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PROPERTY OF GRAVITATIONAL PHYSICS

Interferometers are the most promising sensors for large gravity wave
detectors. The coupling of the enclusure noise to the gravity wave signal
in a Fabry-Perot interferometer is studied. The first part provides a theo-
retical framework, and in the second part two limiting cases are discussed
as an illustration. The relevance of this noise source for large gravity wave
interferometers is briefly discussed in the conclusion.

‘1. Introduction

Fabry-Perot interferometers are currently used in gravity wave detec-
tors as extremely high quality resonators monitoring the length of interfer-
ometer arms. The fundamental limits to the precision of these measure-
ments come from the photon counting noise (photon shot noise), from the
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thermal noise displacing the mirror surfaces and from the quantum noise
(Heisenberg uncertainty). These limitations are well understood (Drever et
al.1983) and the existing gravity wave detectors are designed so that this
noise will be below the sensitivity threshold. However, the development of
present gravity wave detectors with sensitivity of the order 10~ !* m/ vHz
has witnessed a constant struggle with non-fundamental noise sources, i.e.
noise sources which could in principle be eliminated and are present only
due to one’s inability to produce ideal components. In this article I will dis-
cuss one of the many "non-fundamental” noise sources — the scattering of
light off the vacuum tank walls. It comes about as follows: the two mirrors
in the interferometer are not perfect, so that some light is scattered off their
surface and hits the walls of the vacuum tank. This light may again find
its way into the interfering path if it either escapes through the other mir-
ror and hits the photodiode or if it is scattered again into the main beam.
These effects add to the interferometer noise only if the vacuum tank walls
are moving and modulate the phase of the scattered light.

In the next paragraph I describe a model for the Fabry-Perot cavity.
In paragraph 3 a perturbation theory, which includes the effect of moving
walls is developed. In paragraph 4 the noise coupling to the interferometer
signal is described. Finally in 5 and 6 these ideas are illustrated in two
examples which are representative of two extreme situations - mirror walls
and rough walls. The two examples were chosen for their mathematical
simplicity, but they are considered to be important as representative of the
strongest and weakest noise coupling, respectively.

2. The model

A Fabry-Perot interferometer is considered as an electromagnetic cav-
ity enclosed by two end mirrors and the walls of a vacuum tank, which is a
long cylinder with its axis coinciding with the optical axis common to the
two mirrors. The two mirrors are the main components of the interferom-
eter, since they provide boundary conditions for a Gaussian beam to form
between them. The intensity in the Gaussian beam decays exponentially
with the distance from the symmetry axis. This makes the coupling of the
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beam to the vacuum tank wall decay exponentially with the radius of the
vacuum pipe. In this way one usually justifies the neglect of the vacuum
tank boundary in solving the field equations inside the cavity. However,
mirrors always scatter a small fraction of incident light. I consider the ef-
fect of this stray light by way of a perturbation analysis which starts with a
perfect cavity enclosed by smooth nonabsorbing, (almost) nontransmitting
mirrors and a nonabsorbing but possibly rough wall. I also assume that for
the purpose of present estimates it suffices to describe the EM field inside
the interferometer cavity by a scalar field ¥ obeying the wave equation:
10°V

AV = T (1)
Since the perfect cavity is chosen to have nonabsorbing and nontransmitting
mirrors, the field ¥ obeys the boundary condition:

WIboundaru = 0 (la)

Here boundary includes the mirror surfaces and the walls of the vacuum
tank. I will denote the stationary state solutions to this equation as:

¥ =G, (e @)
where ¢, are eigenfunctions of:
AF. + 6, =0 (3

The spatial dependence of ¢, () is, of course, a function of the geometry of
the cavity. I assume that the mirrors are spherical with appropriate curva-
ture, so that the modes ¢, are Gaussian modes. The boundary condition
¥ = 0 on the wall is not very restricting for the main modes, since they
decay exponentially away from the symmetry axis. Therefore, I expect that
it is possible to start a meaningful perturbation analysis with the " perfect”
cavity as defined above. :
A more realistic model of the Fabry-Perot cavity must include:

a) the nonzero transmissivity of the mirrors;

b) scattering off the mirrors;

c) scattering off the moving walls.
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The nonzero transmissivity of the mirrors can be modeled by adding
an imaginary part to the eigenfrequencies [w, — w, + %], and the resulting
losses are compensated with a weak driving field, which adds a small inho-
mogeneous term to the boundary conditions. Note that absorption in the
mirrors has the same effect at this level, so that it need not be discussed.

I assume that the scattering off the mirrors occurs due to microrough-
ness. In this model the actual cavity differs from the ideal cavity only
through a slight perturbation of the boundary where the field ¥ vanishes.
The new eigenfunctions and eigenvalues of eq. (1) governing the field ¥
inside the cavity are computed via a perturbation analysis developed in the
next paragraph.

The scattering off the walls is time dependent due to vibrations pro-
duced by external acoustical noise. But note that the field inside the cavity
with moving walls is again governed by eq. (1) and, again, only the bound-
ary is perturbed as a function of time. The perturbation theory of the next
paragraph is applicable for this case also.

3. The perturbation theory

In this chapter I develop a perturbation theory for the following prob-
lem: if the solutions (¢, ) of equation (1) with boundary conditions (1a) on
the boundary 9%, are known, find the solutions of eq. (1) with boundary
conditions (1a) on a perturbed boundary 0% (fig. 1). A convenient way
to do this is to introduce two systems of coordinates — one for the unper-
turbed problem and one for the perturbed problem — so that the values of
the coordinates on the boundary are the same for both problems. In this
way the perturbation leaves the boundary conditions unchanged, and only
the form of the Laplacian operator changes. I start the unperturbed prob-
lem in cartesian coordinates (z,y,z). The perturbed coordinates (¢,7,¢)
are introduced so that the cartesian coordinates (z,y, z) of points inside the
perturbed cavity are: "

= f+Ux(f,ﬂ,S')
y=n+U,(&n,¢) (4)
= §+U3(€1n’§) .
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If the point (£, 1n,¢) belongs to the boundary, then the vector U (&,m,¢)
is the displacement of the boundary (mirrors or walls) with respect to the
perfect cavity. Note that apart from this restriction the choice of U (U =
{U,,U, U,}) is still quite free. However, in order to make the calculations
easy, I will choose a particular gauge. The metric to first order with respect
to the new coordinates (3! = £,2* = 1n,z° =¢) is:

gi; = 5.',' + U, + U;‘,c (i, 1=12, 3) (5)

Here an index after a comma means differentiation with respect to the coor-
dinate with the given index (for example, U, , = U, /dn). The Laplacian
A in the new coordinates is (to first order also):

AV =V20 - V20 -V - 2U, ;¥ (6)
with the notation: 3 3 3
={=, =, — 7

. 3 2 2
v = 0 4 0 N 0
o 62 ana 3{2

Summation over repeated indices is implied; scalar product is indicated
by the dot.

