, we have the following values for the relevant parameters : w, ~ 100,wp ~ 3, a0 ~
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0.03 and A ~ 1. From the equations (4.13) and (4.15) we get an amplitude dependent

quality factor for the pendular motion. Thus,

A%Q 1
Qesr = 73 X @ (4.17)

Figure (4) displays this behaviour in which log19Qeyy is plotﬁed against logyp6;. For the
values of the parameters mentioned above, the constant A2Q/4a® ~ 10%. The tendency is
for the Q.ss to increase with the decrease of amplitude. Therefore a value of Q.55 ~ 100

1s not impossible under the circumstances.

5. Discussion

~

We have shown that the coupling of a pendulum to a lossy support structure can create
an amplitude dependent Q-factor and this can significantly degrade the Q of an intrinsi-
cally high Q pendulum if care is not taken in the design. Since metal and rubber vibration
isolator elements have intrinsically low Q, these can contribute particularly large ampli-
tude dependent losses. The coupling of noise into such a suspension w'}ll oceur fhfough
parametric amplification type processes more familiar in optical and radio frequency para-
metric amplifiers. Some interferometer designs have proposed a suspension point servo
which uses a secondary interferometer to lock together the pendulum suspension points.
Such a suspension does not eliminate seismic noise, but forces it into common mode so
that there is no differential motion. In such a situation residual seismic amplitudes could

be large enough to degrade the suspension Q through the mechanism discussed here.

Acknowledgement

One of us (SNP) thanks C-DAC for research assistantship.

14



Figure Captions

1. The frequency dependence of the thermal noise predicted for a 1 Hz pendulum for various
Q-factors.A pendulum with Q=10 would allow a strain sensitivity of about 10~ /\/Hz

at 35 Hz in a 1 km laser interferometer gravitational wave detector.

2. A schematic diagram of a simplé model for a seismic isolator is shown which consists of
a pendulum attached to a spring. The spring motion is damped with the damping force
proportional to the velocity.

3. The figure depi.cts the ciécay of the amplitudes with time for the standard exponential
case and for the model considered here (pendular). The parameters have the f9119\\\-'iqg

values o = 0.3,Q = 2 and §, = 0.01.

(a) ezponential: The amplitude is damped exponentially with time. This appears as a

straight line with slope = —1 on the logarithmic scale.
(b) pendular: In thé model considered the amplitude decays slower than in the standard
case (a). |
4. The figure shows that the quality factor Qesr is amplitude dependent for the model
considered here. The Q.yy is plotted verses the amplitude 6; on a logarithmic scale. We
find that the Q.sf increases as the inverse square of the aﬁlplitude. In this figure the

relevant parameters have the values Q = 10, = 0.03 and hence the constant A"’Q/4a'3 ~

105. .
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