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Abstract: Fabry-Perot interferometers are the most promising sensors
for large gravity-wave detectors. The vibrations in the enclosure of
the interferometer are considered as a possible noise source. It is
shown, that by providing a sufficient number of random scatterers on
the walls, this noise should not limit the expected sensitivity of gravity
wave detectors.

1. Imntroduction

_ Fabry-Perot interferometers are currently used in gravity wave
detectors as extremely high quality resonators monitoring the length of
interferometer arms. The fundamental limits to the precision of these
measurements come from the photon counting noise (photon shott noise),
from the thermal noise displacing the mirror surfaces and from the quantum
noise (Heisenberg uncertainty). These limitations are well understood (Drever
et all 1983) and the existing gravity wave detectors are designed so that this
noise will be below the sensitivity threshold. However, the development of
present gravity wave detectors with sensitivity of the order 10718 m/+/Hz has

 wittnessed a constant struggle with non-fundamental noise sources, i.e.
noise sources which could in principle be elliminated and are present only
due to ome’s inability to produce ideal components. In this article I will
discass one of the many "non-fundamental” noise sorces - the scattering of
light off the vacuum tank walls. It comes about as follows: the two mirrors
in the interferometer are not perfect, so that some light is scattered off
their surface and hits the walls of the vacuum tank. This light may again
find it's way into the interfering path if it either escapes through the other
mirror and hits the photodiode or if it is scattered again in the main beam.
These effects only add to the interferometer noise if the vacuum tank walls
are moving and modulate the phase of the scattered light. I will estimate
the size of this effect and I will show that it is not difficult to provide
sufficient isolation to make this noise negligible.




2. The model

A Fabry-Perot interferometer may be considered as an electromagnetic cavity
enclosed by two end mirrors and the walls of a vacuum tank which is
usually a long cylinder with the axis coinciding with the optical axis
common to the two mirrors. The two mirrors are the main component of
the interferometer, since they provide boundary conditions for a gaussian
beam to form inbetween. If the mirrors are perfect, the intensity in the
Gaussian beam decays exponentially with the distance from the symmetry
axis. This makes the coupling of the beam to the vacuum tank wall decay
exponentially with the radius of the vacuum pipe. In this way one usually
justifies the neglect of the the vacuum tank boundary in solving the field
equations inside the cavity. However, actual mirrors are not perfect and they
always scatter a small fraction of incident light. I consider the effect of
this stray light by way of a perturbation analysis which starts with a perfect
cavity enclosed by smooth nonabsorbing, (almost) nontransmitting mirrors
and a nonabsorbing but possibly rough wall. 1 also assume that for the
purpose of present estimates it suffices to describe the EM field inside the
interferometer cavity by a scalar field ¥ obeying the wave equation:
_1 %y
AY 2 s (1)

Since the perfect cavity is chosen to have nonabsorbing and nontransmitting
_mirrors , the field ¥ obeys the boundary condition:

=0 (1a)
boundary
Here boundary includes the mirror surfaces and the walls of the vacuum tank.
I will denote the stationary state solutions to this equation as:

¥ = pgr) el®t (2

where ¢ are eigenfunctions of:

—_ -2
Dpy + ks o5 =0 (3)

The' spatial dependence of ‘—Po (r) is, of course, a function of the geometry
of the cavity. I assume that the mirrors are spherical with appropriate
curvature, so that the modes ‘;’o are Gaussian modes. The boundary condition
¥=0 on the wall is not very restricting for the main modes, since they
decay exponentially away from the symmetry axis. Therefore, I expect that it
is possible to start a meaningfull perturbation analysis with the "perfect”
cavity as defined above.




A more realistic model of the Fabry-Perot cavity must include:
a) the nonzero transmisivity of the mirrors.
b) scattering off the mirrors
c) scattering off the moving walls

The nonzero transmisivity of the mirrors can be modelled by adding an
imaginary part to the eigenfrequencies [ v 6 Wg * i ], and the resulting
losses are compensated with a weak driving field, which adds a small
inhomogeneus term to the boundary conditions. Note that absorption in the
mirrors has the same effect at this level, so that it need not be discussed.

I assume that the scattering off the mirrors occurs due to i
microroughness. In this model the actual cavity differs from the ideal cavity
only through a slight perturbation of the boundary where the field ¥
vanishes. The new eigenfunctions and eigenvalues of eq. (1) governing the
field ¥ inside the cavity are computed via a perturbation analysis developed
in the next chapter. ;

The scattering off the walls is time dependent due to vibrations
produced by external accoustical noise. But note that the field inside the
cavity with moving walls is again governed by eq. (1) and, again, only the
boundary is perturbed as a function of time. The peturbation theory of the
next chapter is applicable for this case also.