The operator A is now obviously the sum of the old unperturbed term
(V?) and the perturbation §A, which depends on the perturbing field U.
The unperturbed Laplacian is certamly hermitian. It is desirable that the
new Laplacian be split in such a way that both parts V* and 6A are also
hermitian to first order. This requirement will be met only if the divergence
of the field U/ is a constant, as can be seen, if one remembers that the scalar
product in the Hilbert space spanned by A is:

= [evyaes | (8)

where ¢ = 14 2V . U is the determinant of the metric tensor g;;. Fi-

nally, we can write the vector field U as a sum of a gradient and a curl
(U = V¥ + curlA). If we limit ourselves to perturbed surfaces 6% such
that the normal to any point in 6%, pierces only one point in 63, then we
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can choose A =0 (fig. 1) and U = VV. The hermiticity of the operator
V2 requires:
V?® = const (9)

and the boundary condition is that (9®/dn)7, at P, in 0%, brings us to a
point P in dX; here /9n means the derivative with respect to the boundary
surface and i, is the normal to the unperturbed boundary at the point F,
(fig. 1). Note that the coordinate gauge in dX is fixed with respect to the
coordinates z,y, z and depends only on the geometry of 9%.

In the system of coordinates just defined, the perturbation § A has the

simple form:
SA(Y) =29,V .. (10)

It is particularly appealing to note that the matrix elements of this operator
reduce to surface integrals over the boundary of the cavity, and are:

(8.,608,) = (85,544.) =

-,

= %/(V@-VJ.)(V@ - d$)

2 [ (ve.-v4,)(v4. -48) (11)

Scattering off the mirrors is modelled as a stationary process due to
perturbations in mirror surface. The main excited mode (¢, ) in the cavity
can, therefore, be expressed as a linear combination of ideal cavity modes:

¢o = ‘zo + Z af\O)‘Za (12)

Assuming, for simplicity, a nondegenerate spectrum of k, , the expansion co-

(°) are computed according to standard perturbation techniques:

efficients a,

a(c) — [53 ’6A$a]

N . A , (13a)
and the corrected eigenvalues (k?) are:
K =k + (4.,600.) . (13b)
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Of course, the perturbation of the mirror § A is usually not known in prac-
tice. In fact, one usually infers the coefficients a, from the distribution of
scattered light. For example Thorne (1987) used the following probability
of scattering the light into a solid angle d) pointing in the direction {2 sub-
tending an angle 8 (6 < 1 and 2 is not far from the normal to the mirror)
with the specularly reflected light: |
B
| P(8)dQ ~ a;dﬂ (14)
The measurements of Elson and Bennett (1979) if extrapolated to small
angles are in reasonable agreement with this expression, and the coefficient
B derived from these measurements is for superpolished mirrors about 1.5 -
10-¢.

Finally, we must include the perturbation due to moving vacuum tank
walls. Let JA(t) be the time dependent perturbation of the Laplacian due
to moving walls. Then, according to standard perturbation theory, the field
¥ inside the cavity can be expanded in a time dependent series of stationary
eigenfunctions ¢, (not ¢,!) as follows:

V(7,t) = o [6o (7) + D <. (B)g, (M) (15)

and the coefficients ¢, obey the equation (the superscript (0) referring to
the zero order excited state quantum numbers will be omitted henceforth):

;; [c. €] + w2 e, '] = —2c%€™°* (9, ,0A(t)ds) (16)

This equation is reminiscent of a forced harmonic oscillator — the field in
the main excited mode (¥(°) = ¢,€e'“**) is coupled to other modes via the
force term on the right hand side of eq. (16). With this interpretation in
mind it seems reasonable to model the finite lifetime of modes inside the
cavity by adding a damping term to the above equation.

There is another interesting interpretation of equation (16). Let us
denote:

. (8) = e (t)e | (17)
and according to (15) the field ¥ is a sum of the unperturbed part ¥, and
the perturbation:

B(7,t) = U, (7,) + $(7 1) = & (7, 8) + 22 ¢ ()9, (7) (18)




Multiply (16) by ¢, , sum over o, take into account (3), and one obtains:

o’y
ot?

-c* Vi = -2 Z ¢o (’:‘)[¢a (P’)’aA(P’t)\I’o (Fat)]

Finally invoke the completeness of eigenfunctions ¢, , and one realizes that
4 is the solution of the forced wave equations with the source spread over
the surface of the walls as follows:

9? 1 ) G
7Y _ovy = e[ (08 (-, - il

/[t}" V' |[V'E (F-7)-dS']} (19)

This result is similar to the current source model discussed by Kroger
and Kretschmann (1970), which was used to describe the scattering off
rough surfaces. Note, however, that our mathematical approach is closer to
the calculations of Elson (1975).

4. The perturbations and the interferometer noise

Our final task is to estimate the noise measured by the photodetector
in the interferometer that is produced by noise in ¢, (t), which is in turn
generated by the motion of side walls of the interferometer. In order to
understand how this noise is detected by the interferometer, let us first
consider a noise-free distance measurement. In this case only the funda-
mental mode ¥ ,, is excited by a laser which has a frequency @, very close
to the eigenfrequency of the cavity w,. In order to describe the excitation
of this mode, write ¥(°) in the spirit of eq. (15) as ¢, (t)e“** ¢, (¥). One
expects that ¢, (t) obeys a slightly modified equation (16) as follows:

d2 fw,ot 2 d fwot 2 twot]
EtT[c"e |+ - dt[c,,e |+ wile, e ] =
=i%e [ (V)7 8,)dS (20)
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I have guessed the right hand side in analogy with (11). Here 7 means the
unit normal to the mirror, 7.V ¢,,,.. €%t is the amplitude of the field from
the laser on the entrance mirror of the cavity, and « is a constant depending
on the efficiency of coupling between the input beam and cavity mode.

The photodiode in the interferometer detects the interference between
the laser light and the light leaking from the cavity. The phase modulation
is so arranged that (in the vicinity of the resonance) the demodulated sig-
nal is proportional to the phase difference between the laser light and the
cavity light, i.e. the phase measurement may be described by the following
expression:

fw,ot thser a\I,* dS] (21)

A¢ = arg [/ e 3 on

mirror
If there is no noise, then ¥ = ¥, and if ®,,,., and ¥, are mode matched
on the mirror, one obtains using (20):

Ad =tg* [_—__

. oL 6L
=W,T [T] = F 3
The last interprets the detuning of the cavity from the laser as a change in
length (6L), and the finesse of the cavity has been introduced in the usual
way F = 2mer /L.
The presence of noise in the field inside the cavity (¢ # 0) produces
an additional phase shift Ad,,;,. (eqs. 21 and 18):

_‘_’_.l_nlrror (gst_.)(%&)ds
f ’—"—*—l’dS )

m irror n

Adpoie =Im (23)

The fact that 9 is much smaller than ¥, has been taken into account.
The phase noise (Ad,,;,. ) is thus directly proportional to noise in the field
amplitude inside the cavity.



To first order the noise in the field amplitude can be computed from
eq. 19 or its integral version:

W@ =[ OE.) Y VEE,A - dS (190)

wall

I have assumed that U(F,,t) has a sinusoidal time dependence. Eq.
(19a) was obtained from eq. (19) using Green’s theorem, where the Green’s
function G(7,f,) for the operator in eq. (3) has been used.

The contribution due to (19) or (19a) can be thought of as follows: The
light scattered off the noisy wall is frequency modulated, and if it joins the
light on the photodiode it produces a phase shift which is proportional to the
ratio of the amplitude in the modulated scattered beam to the amplitude
in the main beam. I call this the direct contribution.

But the motion of the vacuum tank walls may also inject noise in the
interferometer through the modulation of its resonant frequencies. This ef-
fect is second order in the coupling to the scattering coefficient (8); however
it may, under certain circumstances, dominate the noise coupling.

