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Abstract

The rms longitudinal motion of a test mass due to thermal excitation of
the violin resonances of its suspension wires is estimated using a perturbation
technique. Comparison with recent data indicate that the moton of test masses in
the 40—-meter interferometer at these resonances is very close to the minimum level
consistent with such a system in thermal equilibrium with a reservoir at 300 K.

L. Introduction

A high mechanical-quality (Q) test mass suspension is required in a
gravitational-wave laser interferometer to minimize test mass motions due to seis-
mic and thermal noise. Inescapable features of high-Q pendulum suspensions are
the violin resonances of the suspension wires, typically occurring at frequencies
of several hundred Hz. Because of the high Q of these resonances, they may be
filtered out of the interferometer output with little loss of observing bandwidth,
and thus do not seriously affect the sensitivity of the interferometer.

From a different point of view, the violin resonances can be used as a
diagnostic for mechanical forces affecting the motion of the test masses. The
current work was motivated by a desire to measure the result of stochastic
mechanical forces exerted on the test masses through the pendulum suspension, in
effect establishing an effective temperature for the suspension. Such an effective
temperature would provide a collective me:su: of all stochastic forces (whether
seismic, electromagnetic, thermal, eic.) wiich act on the test masses through
the suspension wires. The resonant nature of the violin modes allows a clean
separation between actual displacement noise for the masses and “sensing” noise
which causes the masses to appear to move.

Generally a comparison of thermal noise calculation and experimental data
uses a detailed lineshape for the resonant system and then relies on the Fluctuation-
Dissipation Theorem to fit this lineshape to a given temperature. A more robust



(less model dependent) procedure is followed here. Instead of resolving the
resonance lines we obtain the root-mean-square (rms) displacement x5 from
more coarsely-binned interferometer data, and compare this to the displacement
calculated from the Equipartition Theorem.

II. Thermal Motion of a Violin String in One Dimension

The Equipartition Theorem states that the energy of a system in thermal
equilibrium is % kT per degree of freedom, where k is Boltzman’s constant
and T is the temperature (absolute). For a harmonic oscillator executing one-
dimensional motion, the average kinetic energy is equal to the average potential
energy. Therefore we can write the average kinetic energy as

1 -2 1
<Kwire >= 3 / po< P (y) >dy = §kT (1)
0
where pg is the density per unit length of the violin string, L is its length (see
Figure 1), and v (y) is the velocity of the point y of the string. Assuming i =
0 everywhere at t = 0, and applying the boundary conditions ¥(0) = ¥(L) = 0
for all time, we can write
nw

Ya(y,t) = A, sin ( Ly ) sinwat @)
where A, is the amplitude of vibration, and w, is the resonance angular frequency,
for the n™ order mode of the string. The time-averaged squared velocity is then

. 1 . nrwy
2 _1 2,22
< ¥(y) >= 5 wiAlsin’ (1F) Q)
which gives an average kinetic energy for the n mode
Lw2A?
< Kwire >= @_';M (4)

after integration.! Substituting L = 22= into equation (4) we obtain
npodn wZ A2

< Kwire >= 16 (5)
which, using equation (1) gives
8kT 1
2 - —— 2
Al = poks o7 2Atms (6)

1 It is interesting to note the similarity of equation (4) 1o the expressicn for the average kinetic energy of a point mass
oscillator, given by equation (4) with the substitution % pol. = m, where m is the mass of the oscillator.
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II1. Motion of a Test Mass Due to Thermally
Excited Violin Mode of the Suspension Wire

We solve for test mass motion due to vibrations of the suspension wire by

a perturbation technique, where we assume that the test mass recoils from the

wire without seriously affecting the motion of the wire. We therefore use the

zeroeth order solution for wire motion in the case of an infinite mass test mass

(equation 6) to calculate the recoil motion of the actual test mass with M >> pgL.

This is a good approximation when the kinetic energy carried by the test mass

is small compared to the kinetic energy carried by the moving wire. For mass

supported by a single wire in one dimension, we have at the mass-wire interface
(see Figure 2):

2

Mj—t; = Tysiné @)

where M is the suspended mass, z is the coordinate of the center-of-mass of the

test mass, To is the tension in the wire, and 6 is the angle at which the wire leaves

the test mass. Since both the mass and the wire move at the same frequency we

h
ave dvs

~Mw?z =Ty @®)
| dy |,_r
which has the solution
2rAnTo . _ n .
z= (-1)" WY sinwpt = (—1)" zp sinwpt )]
Substituting Apva = (To/po)?, where 27 vn=wn, we obtain
_Zl — (POTO)E - Zwire (10)

An Mwn Zma,s;
Where the last term on the right is the ratio of mechanical impedances for the
wire and the test mass. Using equation (6) and setting To=Mg gives

1
4kT g\? 1
Zrms = (Ml’l . )\n) W% an

Using Ay = %, and recognizing 1/g/L as the pendulum’s angular frequency wp
we finally obtain for the test mass motion due to the thermally excited wire:

1
Zrms = (‘2-;%1‘-) ’ * (12)
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IV. Check of Validity of Perturbation Treatment

In this section we compare the average kinetic energies of the test mass and
wire. The average kinetic energy of the text mass is

1
< Kinass >= 7 Mw?z? (13)

Combining equations (6 and 12) we have

2
< Kmass > (Wp)
- o 14

< Kwire > Wn (19
Since typical pendulum frequencies are about 1 Hz and typical wire resonance
frequencies are several hundred Hz we see that the assumption that the kinetic

energy is carried principally by the wire is verified.