3. The perturbation theory

In this chapeter I develop a perturbation theory for the following
problem: if the solutions (60 ) of equation (1) with boundary conditions
(1a) on the boundary aZo are known, find the solutions of eq. (1) with
bondary conditions (1a) on a perturbed boundary oY (fig. 1). A convenient
way to do this is to introduce two systems of coordinates - one for the
unperturbed problem and one for the perturbed problem - so that the values
of the coordinates on the boundary are the same for both problems. In this
way the perturbation leaves the boundary conditions unchanged, and only the
form of the Laplacian operator changes. I start the unperturbed problem in
cartesian coordinates (x, y, z). The perturbed coordinates (E, n, {) are
introduced so that the cartesian coordinates {x, y, z) of points inside the
perturbed cavity are:

x = €+ U(E m, 0 |
y =+ U067, ©) (4)

z=C+U3(§,n,§).

|
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If the point (E, 4, ) belongs to the boundary, then the vector U(E, v, Q)
is the displacement of the boundary (mirors or walls) with respect to the
perfect cavity. Note that appart from this restriction the choice of U
(u={u,u,u,}) is still quite free. However, in order to make the
calculations easy, I will choose a particular gauge. Let us first compute the
metric(to first order} with respect to the new coordinates (x ! = £, x 2 = y,

= 0. The result is:

+ U,

= 5.+ UL y

J j i
Here an index after a comma means differentiation with respect to the
coordinate with the given index ( for example U_ _ = oll,/om ). The Laplacian
A in the new coordinates is (to first order also):

3.2

A?=V%ﬁﬂﬁuvw~zu”w”

with the notation:

32 2 52
+

bold letters indicate vectors

summation over repeated indeces is implied

scalar product is indicated by the dot.
The operator A is now obviously the sum of the old unperturbed term (v?)
and the perturbation $A, which depends on the perturbing field UW. The
unperturbed Laplacian is certainly hermitian. It is desirable that the new
Laplacian be split in such a way that both parts v2 and $A are also
hermitian to first order. This requirement will only be met if the divergence
of the field U is a constant, as can be seen, if one remembers that the
scalar product in the Hilbert space spanned by A is:

X0 = [xv)ed . (8)

where g =1+ 2 V-U is the determinant of the metric tensor g;;. Finally, we
can write the vector field U as a sum of a gradient and a curl (U = V& +
curl A). If we limit ourselves to perturbed surfaces 02, such that the normal
to any point in aZ pierces only one point in 902,, then we can choose A = 0
(fig. 1) and: U = V<I> The hermiticity of the operator V2 requires:

v2® = const (9)

Gj=1,2 3 (5)

(6)

(7)




and the boundary condition is that (0®/dn)n, at P in aZo brings us to a
point P in 8 ; here o/0n means the derivative with respect to the boundary
surface and n, is the normal to the unperturbed boundary at the point P0
(fig. 1. Note that the coordinate gauge in 0Y is fixed with respect to the
coordinates X, y, z and depends only on the geometry of d3..

In the system of coordinates just defined, the perturbation 3A has the
simple form:

AW) = -2 Qi,j‘yi,j . (10)

It is particlarly appealing to note that the matrix elements of this operator
reduce to surface integrals over the boundary of the cavity, and are:

(Iaa,aA?,?B) = (I;SB,aAE(!) = (1)

! = (Ve ! Vool (Vo
-5 $ Vo Vo ) (Vog-dS) - § (VO Vep) (T, dS)

As already mentioned, scattering off the mirrors is modelled as a
stationary process due to perturbations in mirror surface. The main excited
mode (¢ o) in the cavity can, threrefore, be expressed as a linear combination
of ideal cavity modes:

0, =0, + a2 ¢ (12)

Assuming, for simplicity, a nondegenerate spectrum of ka, the expansion
coefficients'a("; are computed according to standard perturbation techniques:

alo) AT (13a)

and the corrected eigenvalues (kg) are:

ko = k. + (o 380 . (13b)
Of course, the perturbation of the mirror A is usually not known in
practice. In fact, one usually infers the coefficients ay from the distribution
of scattered light. For example Thorne (1987) used the following probability
of scattering the light into a solid angle dQ pointing in the direction Q
subtending an angle § (9<{1 and Q is not far from the normal to the
mirror)with the specularly reflected light :




P(9)dQ » £ d (14)
32

The measurements of Elson and Bennett (1979) if extrapolated to small
angles are in reasonable agreement with this expression and the coefficient
B derived from these measurements is for superpolished mirrors about 1.5 10°