The discussion so far indicates that the noise coupling coefficients can,
in principle, be calculated once the precise scattering properties of mirrors
and walls are given. However, a realistic calculation for any wall geometry
may be quite a difficult task. Therefore, it is of some interest to study
simpler limiting cases and use the insight gained as a guide in more difficult
problems, as for example the bafle geometry discussed by Thorne (1987)
and Drever (private communication).

In this paper I study two limiting cases. In the first example I consider a
Fabry-Perot cavity enclosed in a long square prism with mirror walls. There
are two good reason for choosing this example: the first is that mirror walls
are expected to produce the strongest coupling between the motion of the
walls and the main cavity mode, so that this will be an example from the
class of worst cases. The other reason for choosing the particular prism
geometry is practical - in this geometry I know how to write the complete
Green’s function, so that the calculation is well controlled and gives a sound
physical insight into coupling mechanisms. The other example was chosen
from the class of best cases. Here I choose a cylindrical wall enclosure with
rough random walls. Since a rough wall scatters light in all directions and
scrambles the phases, one expects the coupling to the main mode to be
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small, i.e. the high dispersion of light on a rough wall makes it unlikely for
the scattered light to be concentrated on mirrors and the scrambled phases
make the overlap integral (eq. 23) small. (One can imagine situations
where the overlap integral would cancel exactly, but it is also rather clear
that such a situation would be highly unstable - only a small variation of
geometry might change perfect cancelation into constructive interference.)
Although mirror walls are not desirable in practice and random walls (to
sufficient degree of randomnes) might be difficult to make, I believe, that
the two examples give a clear enough picture of the physics involved in the
coupling of wall motion to the interferometer noise. These calculations also
give reasonable upper and lower limits for couplings attainable.

5. The first example - mirror walls

Let the vacuum tank walls be four very long flat mirrors combined
into a parallelepiped with a square cross section - the side of the square is
a. The interferometer mirrors are a distance L appart on the axis of the
parallelepiped which is along the z coordinate axis. The other two sides
of the parallelepiped are along the z and y axis respectively (fig. 2). The
Green’s functions inside such an (infinite) duct can be written using the
method of images as:

eiklp:r:r+(m p+aqla-F'|

| P2 P} 7+ (vp + fig)a — 7 |

(24)

CFF) = X Y (1t

p= - o

where P, and P, are reflection operators; P, mirrors the vector r in the
z = 0 and similarly P, mirrors in the y = 0 plane. Clearly P}f = P!F =
#. The unit vectors 12 and # are normals to the y — 2 and z — 2 planes
respectively. It is easy to see that this Green’s function has the proper
symmetry G(,7) = G(f,7) and vanishes on the walls at z = +a/2 and at
y = *a/2.

In order to determine ¥, at the wall, I first express the field (¥,,)
scattered off interferometer mirrors in the absence of walls. According to
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. (14) it is of the form (for r 3> 1):

(25)

In order to be able to complete the example, I take (14) as a model for
f(%). Thus, denoting the angle between the vector - and the normal to the
mirror by 6, I write the scattering function as:

10) = e (26)

where the phase ¢ is a random function of the direction (*) with coherence

range in solid angle < AQ} >~ 2 (Thorne 1989). In the above formulas I
have chosen the coefficient ¢, (cf. eq. (15)) so that:

1 3\II
k—2 mirror S - P (27)
‘ where P, is the circulating power in the interferometer.

One can write the scattered field inside the enclosing mirror walls if
one assumes that the enclosure does not change the source on-the mirror
producing scattered light. In this case mirrors simply produce mirror images
of the source. If the interferometer mirrors are on the axis of the prismatic
enclosure, we thus obtain:

eikr,'

V.. (") = VRBL (-1 f(6,,)— + (28)

P4

+ a sitmzilar term for right mairror

Here f,, = P? Pf7+ a(tip + fiq) and 6,, is the angle between ,, and the
z axis, i.e: cos(6,,) = z/r,,. The contribution from the right mirror has
the same form as the one written out, except that 7,, should be replaced
by kL - 7,,.
Using (19a), we can write down the expression for the perturbed field
. ¥(7). It is quite messy, since every image of the mirror is Doppler modulated
on the wall and is again imaged by the walls. For simplicity I take that
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only the right wall (z = £) of the enclosure is moving with the displacement
U(y, 2). The result of inserting (24) and (28) into (19a) is:

W) = (ke VEBL T (1) (L+4n)(1 + dn' —25)x

14
"oHn 'l."

LAY =Pl raay)

r2nq |r3“ ' f'lﬁ

Uy, 2) (29)

/ dydzf(0....) =

Deducing the above expression I was using the fact that if ¥ is in the plane
z=af2,then f;, .1, =fan,-

The laser field is supposed to be mode matched to the TEM,, mode,
so that on the mirror it is described by:

0¥, (F) _ 2F, 1 __"*_’_'_’
on ik T w ) (30)

Here w denotes the radius of the main beam at the exit pupil:

w = —2L (31)

— W\/lr g2

Here g = 1 — & and R is the curvature radius of the two mirrors (they are
taken to have equal curvature) of the interferometer cavity (Rudiger 1981).

Finally we may write down the projection of the perturbed field on the
laser field as required by (23) using (29) and (30). The expression involves
an integration over the wall surface as well as an integration over the mirror
surface. It is convenient to integrate first over the mirror, since the size of
the main beam (w) is the smaller linear dimension in the problem and one
can neglect ¥ in the denominator of (29) with respect to 7;,. .. Thus the
integration over the mirror surface involves only the integral:

a\I’O(P) ik Py s =P , T o
Tt = | g T 20y (D)
=\/47rPowc.k|r,_,' ,;L'e—(km __._”::"-:’-i“),x
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3 w?k

¢ x(1+ 4n')[1 — - ]

2 | Fﬁn',c' - ’EL l
The normalized projection of the perturbed field on the laser field finally
becomes:
f 3w () a¢(r')dS, L '
2a__ S = (ka)*V2rfw)_ Y (=1)** (14 4n)(1 + 4n')x
f %'!"J:L Iz ds' e.n o' ,n'
) wk
X/ddz A 1 —|U(y, 2) X
O T
| _— (kw)? '1.",."?",:
tk{rae,o+ Fant,ot— kL . Cant gt = k2L
e e _ (33)
r:n.u ’-';""" _kL |2

We note that the fastest varying factor in the above integral is the exponen-
tial g% (72=.* 17300 =%LD) Tt belongs to the product of two propagators. The
first is from the center of the first interferometer mirror to the 2n,¢** image
of the point ' on the wall (¥ = :—r‘h+yﬁ+zic), and the other is from the cen-
. ter of the second mirror to the 2n',¢"** image of the same point. Only the
region of y, 2 where the phase of this exponential is stationary, contributes