V. Application to a Two Wire-Loop Suspension

The cylindrically-shaped test massés in a laser interferometer gravitational-
wave detector are typically suspended by two wire loops for a total of four sus-
pension wires (see Figure 3). Each wire is free to oscillate in two orthogonal
polarizations (one with motion z along the interferometer arm and one perpen-
dicular to the arm). Due to small differences in loading of the four wires, each
wire has a distinctive resonance frequency. The analysis of Sections II and III
can be generalized to the four wire case, where the reaction mass is still M, but
we now have Ty ~ %Mg for the tension in each wire. We assume that the violin
modes polarized perpendicular to the interferometer arm do not contribute to the
mass motion measured by the interferometer.2 We then expect four distinct sets
of violin modes for each test mass, each of which contributes

1
kT\? wp
Zrms = (m) : ;;21' (15)
to the interferometer output signal. Using parameters typical of the current 40-m
prototype interferometer (M = 1.6 kg, wp = 27 s, w; = 27300 s—1) we can
rewrite equation (15) as
1
6kg\? Hz\?
M f

where f; is the fundamental resonance frequency.
2 This is true only to the extent that rotations of the test mass do not appear in the interferometer output.




V1. Comparison with Test Mass Motion at
Violin-Mode Frequencies in the 40-m Prototype

The noise equivalent displacement of the 40-m interferometer as measured
on October 3, 1991 is given in Figure 4. Groups of wire resonances around
320 Hz (originating in the left-arm end mass suspension wires) and around 600
Hz (originating in the right-arm end mass suspension wires) are marked. The
horizontal levels marked at each set of wire resonances give the minimum level of
test mass motion at the violin resonances that is consistent with the interferometer
operating in equilibrium with a heat bath at 300 K. Given the 1.8 Hz channel
bandwidth we expect

Z(320Hz) = 4.2 x 107" m/VHz (17)
(600 Hz) = 1.2 x 107" m/V/Hz (18)

for each wire in the respective group of resonances.?

We can see that the ambient excitation of these resonances is about a factor
of two greater than the predicted level due to thermal noise. A subsequent
investigation by S. Kawamura has identified the excess noise above thermal noise
near 320 Hz as due to electronic noise in the test mass damping system. With this
information we may conclude that other external sources of displacement noise,
for example seismic motion, have been sufficienty attenuated at these frequencies.

3 Accidental overlaps of two wire resonances in a single bin can raise these values an additional factor of /2.



Appendix:

Thermal Noise Calculated from the Fluctuation — Dissipation Theorem

We have calculated thermal noise in the violin modes assuming that all of
the thermal energy of a given mode is concentrated at the resonant frequency of
that mode, i.e., that the lineshape of the resonance is a delta function centered
at the resonant frequency. Here we show that this approximation is reasonable
for the current 40-meter prototype, since the FWHM of the resonances (typically
~0.01 Hz) is much less than the bandwidth at which measurements are taken
(typically ~1 Hz)

To make a more detailed analysis, we assume the noise can be modelled as that
of a simple harmonic oscillator with a damping force proportional to its velocity,
driven by a white force derived from the Fluctuation-Dissipation Theorem. The
lineshape of the amplitude of the violin modes is then as follows:

1

~ _1 32k Ty %ﬂ 1 :
A“(“’)"n( M )wp[(wg_w)%(-,w)z] (1%

Here k is Boltzman’s constant, T is the temperature, « is the energy damping rate
constant, M is the mass of the test mass, wy, is the violin mode resonant frequency,
and wp is the pendulum resonant frequency. From this we can calculate

Arms = \[ / [I&(f)]2 df 0)

Bandwidth

The comparison which we wish to make is between the energy near the
resonance and the total energy of the system. The numbers which we will use are
those for the primary arm end mass (fo = 320 Hz, vy = 0.13 s—1, Af = FWHM =
0.02 Hz), but the comparison is basically independent of these particular values.



Bandwidth Centered Percentage of Total
at the Resonance Energy (kT)
Af 48
2Af 71
3Af 79
4Af 84
10Af 94

Since 10 Af is still much less than our present typical measurement bandwidth,
the approximation that the bulk of the energy is contained in the resonance peak

is a good one.

As a closing statement we should note that the velocity damping model may
not be applicable to the violin modes of our system, and other damping models
with different lineshapes have been proposcd.l Although these models differ
substantially away from resonance, they give the same shape near resonance and
therefore give similar results for the amount of energy concentrated at the resonant

frequency.

! P. R. Saulson. Phys. Rev. D, 42, 2437 (1990).
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