Finally, we must include the perturbation due to moving vacuum tank
walls. Let 0A(t) be the time dependent perturbation of the Laplacian due to
moving walls. Then, according to standard perturbation theory, the field ¥
inside the cavity can be expanded in a time dependent series of stationary
eigenfunctions Py (not q_)a ) as follows:

YD) = [0 + D e © oy Je%t (15)

and the coefficients c, obey the equation (the superscript (0) referring to
the zero order excited state quantum numbers will be ommitted henceforth):

b4
iz(c)‘eiwot) + w)\z (c)\ ei“’ot) -2 el®ot (@)‘,aA(t) ¢ (16)
This equation is reminiscent of a forced harmonic oscilator - the field in the
main excited mode (¥ = P, el®% b s coupled to other modes via the force
term on the right hand side of eq. (16). With this interpretation in mind it
seems reasonable to model the finite lifetime of modes inside the cavity by
adding a damping term to the above equation.

There is another interesting interpretation of equation (16). Let us
denote: |

L) = cy(t) el®t a7

and according to (15) the field ¥ is a sum of the unperturbed part ‘Po and
the perturbation:

Yert) = ¥ (o) + §rt) = ¥ _(ro) + Z NOPNG (18)

Multiply (16) by P, sum over A, take into account (3), and one obtains:

2
2L - PV = 28 Y 0, 10 (o)), 08(P 0¥, (r0)

Finally invoke the completeness of eigenfunctions Py and one realizes that
¢ is the solution of the forced wave equation with the source spread over
the surface of the walls as follows:



azq: 1 :
2% 2vip=Lc? {fuv e - o)V ds’) + |

§(u-vy )(vsr - r)-ds’)} o

This result is similar to the current source model discussed by Kroger and
Kretschmann (1970), which was used to describe the scattering off rough
surfaces. Note, however, that our mathematical approach is closer to the
calculations of Elson (1975).

4 Some estimates

Our final task is to estimate the noise measured by the photodetector in
the interferometer that is produced by noise in ck(t), which is in turn
generated by the motion of side walls of the interferometer. In order to
understand how this noise is detected by the interferometer, let us first
consider a noise-free distance measurement. In this case only the
fundamental mode ¥ is excided by a laser which has a frequency w very
close to the eigenfrequency of the cavity w . In order to descnbe the
excitation of this mode, write ¥® in the spir?t of eq.(15) as co(t)e ot ¢ (r).
One expects that c, (t) obeys a slightly modified equation (16) as follows:

o (Co e“"’t) 3‘:_(" e""ot) 2(0 e“"ot) c2 f(n Vo, e i(‘) oY (n. Vo ) dS

mirror

(20)

I have guessed the righ’[ hand side in Nanalogy with (11). Here n means the
unit normal to the mirror, n.chl t is the amplitude of the field from
the laser on the entrance mirror of the cavxty, and o is a constant connected
to the contrast.

The photodiode in the interferometer detects the interference between
the laser light and the light leaking from the cavity. The phase modulation
is so arranged that( in the vicinity of the resonance) the demodalated signal
is proportional to the phase difference between the laser light and the
cavity light. With ideal contrast this is (according to (20) ):

~

~ Ap = tg—1(—- —2%(3 t)’&'wt(l——;—)—wt(&) (2n
w

o

signal

The last equality took into account the fact that the detuning of the cavity
from the laser is usually interpreted as the change in the length of the
cavity (8L).
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There are two ways in which the moving vacuum tank walls can inject
noise in the interferometer signal.

i) the light scattered off the noisy wall is frequency modulated and if it
joins the light on' the photodiode it produces a phase shift which is
proportional to the ratio of the intensity in the modulated scattered beam to
the intensity in the main beam.

i) the frequency modulated scattered light may find it’s way into the
main beam and modulates it's phase inside the cavity.

i) The direct contribution of the scattered beam

I imagine that the vacuum tank walls are made of a
microcrystaline substance.The flat surfaces of the microcrystals forming the
walls are randomly oriented. I will also assume (to make the calculations
simpler) that the sizes of the crystals in the surface are larger then the
wavelength of light. Due to random orientation (and also due to random
surface contamination) the light scattered from different crystals |is
uncorrelated, so that the intensity of light at any given position is the sum
of intensities contributed by different scatterers.