- to the integral. The size of the stationary region is clearly proportional to
the wavelength of light. In the limit A — 0 the stationary region shrinks
to a point and the path r,, ,,
trajectory from the center of one mirror to the center of the other. In fig.
(2) a typical geometric optics trajectory and it’s description in terms of the
vectors f,, , and kL - faa'.. is shown. It is clear, that the total path can
be described as a propagation along a straight line from the left interfer-
ometer mirror to any image (say p,q*") of the right interferometer mirror.
Thus the stationary path can be described by a vector R= (pa,qa, L) and
both vectors f;, , and any image under reflection P, of kL — 7,,., must

be parallel to E. Expanding the path length in our exponential about the
stationary path, one obtains:

r2”-'+ | ':;""w'l - EL I ~ RP'¢+ (34)
. + 2p2 a’ pz En + [(pz + qz) + (L/a)z]nz
[(p* + ¢2)a* + L2272 (4n+1)(2p - 4n +1)
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Here the four indices n,n',q and ¢ are replaced by p,q and n, since the
stationary path exists only if:

n=l""_qn .. for p=odd

n=n—§ .. for p=ceven

and
n+1
2p

s§ =q—8 for gq=odd

8= Int[

q] (34a)

8§ =s—q for q=ceven

The coordinates ¢ and 7 measure the distance from the statlonary path in
the y — z plane; £ is along the projection of the vector R, , on the y — z
plane, and 7 is perpendicular to it. The values of the y and z coordinates

at the stationary point are given by: y, = (—1)"""! S rac[*2*!g]a and

= L*2*%. [ evaluate the integral in (33) assuming that the wavelength
of light i is short enough for the exponential to be the only varying factor
and assuming that the integration over { and 5 can be formally extended
to infinity (For some paths which reflect off the edge of the wall this is
obviously wrong, but the result may only be too large by at most a factor
of 2). After inserting the result into (33) and ordering the terms, I obtain:

[ 2¥e 2% ggo — o p-24g9n(r) o
i ‘OEW_Z”P 5 —8inV 2nBkw ). Z >
an'

P=E=®pro0,-1 ="

3 ]

U(yo.p.q’zom'q) p e‘ “:)’ ,3+:2::2,.= %
L Vi +e Vit (o +¢)e /L

w?kp
L(2p 4n — 1)1+ (p* + ¢*)a? [L?]*/* b

((252) for p.odd)

X
\ t3p-4n  for p. even}

1-2p+4n

x{1 —

th

ro it (35)
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Note that contributions _from different terms add incoherently, since differ-
ent directions R‘,,, and R,. ,. are sufficiently separated in angle to make the
phases €(4,,) and €(6,,-) uncorrelated.

The above result can be written in a somewhat more transparent form
if one takes into account that for a gravity wave interferometer L >> a. 1
also use the confocal beam size for w (w? = 2&). Inserting this into (35)
and using (22), I obtain the §L/L noise in the form:

oL U(yo y20.p.0) A P

e —16‘&11'\/2” P.q P9 36

T 2By D) Fraes ()
. 1432p—4dn

e'(a/w)’(p’+¢’)[1_ ‘lp {(1 Ip+4n ) fOTp Odd\

2P 4"'—1 \ 1+3p—4n

1-2p+4n

LY ST

for p even

In most cases the above exprasion can be even further simplified. If
a/w >> 1, then the sum in (36) converges so rapidly that only the first
term contributes and we get a simple form for the noise coupling:

oL

A 81r\/21rﬂ—~—'—\— x 16e™ (3’ (36a)

LF

Here U is the displacement at the center of the moving wall.

This first order contribution to noise coupling of the walls can be
thought as consisting of two factors. The first factor (8m/27F% 2-) takes
into account the main dimensional characteristics of the interferometer
and is independent of the wall geometry, while the second factor depends
strongly on the wall geometry and on the coherence length of scattered light.
The exponential term in the result is so small due to an efficient cancella-
tion in the interference of the modulated beam coming at an angle 6, , with
the main beam. This destructive interference works so well because beams
with different (p,g) are not correlated and cannot interfere constructively
to produce a wave with more or less constant phase on the exit pupil. How-
ever, each beam (p, ¢) has a coherent phase across the exit pupil, so that it’s
cancellation is very well described by the above exponential. I should like
to remark in passing that the above exponential cancellation is character-
istic of the particular wall geometry of this example and most of all on the
small coherence angle of scattered light. It is possible to think of geometries
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where the wall would focus one interferometer mirror on the other. In such
a case the cancellation could be much weaker, however it would depend
much more strongly on the relative position of the interferometer mirror
with respect to the wall.

It will be shown in the next section that this first order contribution is
not the most important contribution, therefore, we now turn to the modu-
lation of the main beam. (I have shown in an internal report (Cade?,1989)
that this is true even in a focusing geometry.)

ii) The contribution of phase modulation to the main beam

In order to calculate the effect of the motion of the walls on the phase
modulation of the main beam, we return to eq. (16) for & = 0. Since the
right hand side is resonant to this mode, we must add a damping term as
in (20), so that we get:

dz twot 2 d twot 2 twot] 2  fwot

EF[C(’C |+ % [coe“e!] + w?[co €] = =2c% € (@0, OA(t) o) (37)
If the displacement U is normal to the wall, the source on the right hand
side becomes:

cevet [ U(FQ)(94,/In)’dS
[1¢o | dV

where 9/9n is the derivative with respect to the normal to the surface dS.
This source has a very simple interpretation: (2£+)?dS is the radiation pres-

sure force of the field ¢, on the surface element dS, so that [ (%)’ U(7).dS
is the work done on the radiation field inside the cavity by the moving wall.
Noting that the motion of the cavity mirror by §L,, also does work on the
mode ¢, in the amount dE, = 6L, [ | %= |* dS, and using egs. (22), (37)
and (38), one finds the displacement noise:

Rhs = (38)

(39)

In order to calculate ¢, at the walls, one must find a complete set of
modes inside the cavity consisting of the two main (interferometer) mirrors
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and the mirror walls. If the main mirrors were perfect, the modes inside
the complete cavity could be classified into (fig. 3):

i) gaussian modes resonating between the two main mirrors ( fundamental
modes) which decay exponentially from the optical axis,

i) gaussian modes propagating from one main mirror to the wall, where
they are reflected any number of times before being reflected off the other
main mirror, to retrace the mirror image of their path back to the first
mirror (circulating modes) and

iii) running modes describing the propagation of light from +o0 (—o0) past
the right (left) mirror to be reflected off the left (right) mirror back to +oo
(—o0).

The microroughness of the main mirror couples the fundamental mode
(¢—>00) to circulating modes and to running modes. The main excited mode
in the complete cavity (¢, ) is, therefore, a linear combination of the funda-
mental ¢,, mode and of all the circulating and running modes (eq. (12)).
The coefficients in this expansion are expressed by eq. (13a) and the rele-
vant matrix elements can be computed using (11).

Since there is no field coming in from 400 or —oo, running modes can
only couple to the main mode in such a way as to drain the energy out of
the main mode. Therefore, these modes do not couple the motion of the
walls to energy in the main mode and should not be included in ¢, in (39).

"The only relevant modes having nonvanishing amplitudes at the wall
are the circulating modes. I characterize them by three quantum numbers
?,4q, s; p and ¢ count the number of reflections the beam suffers off the z — =
and y — z planes respectively on it’s path from one interferometer mirror to
the other. The third number s is the number of longitudinal nodes in the
mode.

Let us describe the mode (2,1,s) as an example of circulating modes
(fig.4). It starts at 7= (0,0,0) and propagates along the vector R, , until
it hits the surface z = a/2. There it is reflected and propagates along the
vector _“321’ connecting the points P, = (a,0,0) and ) - (—a,a, L) until it
impinges on the wall in the plane y = a/2. Next it follows the path along the

vector R‘isf connecting the points P, = (a,4,0) and P, = (—a,0,L) until
reaching the wall at £ = —a/2 where it is reflected along the vector ﬁi‘f

connecting the points P, = (—2a,a,0) and B = (0,0, L) on its final stretch
to the center of the second mirror. From there on the mode path retraces its
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mirror image back to the first mirror. One can see from this picture that the
field of a mode is a linear superposition of gaussian T,, modes propagating
between the appropriate images of the two interferometer mirrors (P, and

-

P.’). Symmetry of paths guarantees that such a superposition of wave
functions vanishes on the walls and on the mirrors, ‘where two gaussian
modes always meet at equally opposite angles (One may argue that gaussian
T, .. modes should also be considered as candidates for wave functions of
the pieces of circulating modes - indeed they do solve the wave equation.
However, going through the argument of the completeness of wave functions,
one finds, that these modes must be linear combinations of modes ,,. built
with gaussian T,, modes.). With this picture in mind it is easy to calculate
the normal derivative of the modes @,,, at a position g on the mirror to
obtain:

36 k S i e s R,
Po.q = —_— e “re [e Fow? e Fora '7] AL (40)
on \/27!'[/,,!11),’, Rp,q
Here L.,, =| R,, |. This expression is approximate in the sense that I

have neglected the astigmatism seen by light impinging on the main mirror
at an angle with respect to the optical axis.

Circulating modes are coupled to the main excited interferometer mode
through the surface roughness of main mirrors, i.e. as indicated by the
perturbation theory in the second paragraph. The expansion of the mode
¢, into the fundamental mode(s) @, , circulating modes and running modes
is described by eq. (13a) and the relevant matrix elements are given in eq.
(11). In our case the only relevant matrix elements are those between the
mode ¢, and circulating modes. Inserting (40) and (30) into (11), I obtain:

- - 1 0P k? -p’(—%—+ )
(¢P.¢‘76A¢00) = _/ “2e Yoo X

21( mirrorl an wpqwoo \/LeJ!L

X[eik ‘—;—1'-:-.1 + e— ik -:_:-:-"]%L.ds +

P4

+ similar term for other marror (42)
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This matrix element can be expressed in terms of the scattering function
f(8), if one remembers that scattering is generated by microroughness of
the mirror (2*). Using (25) and expressing ¥, with (19a), where the
integration is taken over the rough mirror, one obtains:

2k? 0P - Lt—-iro.s

f() = S p.dS (43)

If the main cavity is confocal, then w,, is always larger then w,,, and one

doesn’t make much of an error if one neglects 4~ in the exponent in (42).

Then (43) can be inserted into (42) to obtain the matrix element in the
form:

Bross8der) = | 2 ey By

Lc!lepc Pq

+stmilar term for the other mirror (44)

(Star denotes the complex conjugate.) Inserting (44) into (13a), we obtain
the mode coefficients:

(45)

aPQ'

. \/ srp 1 RIF(E))
VI, Lw, k2 —k

Pqs

The separation between neighboring k,,,’s is ;——and %[f] denotes the

real part of f. Also, if the mirror at the wall is lossy, k,,,’s have imaginary

components ——, where 7,, is the decay time of the (pgs) mode. Let T be

the absorption coefficient of the wall, then it can easily be seen that 7,, =
Legy

T (lol+lal)e

(.i,c =2L,,, [c) our theory is no longer adequate, since the assumption of

a loss less wall obviously breaks down. However, the introducing argument
gives a clue. The moving wall does no work on the absorbed fraction of
the wave, which suggests that only the truly circulating fraction of the
field should be included in the numerator of (39). The wave function ¥,,,
bounces p + q times off the wall before reaching the other mirror. Since
the amplitude of the wave function drops after each reflection by a factor
(1-T), a return trip from one mirror to the other and back diminishes the
wave function amplitude by

Yoo = (1 _ T)2(|p|+|4|) (46)

Moreover, for decay times shorter then the circulation time
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~ e 3T (lpl+ lel)

— e- Toirel/ Tre

Finally we have all the elements to calculate the noise contributions due
to excitation of different modes. Expressing ¢, at the wall with circulating
modes (¢, = oo + L @°,,&,,.), We obtain the numerator of (39) in the

form: 35 3
¢ N ¢ ! l.l pn.d
2 Pe P qQ ~
Z Z a’pqaap'q'o"y,,q-/ an an U.dS ~

wall

p.g.0p' g’ 8’

/ aap,q,."’" a¢p.q.'+" - -
~ Z Y Cpes Gy - 252 (.as (47)

wall

,g,8,8'

It is clear that modes with different p and ¢ do not overlap, since they
are spatially separated. However, it is easy to see that modes ¢,,, and

é,,.+ overlap almost completely as long as | s — &' |< \/ ’;—\/—:—;%‘——q—; Both

observations were used to write the above equality.

In order to complete the ca,lculatlon, one must choose a form of U. I
assume the worst case, where U is independent of position, normal to the
wall z = £, and vanishes on the other three walls. The U in (47) can
be taken in front of the integral, so that the integral can be calculated by

simply remembering that (2£)* is proportional to the radiation pressure in
the direction orthogonal to n. This pressure is exerted |p| /2 (or|px1]/2)
times as the mode hits the moving wall,so we get:

Oyers o _ Lol K cos(0)
v f(%eepas = vl i (48)

I have dropped the index p, knowing that only those p’s which correspond
to wave vectors close to k are of any importance. Putting (45) and (48)
into (47) and this into (39) I get:

|\/p + ¢

6L = 64npUaY |2 - 7, [Rf (5 ”")]’
Pe L‘/’ pq
1
49
X:k:,.—k“k;,.’—k’ o
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The sum over s (and §') gives:

1
Yo =

2
. pas k

L, - T(lpl+14ql) iL.,,
I! 1 N - — 5
——{1- [ o 1} ok (50)

Using (26) for f(6) and approximating the sum over m and n with an
integral, I obtain finally a simple result:

= nﬂU————ln(f 2+1)

= 2.80U- AL (49a)

al—a

Here o =1 — T2 is the albedo.

6. The second example - random walls

Previous calculations with mirror walls indicated, that the amount of
energy stored in the parallel mirror-wall-mirror cavity is the most important
factor determining the coupling of the main interferometer mode to the
motion of the walls. One has two choices for reducing this energy:

i) choosing lower reflectivity walls reduces the finesse of the parallel cavity
and thus the coupling.

ii) stronger coupling of reflected light at the wall to running modes also
drastically reduces the effective energy stored in the parallel cavity.