The contribution of each scatterer can be computed according
to (19). Since each crystalline surface is small (but large with respect to the
wavelength), one can describe ‘I’ on a particular surface (dS)as a specularly
reflected monocromatic plane wave coming from the direction m determined
" by the line of sight to the surface of the mirror where the scattered light
originates (Fig. 2). The source on the right hand side of equation (19) is a
dipole layer with the intensity proportional to the amplitude of the
oscillation of the wall (N(r,Q)) projected on the surface normal (n )and
multiplied by the cosine nn . It produces two additional specularly
reflected beams- one with frequency w +Q, and the other with v _-Q2. If Q
is the intensity of light in the beam ¥ _ at dS, then the two addltional beams
are reflected in the direction of the origmal reflected beam (To be precise,
there is a small discrepancy, corresponding to the aberation of light with
respect to the moving wall, but it can be safely disregarded in our case.)
and their intensities are :

Q+ =0 = (i:—/\}(r,()))2 Qc(r) cos?s cos®y (22)

The power of radiation with frequency W, +Q reaching a small surface dS)
in the mirror M is the sum of fluxes contnbuted by all the incoherent
scatterers in the wall, ie.:

= Jds Q0w 2 coss (23)

R + X
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Here w(8,F) dScos$/7(R*+x*) is the probability that the crystallite dS is
oriented so that it reflects the modulated beam on the exit pupil of the
mirror.

The integral (23) can be evaluated if we insert (22) for (3 , where Qo is
computed according to (14). Te result is: '

Q, =P B/R (24)

Here P o (= ﬂ‘i’ o IzdS) is the circulating power in the interferometer. One
must also make an assumption for w; as a matter of illustration I take the
simplest possible form w = (2n)™" (0{8{n/2 , 0€E{2x). Finally I compute the
power (23) assuming that Ar,Q) = AHQ) is normal to the wall and has the
same phase everywhere . The result is:

2R 2BPo
dP, ~ (FEN) g dS DW/R) (25)
D(L/R) is the result of integration of all the trigonometric functions over
the surface of the wall. Numerical integration has shown that 2 is
essentially a constant with the value of about 0.156 for L>>R. Some
numerical results are given in table 1.

Table 1 L/R o)
10 209293
100 160077
200 15778
400 15669
800 15616
1600 15590
3200 15578

Closer scrutinty of the integrand in O also shows that the main
contribution to the scattered light comes from the last 2R long piece of the
vacuam pipe with the center of the distribution at about 2R from the end of
the pipe.

We have obtained the intensity of the component with frequency W, HQ
across the mirror surface. The field ¢ from (18) is proportional to:

$ ~ (% 5/2 el (0ot ol (26)
The phase p varies across the surface of the mirror due to different path
lengths of rays from the source through scattering to the mirror. 1 see no
easy way for determining this phase everywhere on the surface of the
mirror. However, one may notice that (b.‘{’oemt would be the hologram of
the wall seen on the mirror surface in the frequency modulated light. Is is
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reasonable to assume that it would consist of speckles of size X. I,
therefore assume that the coherence length of | is ).

The phase of the field ¥ is measured as the averaged phase with
respect to ‘{’o over the surface of the mirror; this is:

et = (v yas /|fv* vas| (27)

In a Fabry-Perot interferometer ‘Po is a Gaussian beam with the spot size ¢
(o is usually chosen to be I/ AL):

_ 2 2
¥,| = VE 7 2n el@te P74 (28)
e mirror °

and we get from (27) neglecting terms second order in {:

o =1m ( fv¥yds)/(F o?)

L 1y tm (06 [omo™r40% gu dS) (29)
anF

2

I estimate the remaining integral in (29) by noting that there are N speckles
on the mentioned hologram where N is of the order {o/)\)2. If this number is
a Poisson random process then the average excess of positive over negative
phase speckles is 1/1—\1—, and the integral in (29) becomes 271:/'/—1:1 times a
random phase factor (¢). Taking into account (29), (24} and (25), we get the
following estimate for the phase noise due to the direct contribution:

Ap ~ 27 78D /—:— sin(Qt+¢) . (30)

The corresponding displacement noise follows from (21):
2
L~ 2 /B sincot+e 31
QL R

Here Q is the finesse of the cavity usually defined as Q = ct/L. Note that this
contribution is quite small; for QL = 300km, A= fpym, B = 107° and /\VR =108
the displacement noise is 10 % m.

i) The contribution of phase modulation to the main beam

To get an estimate for the phase modulation on the main beam, let us
return to eq. (16) for A=0. Since the right hand side is resonant to this
mode, we must add a damping term as in (20), so that we get:

d* iwty , 2d iw t 2 iw ty _ iw t
d—t; (co e o ) t———-—~(coe (] ) * o (co e o ) = -2c% % (@o,aA(t)‘po) (32)

t dt
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If the displacement A is normal to the wall, the source on the right hand
side becomes:

Rhs = cZel%t [ /\‘(r,Q)(%%‘l)zdS [ flo |* dv (33)

where 0/0n is the derivative with respect to the normal to the surface dS.
This expression for the source was derived with the assumption that the
wall is lossless (‘Plsurfac; 0) which means that no light hitting the wall is
lost and, therefore, all photons hitting the wall eventually participate in the
interference on the mirrors. In a realistic interferometer the walls are lossy
and scatter light, so that only a small part of photons reaching the walls
reenters the interfering path. It seems reasonable to assume that the
integrand in the souce should be weighted by the probability p(r) that a
scattered photon emanating from one mirror reaching the wall is scattered
to the second mirror, reflected to the wall and then scattered back to the
first mirror. The paths requiring more scatterings to reach the original
mirror are much less probable, so that they may be neglected. If the
surfaces of the walls are rough with crystallites large compared to the
wavelength of light, one may proceed as before to estimate the described
probability; thus:

p(o = a® (39 A0 w(F:9 A0, (34)

Here a is the albedo of the walls, & is the angle between the surface normal
at r and the direction of the incoming photon from the mirror M, 9 a
similar angle in the direction of the mirror Mz‘ 10(3,3') dQ is the probability
that a photon striking the surface with the incidence angle $ is scattered in
the solid angle dQ in the direction &, AQI is the solid angle of mirror M2 as
seen from the point r and AQ2 is the solid angle of the mirror M1 as seen
from the point r’where the photon reflected off the second mirror hits the
wall. As before, I assume that scattering is perfectly random, so that
w(3,3')=1/(27).
It is easy to see that (Eq. Z24):

(%%0 )2 = (Z{l )ZGO sin’(®)  and f!fpolz dv =P L . (35)

The modified right hand side (Rhs) can now be computed using (33), (34) and
(35) with the result:

. S 2
Rhs = B czng (5-)% lot (S ) /R (36)
R

and F(L/R) is the numerical factor:
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2
)2 [sin® (®) pto d;sz

_om 2 R
Fiz) = & (3

mirror
r dx
= 2n [ sin®(9) sin*(9) cos(9") cos() 7 37)
(o]

. 2 (R 2 L

5 (T) (? > 1)

Taking into account (32), (36) and (37) we arrive at the expression for c, -
Note that Ap = Im(co) and finally compute the displacement noise as in

(30-31). The result is:

SL(Q) = IB az N(Q) A (smlrror )2(

) (38)
Zn L RZ2

ik

5. Conclusion

I have derived expressions for the sensitivity of a Fabry-Perot
interferometer to noise in the enclosing vacuum tank wall. The crucial
assumption leading to (31) and (38) is that the wall is ideally roughso that
it perfectly randomizes the phase shifts of scattered light. This ideal
situation will probably never be reached in real experiments. In longer and
longer interferometers it becomes increasingly difficult to avoid specular
reflection off the metallic surface of the wall, since the scattering angles
get smaller. and smaller and the surface as seen by the incident beam gets
smoother and smoother. The equivalents of formulas (31) and (36) change
drastically if we go from rough to perfectly reflecting walls. The formula
(31) describing the direct contribution of the scattered beam changes in two
ways; the amount of light reaching the mirror increases by the ratio Zn/AQ
and we loose the factor 1//b_1 ~ A/R, so that the expression (31) is
multiplied}z); the very large factor {2nN/AQ g ™ L/)\_;léhe wonderfully low
noise 3.10 m turns into the not so impressive 3.10 m. The modulation
of the main beam also changes since the probability z2(r) increases to close
to 1 which is by the factor of the order (27[/AQZ)(2T{/AQI)~(L/2)4/S:11inor .
For perfectly reflecting walls (38) turns approximatelly into :

Bz LM
T R2N

This makes the relative sensitivity independent of the length of the
interferometer and with the data from (31) one obtains:

SL/L ~ (1710 m™ | N (382)
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In conclusion we note that the most optimistic estimates give very
small values 107%" m//Hz for the displacement noise due to the direct
contribution of scattered light if the vibration amplitude is 10 ~® m//Hz .
The most pesimistic estimate is obtained if the walls are reflecting, when
the main contribution comes from the phase modulation of the main beam
and the relative sensitivity with the same amount of input noise is of the
order 2- 10°%° /YHz . One should expect that a simple straight vacuum pipe
would be a good reflector at angles of scattering in a 4km pipe, but a
number of baffles with semi-random edges along the pipe should be able to
change the parameters of the system toward the favourable random
scattering regime, where this noise would be unobservable. '
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