One way of implementing the second mechanism, is to introduce rough
walls, i.e. walls which scatter incident light in as wide a solid angle as
possible.. Thus, I assume, that the walls are rough enough that the scat-
tering off their surface can be described by Lambert’s law (M. Born, E.
Wolf 1980; M.V. Klein, T.E. Furtak 1986), i.e. scattered light is uniformly
distributed over the solid angle irrespective of the angular distribution of
incident light. (Lambert’s law is valid for rough surfaces if the incidence
angle of light is smaller then cos™'(2-), where X is the wavelength of light
an H is the surface roughness scale. )
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In the rough wall approximation the field amplitude (¥) is not the
most natural quantity to describe the distribution of scattered light, since
the phase of scattered light is completely scrambled. It is more appropriate
to use the surface brightness distribution (B) and the incident flux 7. In
order to introduce these quantities in terms of the field amplitude, it is
convenient to describe the field in a neighborhood of a point near a random
surface as a superposition of plane waves as follows: '

v = 74‘15 c(R)eS TP (51)
And the inverse is:
¢(A) = %lim,_,(,/ U7+ Dg)e *H o 7 (52)

I write the correlation function between wave amplitudes (¢) as:

o3

<¢(@)¢* (') > = K(#)6* (A — &) (53)

Here < ... > denotes the average over an ensemble of statistically equivalent
samples. The incident flux on a surface perpendicular to 7, becomes:

: 1 0¢y, a 1 A (AVA A
= — 1, . VY + —1i,. = — d*nK 0-
J 2k2c( 3¢ 0 Vi + Fral V) (an); /iwm.w nK(7)f, .7
(54)
And the brightness distribution is given by:
B(A) = —— [ < (@) (W)dho > ER = ——K(@)io  (55)
(4r)? . (4n)*

For a Lambert scatterer the outgoing part of K(#) is a constant independent
of the direction of incoming light. If the scatterer has albedo «, then

K,,..(?) = 16ray : (55a)

Suppose that the wall of a Fabry-Perot cavity is a circular pipe with
radius R and the two interferometer mirrors on the axis of the pipe. The
incident flux on the wall comes from scattered light off the interferometer
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mirrors plus scattered light off other portions of the walls. The problem
of the brightness distribution inside a circular duct is an old one (P. Moon
1940). Solving the appropriate integral equation with the source function
given by (14), I observed that the brightness B, (f) is roughly given by

B, (f) = 7——=%n.(7) (56)

Suppose now that an incident flux scatters off a rough wall vibrating
with the frequency 2. The previously monochromatic brightness is Doppler
modulated, so that two side bands B* (7) emerge with frequencies w, + (2
and w, — O (w, is the frequency of incoming light). The equations (19)
and (19a) are not directly useful for determining the brightness distribu-
tion, since the roughness function of the wall is not explicitly given. It is
more convenient to consider the local expansion into plane waves. One can
break (51) into two parts: an integration over incoming waves and another
one over outgoing waves. The random wall scatters incoming waves into
outgoing waves, which I describe with a linear operator as follows:

gout ﬁ / S'm )dﬁﬁ', (57)

where ¢,,.denotes the amplitudes of outgoing waves and ¢;, goes with in-
going waves. It is easy to show that, if R(#',7) is to describe a Lambert
scatterer, it’s correlation function must be of the form:

< R(#,®)R(#,#") > = =68 (A — A" (58)

In order to see what happens to an incoming wave when scattered off a
moving wall, go into a coordinate system (') which is moving with the wall
( = 7~ Ucos(Qt)). One must insure that the wave function vanishes at
the wall (# = 7,), i.e. in the moving system. Going back in the inertial
coordinate system (), one finds that this boundary condition determines
the coeflicients of reflected plane waves as follows:

i () = [ 6 (A1 - k(3 — #).Tcos (U R( , )d" i




The side band amplitudes are, therefore:

* =——lc/g,,, V& — 7). TR, 7)d (59)

out

Inserting (59) in (55) the source of the brightness distribution in side bands
can be computed. Assuming that the random functions ¢, (#) and R(#’, )
are stochastically independent (i.e.< ¢(f)¢* (A')R(R”, ") R(7* JAY) > =
= < ¢(d)¢(R') >< R(A”,a**)R(A'*, 7" ) >) one obtains:

(2raaly [ @wK@O.G-AF ()

tncomsing

B* (7) =

The side bands produced by the motion of the wall propagate toward the
exit pupil of the interferometer either directly, or through scattering off the
walls, i.e. the actual brightness of a side band at the position 7, at the wall
(BZ (#,,)) is the sum of the source (B* (4,7, )) plus the contribution from
all other parts of the wall illuminating the region at f,. Thus B, obeys the
integral equation:

P . S , f,-f ds'
B* (F,,n) = Bi(r,,n)+-;r-no.n/ Bf(r,'_, —Pl)l — " (61)

_7‘-’|

The Lambert scattering law (55a) has been taken into account.

The brightness of light impinging on the exit pupil from the direction
7 is the brightness of the wall seen from this direction, i.e. BZ (7..,%) =
BZ (., — s, #), where s is such that ,, — s is a position on the wall.

In order to calculate the first order noise coupling, one must evaluate
the overlap integral in the numerator of eq. 23. In the average it vanishes,
since the average value of any amplitude ¢(#) vanishes. However, the vari-
ance of this expression is not zero - using the expansions (51) and (53), one

obtains: -

v, 9y |, , 0%, 3y 8Y; 8y _
n 8n|>—</ ds/ A e an ow on

ok, oW, IV . n e
= (47r) / dS/”dS 5 an,/d’nnn ) K(f)e (62)

ex
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Inserting (30) for £L+, one can integrate first over dS and dS' to obtain:

ov, sz
on an

(h')

= 2P k'w? / FPafhd, e SFC-Ga B () (63)
The exponential factor in the integrand strongly prefers the forward direc-
tion, so that we may take an approximate B* in the forward direction in
front of the integral to obtain:

Vern

w’/d’ﬁ(ﬁ.ﬁ,,)e““’"”“'""*"”’Bf (A) = e

< B*(fi,.) > Aw
Using this in (63) and inserting it in (23), we obtain the phase noise in the
form:

t -~
Aw < B? (n,,)>}1/2 (64)
P,

The meaning of (64) is transparent: the phase noise is proportional to
the square root of the ratio of the side band power incoming on an area
V272 Aw of the exit pupil, to the circulating power in the interferometer.
The noise receiving area (\/§7r3/ *Aw) is so much smaller then the mode
area (mw?), since the noise signal comes with small random speckles with

<A® > = {Vn/2

size d,,.cxi. =~ A. There are approximately (= ,’) speckles in the mode
and the square root of this number contributes to noise. (Remember that
< B*(#i,,) > is the average brightness in the forward direction and the
contribution from wider angles is damped even more for essentially the
same reasons as in (36)).

The calculation of B# () according to (61) could be quite a laborious
exercise and, therefore, I will not go into detail here. However, eq. (56)
suggests that for small albedo the incoming brightness of the carrier on the
wall(K (7,7, )) is given mostly by the direct contribution from the interfer-
ometer mirror, and the brightness of the side bands at the mirror is due
mainly to the side band source at the wall (B*) (i.e. the integral in (61) is
small so that B ~ B*). The carrier brightness is in this case (cf. (14)):

‘PO 1 A '::—Fm

| ond

K(#,7) = (4m)°B

-o_i.-om |2sz(

| 7.




where 4 is the angle between the direction at which the light is incoming
at the wall and the normal to the interferometer mirror (see fig. 5). If
the interferometer mirror is on the axis of the pipe with radius R, then
sinf = |r.fr.| (fig. 5) and, since all angles are small, we may replace 6 by
sinf and the brightness becomes:

A A
P (66)

P
2

This iﬁcoming light gives birth to side bands whose brightness when ex-
pressed by (60) becomes:

K(4,7,) = (4n)'B

-]

i:'l_’:‘m A

B (3,7) = #e .r‘z(g)’aﬂ———[ﬁ.(————- _a)p (67)

The brightness in the direction # at the exit mirror (denoted by ez, see fig.

5) is the brightness of the wall seen from the exit mirror in the direction

n,., e R, = l—:“:—:-—l Since in our geometry the brightness distribution

is cylindrically symmetric, it depends only on the angle §'. Using (67) and

reading the quantities off the diagram in fig. 5, it is easy to see that:
B*(#) = U* (3) aﬁ%sin" o %

1+ . = .
V (L/R)?sin* ¢ — (2L/R)sind' cost’ + 1
When this side band brightness is inserted in (63), we obtain the average
square of the matrix element, which inserted in (23) and (22) gives the

phase noise and distance noise respectively. In the limit L >> R (which is
the only interesting limit), I obtain for the distance noise:

(68)

L wx [aB U , _,a /°° e
— = € 2, + € d L 69
L ~ FL' 8 ,/—LR{ ViR/e & (69)

Comparing this result to the noise coupling in the mirror wall case given
by eq. (36a), one can recognize the similarities and differences in processes
responsible for noise coupling. The ratio of the two expressions is

OLmirror ~ 51271'\/—? Xe Ter (70)

6Lran dom
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One can immediately recognize the same exponential factors in both ex-
pressions which are due to the fact that light scattered off the wall always
interferes with the main beam at an angle which brings about the exponen-
tial cancelation of the effect. There is a difference in the intensity of the
coupling which can be attributed solely to the difference in the probability
that the photon reaches the exit pupil after scattering at the wall. In the
random case the probability for a photon to reach the exit pupil after scat-
tering at the wall at z (see fig. 5) is proportional to the solid angle at which
the photon at this position sees the exit pupil: p ~ mw?/(2* + R*). The
average of this probability is < p.>= (1/L) foL p.dz ~ A/R (I am always
using the confocal value for the size of the beam w.). In the mirror wall
case, a photon heading in the right direction certainly hits the exit pupil, so
that the square root factor in (70) is precisely the square root of the ratio of
the respective probabilities. Taking typical parameters for a large gravity
wave interferometer: L = 4km, R = .5m, A = .5um, one thus expects that
a random wall is about 10° times less coupled to the main interferometer
then a mirror wall of about the same size.

ii) The contribution of phase modulation to the main beam

The calculation of phase modulation should go along the same steps as
in the mirror case. However, there is a difference; in the mirror case modes
are relatively well defined and their occupation , in particular the occupation
of circulating modes, can be (at least approximatelly) calculated from first
principles. In the random case modes are not so well defined, but (due to
the randomizing effect of the walls), one can use classical radiative transfer
equations to get a very good estimate for the total brightness distribution
(K(r,7)) at the walls. I use this distribution as a basis, and calculate
the probability (y?(f,#)) that a particular component K (,7) belongs to a
circulating mode.

Consider a small surface element dS, in fig. (6). The light emitted
from it belongs to the circulating component only if it can be scattered
back to the original position and direction to interfere with itself. There
are many ways by which this may happen and we can classify them by
the number of scatterings off the walls on the return trip (just as in the
mirror case). It is clear that for the case of small albedo only those paths
requiring just one additional scattering off the wall are of consequence, since
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more complicated paths are considerably less probable.All possible such rays
propagate within the shaded region in fig. (6a,b). It will also be clear that
the largest contribution comes from those paths which do not wander too
far from one of the mirrors. Therefore, for long interferometers (L > R)
the contributions corresponding to paths in fig. (6b) are much smaller then
those corresponding to fig. (6a) and will thus be neglected.

The field emanating from a sufficiently small illuminated surface ele-
ment dS, can be written as a spherical wave:

clk" ’ol

= V3(7)dS, TF=R (71)
Here j(, ) is the flux density impinging on dS, at f,. This spherical wave
propagates toward AS either directly or by reflection off the left mirror. At
AS the two components interfere and are scattered back in the direction
of dS,. Just after scattering off AS the field is a supperposition of the two
spherical waves modulated in phase by the random surface roughness (I.
Yamaguchi, 1977):

e *Ir—rol eiklr—r;l .
¥(r) = \/ajodSo{ — + 5 ‘}e"’"’ (72)

|’-"""'0| |"-'::

The correlation function of the random phase e*(" follows from (57) and
(58):
1

4rk?

From AS the field ¥(7) propagates to a point #, close to 7, by two paths
- directly or through a reflection off the left mirror. We can use Green’s
theorem to calculate it’s amplitude:

< et Neielr) 5 =

2 (F—r7) (73)

.
V() = —i;\/ajodsox

c eiko,

sk
/ dsew(r)[no nl PALES +n0 1 .k. ][ _ ] (74)

S,

For brevity I have 1ntroduced 71, as the unit norma.l to the wall at 7, and
the following notation:

so=lR-Fl e =R -7
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8 = |f, —T 8 = |ry —f
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A ro -r A ro -Tr
n, = n, =
81 82
Lo BoF L EoF
n, = n, =
8 s
1 2

Finally, I calculate the flux density corresponding to the field ¥’ (eq. (54)).
The expression is quite messy. It simplifies somewhat, when one takes
into account (73), but it still contains 16 terms, which are products of
combinations of exponentials in (74). The first four terms give the usual
diffuse light flux that is calculated in geometric optics. Twelve terms are
oscillating rapidly in the region of interest giving no net contribution and
the last two terms give:

- 1 : (o A2y ) (R .12)

(7)) = ——=(and .‘R(/ ds—— =~ X

% (%) (47)3 (e dSo) as 8,8 8,8,
x{ﬁzeik(a‘—u,-a'l-rn;)+ﬁ;e—o‘k(ol-o,—l;+al,)}) (75)

A}

When the size of the system is much, much larger then the wavelength
of light (which is the case in practical applications), the only important
varying factors are the exponentials, and we get:

Sk(o,-83~98.+4. 2 AL A A s 81)2 2 (= -
dSe* (-t 0t ) N2 82 (R, +A) A, +11y) = AP ———————(s(l 1+ )’ & (fo —15)
(76)

Here 62 (@) = 6% (& — 7, (@.7, ) a Dirac distribution of the projection of the
vector @ .on the plane perpendicular to #i,. Integrating 7 (7, ) over dS;, we
obtain the energy received by the surface element dS;. The delta function
insures that this contribution is nonvanishing only if dS, and dS; coincide.
Note that only the contribution due to (75) remains finite as dS, goes to
zero. Thus, we may interpret [ j,(7,)dS;/dS, as the current in the circu-
lating mode. (It is worth remarking that this term makes the holographic
interferometry of diffuse surfaces posssible (I. Yamaguchi, 1977).)

AS
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The probability that K(#) belongs to a circulating mode is clearly the
ratio of the circulating current to the current in all modes. According to
the above discussion I get:

2= Ay . O ( A )’ N ansa
Y (F,R) = @) \o 49 (o .7)(fio .70') (77)
Y (F,n) = 0 .. if @' does not exist

Here #' is conjugate to 7 in the sense that if a ray starting at dS, along n
hits the surface AS, then a ray starting at dS, along 7' will hit the same
point on AS. One of the directions must be of course reflected on the way
to AS. The conjugate direction #i' exists only for #i’s pointing toward the
mirror or toward the portion of the wall illuminated by the reflection off
the mirror.

We may finally calculate the circulating component of the stress tensor
| £&o |*. 1 express ¥, in terms of ¢ (51). When the ensemble average is
taken, ¢’s are reduced to K (¥,#) (53), which must be multiplied by v* (', #)
to project out the outgoing circulating part. The total brightness distribu-
tion K(7,#) is calculated from (66), Lambert’s law (55a) and taking note
of (56). In this way I obtain the following expression:

By = (L) [ eax@yy @) )y =
_ of P (770 ) (R0 )®
B 161r(1—a)R’cosofd2n (s, +8,)? (78)

The d? i integration runs only over those solid angles where 7 has a conju-
gate direction. I suppose that the mirros are small compared to the diameter
of the enclosure to simplify the solid angle integration. The displacement
noise is finally calculated by multiplying (78) with the displacement of the
wall (U(7) = #,U) and integrating over the wall. When this is inserted in
(39), I get after a straightforward calculation and a tediuos integration:

oL = U2567r3a(€— a) (%)2 f{"; (ln3.8L7R +O(%)) (79)
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Comparing (79) with the equivalent expression (49a) for mirror walls, one
can see, that the main difference is in the factor A/R, which is the ratio of
probabilities that a photon scattered off the wall reaches the exit pupil. This
same factor was already encountered in the comparison of direct contribu-
tions (see eq. 70). However, comparing direct contributions, the probability
factor comes with the square root and in the ratio of main beam modula-
tions the factor is first order. The difference is a clear consequence of the
fact that direct contributions couple through the field amplitude and the
main beam phase modulation couples through the energy flux.

Conclusion

This article discusses the physics involved in coupling Fabry-Perot cav-
ities to their enclosures due to mirror imperfections. In the first four para-
graphs the problem is formulated and a perturbation theory is developed,
which allows one to calculate the coupling of the cavity to the wall. The
perturbation formulae are explicitly written to first order only, but it is
straightforward to extend them to higher orders if necessary. The results
are Green’s type formulae (19) or (19a) describing the field produced by
changing boundary conditions. It is important to note that the Green’s
function propagating the field from the wall to the exit pupil is the Green’s
function belonging to the whole cavity enclosure. Multiple scatterings off
the walls are thus generally included in first order equations. An additional
expansion of the first order term into a series corresponding to an increasing
number of wall scatterings might not be converging sufficiently fast unless
the albedo of the walls is quite low. This is strikingly illustrated by the
discussion of the main beam modulation in the second part of the fifth
paragraph. The general theory in the first four paragraphs only touches
on the question of the decreased coupling due to losses at the walls. The
details are spelled out in examples in the following two paragraphs.

In the 5** and 6‘* paragraph two limiting examples are worked out in
some detail. The results of these examples are expressions (36a) and (49a)
if the enclosure is a mirror, and (69) and (79) if the enclosure is a per-
fectly random scatterer. Both cases predict the stronger coupling through
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the essentially second order effect called here the phase modulation of the
main beam. The reason for the prevalence of the second order effect is the
canceling interference between coherent beams coming from the enclosure
and the main beam. Since scattered light at the wall has a sufficiently
short coherence length, it is very unlikely to produce a coherent coupling
in a more or less standard geometry. It must be stressed, that these results
were calculated for a particular scattering function f(£) chosen in eq. (26).
Probably the most important effect of such a sharply peaked scattering
function is its short coherence range. Therefore, one might expect that the
exponential cancelation factors in the direct contribution could be smaller
if the scattering function is more wide open.

It is interesting to calculate the limits on noise coupling predicted by
eqs. (36a) and (49a) for mirror walls, and (69) and (79) for random walls,
for a planned Large Interferometer Gravitational wave Observatory (LIGO).
The length of the planned interferometer is L = 4km, the radius of the pipe
R is 0.5m, the wavelength of light A = 500nm, the finesse of the cavity F' is
100, for the coupling coefficient B I take 10~ ¢ and I suppose that the albedo
(e) is .5.

For mirror walls the strongest coupling predicted by (49a) is:

SL 20 1 U
— &~ 28——— = 2.8 "3 —
L 28'BRl—ozL x 10 ><lum

Reading this formula one should remember that it was derived for a square

enclosure with the interferometer axis on the symmetry axis of the enclo-
sure. The equivalent result for a circular cylinder enclosure should differ
from the above by a numerical factor, which is probably of order 1. The
derivation of the above result also indicated that many modes contribute
to the coupling, so that U is an average displacement of the whole pipe.
For a random wall the strongest coupling is predicted by (79) with the
result:

5L af A,S. U, L U

= Ly Zm 2 = 76X 107 x ——
I =~ ri-a) B mI ™ 3sr = 0¥ X im

The very large factor between the two predictions is explained by the low
probability in the random case that a scattered photon belongs to a circulat-
ing mode. The comparison of results for mirror walls and for random walls
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suggests that quenching of circulating modes is the most effective mecha-
nism to decrease coupling to the walls. Baffles in the pipe are considered
as the best technical solution to do that (Thorne 1987,89).

Finally I should like to remark, that the calculations indicated in para-
graphs 5 and 6 are rough lower and upper limits. More detailed calculations
are now being performed at MIT and Caltech in order to estimate the ex-
pected noise coupling in the geometry of the large gravity wave interferom-
eter. The above calculation indicates that there is plenty of room between
the best and the worst result, so that these effects should not hamper the
ultimate sensitivity of large gravity wave interferometers.

7. Acknowledgements

I would like to thank Professor R. W. P. Drever for stimulation, Dr.
Carlton Caves for many discussions, comments, and encouragement, Sam
Braunstein for discussions and help in checking parts of calculations, Alex
Abramovici for pointing out the literature and Robert Spero for help with
the tedious job of checking and writing. This work was supported in part
by the Fulbright exchange grant, by the Research Foundation of Slovenija
under the grant number C1-02-790-87, and the NSF grant PHY-8803557.




References

R.W.P. Drever, et al. (1983): Developments of Laser Interferometer
Gravitational Wave Detectors, Proc. of the 3** Marcel Grossmann Meeting

on General Relativity, Hu Ning (edltor), Sc1ence Press a.nd North Holland

Publ. Co.

J. M. Elson, J. S. Bennett (1979) Opt. Eng. 13, 116-124.

J. M. Elson (1975): Phys. Rev. B12, 2541.

B. Kroger, E. Kretschmann (1970): Z. Physik 236, 1—15.

P. Moon (1940): J. Opt. Soc. 30, 195

A. Rudiger et all (1981): Optica Acta 28 no. 5,641-658

K. S. Thorne (1987), private notes.

K. S. Thorne (1989):Light Scattering and Proposed Baffle Configura-
tion for the LIGO, Second Draft, California Institute of Technology, LIGO

doc.
I. Yamaguchi (1977):Optica Acta 24 no. 10

35



Figure captions

Fig. 1

The unperturbed bonndu'y} (6%,) and its coordinate system (square grid), and the
perturbed boundary (%) with the coordinate aystem £, (n), €.

Fig. 2

The mirror wall enclosure, with interferometer mirros at the symmetry axis of the
enclosure a distance L appart. Images of interferometer mirrors are also indicated. An op-
ticdpathﬁommmirrortotheotherisamuightl’nefmmonemirrortotheappmprhte
image of the other. The coordinate system is centered on the left mirror.

Fig. 3 |
Schematic representation of fundamental, circulating and running modes.

Fig. ¢
The elements of the (2,1,5) mode as a representative description of circulating modes
(See text.).

Fis- 5 e e e e e . . . -
The geometry of a rough circular wall and the notations used in the text.

Fig. 6
Light circulating paths in the random wall geometry. Note the definition of conjugate
vectors fi and #'.
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