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Wind-induced Motion of Unprotected LIGO Vacuum Pipes List of 3/1/89

§1 Summary

I sketch a method for calculating the amount of motion of the walls of LIGO beam
pipes exposed to fluctuating forces from the wind. The model of the force spectral density
comes from an article in the Shock and Vibration Handbook by Davenport and Novak. I
use a simple model for the response of the pipe, treating a section between supports as
a beam with pinned boundary conditions at both ends. For representative parameters, I
calculate the amount of wall motion as a function of the average wind speed.

This calculation is of interest because motion of the pipe walls could modulate the light
scattering in the interferometer, causing noise. (The transfer function from wall motion to

interferometer noise is being calculated by others.)

§2 Model of Force Power Spectrum

The calculation follows the Shock and Vibration Handbook’s chapter 29, pa.i‘t II,
“Vibration of Structures Induced by Wind” by A.G. Davenport and M. Novak. I consider
two mechanisms by which the wind applies a fluctuating force. First, the direct buffeting
of the pipe due to turbulent fluctuations in the wind speed. Second, I will consider noise
forces due to the shedding of vortices in the wake of the pipe.

I begin with Davenport and Novak’s analytic approximation to the power spectrum

of the wind speed. This can be written as
v2(f) = 1.6 x 10~5y3/3f=5/3 . (1)

where vg is the steady wind speed. (All quantities are in cgs units.) They also give an

expression for another important quantity, the coherence length

z = vo/10f. 2

We next need to be able to calculate the force due to the wind. The mean force Fy

due to a steady wind of speed vg is given by
1
Fo= EpCDAvg = 6.0 x 10" *AvZ. (3)

Here p is the density of air and Cp is the drag coefficient, about equal to unity. A represents
the area over which the force acts. The power spectrum of the force is related to the power

spectrum of the wind speed by

F2(f) = 4(Fo/vo)*v*(f). (4)




The force is proportional to the area only for areas smaller than the square of the coherence
length. I want to consider what happens to a segment of 48 inch pipe 20 meters long. Such
a large structure contains many incoherent patches. To find the rms generalized force, I
replace A by A2z, After performing some algebra, we can write an expression for the

power spectrum of the wind force as
F2(f) = 4.7 x 10~8y2%/3 p-11/3, (5)

A graph of this spectrum for a wind speed of 3 mph is shown in Figure 1.

Another mechanism, also discussed in the same article, by which wind may apply a
force to the vacuum pipes is the shedding of vortices in the wake on the leeward side of
the pipe. (These vortices make up the famous ‘Karman vortex street’.) The nature of the

flow in the wake depends on the Reynolds number, given by
R = voD / 14 (6)

where the kinematic viscosity of air is ¥ = 1.5 X 10~! cm 2/ sec. For wind speeds below 8
miles per hour (R below 3 x 10° ), the driving force is nearly harmonic, with a frequency
given by '

f=0.2vy/D. (M

The power spectrum is actually best modelled as a Gaussian centered at this frequency with
fractional bandwidth of about 0.1. This means that at frequencies large compared with
the center frequency, the power is very small. Thus the mechanism of turbulent velocity
fluctuations, evaluated in the preceding paragraphs, dominates the noise spectrum at low
wind speeds. At 8 mph, the driving frequency for 48 inch pipes is around 0.5 Hz. The
lowest resonant frequency for the pipe section considered here is about 10 Hz.

At higher wind speeds, the nature of the spectrum changes profoundly. When the
Reynolds number exceeds 3 x 105, the flow is in the so-called supercritical range. The
power spectrum is then a power law with index -2, compared with -3.7 for the turbulent
pressure fluctuation model evaluated in the first part of this section. The spectrum is given
by

F3(f) = 2.7 x 107205/ f2. (8)

At all frequencies in our signal range, the noise will be dominated by this vortex mechanism

when the wind speed is between 8 mph and 80 mph. Finally, above 80 mph (R greater
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than 3 x 10°), the spectrum returns to a Gaussian, and the noise drops at high frequencies.
Figure 2 shows the force power spectrum from the mechanism we have been discussing in

this paragraph.

§3 Response of the Pipe to the Wind Force

Before calculating the noise spectrum of pipe motion due to fluctuating forces, it is
worthwhile to consider the DC deflection due to the steady wind. The deflection at the
middle of a simply supported beam loaded uniformly by a force per unit length w, is given
by

o = 5w,l*/384ET (9)

where I, F, and I are the length, Young’s modulus, and moment of inertia of the beam,
respectively. The force per unit length comes from equation (3), where we can use the
actual area of the pipe, /D, with no worries about the coherence length since we are

considering a DC problem. Then we find
zo = (500* /967 ED*t)v3 = 1.7 x 10~ %v? (10)

where I have computed the moment of inertia for ¢ = 1/4 inch= 0.64 cm, with no stiffening
rings. The motion is small. It takes winds of 100 mph (= 4.5 X 103 cm/sec) to move the
pipe .35 cm.

To compute the response of the pipe to the fluctuating force, we need to consider its
normal modes of vibration. The motion of any part of the pipe is the superposition of the
excitation of each of the normal modes, weighted by the modal amplitudes at that point.
Each mode can be treated as an independent harmonic oscillator, excited by a force with
the same power spectrum as we calculated in the previous paragraph for the lowest mode.

The motion of a typical point on the wall is

a2

PN/F) = 7z 2 T O (1)

The amplitude of the motion varies from point to point on the pipe, but except at the
nodes of an individual mode the dependence is not strong. (Another way of saying this
is that a sine wave has at almost all points a value of order unity.) The spectrum won’t
be grossly in error if we treat the amplitude of each mode as unity everywhere. I chose to
evaluate this expression for the normal modes of a beam with pinned boundary conditions.

(This choice may be a good model, and it also has the virtue that the modal frequencies
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are easy to calculate, just the square of the mode number times the lowest frequency, about
10 Hz in this case.) I ignored the modes related to distortions of the pipe cross-section,
which also fall in the same frequency range. (The lowest of these modes has a frequency
of about 11 Hz.) Including them would add more peaks and increase the overall level by
roughly a factor of two. A graph of the transfer function is shown in Figure 3.

The predicted motion of the pipe is given by the product of the force power spectrum
with the transfer function. A graph is shown in Figure 4 for a wind speed of 3 mph, and
Figure 5 for 10 mph.

The motion predicted by this model is surprisingly small. The spectrum for 3 mph is
comparable to background seismic motion at a quiet site. The motion at 10 mph is a few
orders of magnitude higher. An explanation of the small size of the response is perhaps
to be found in the fact that a pipe of the dimensions we have been studying is actually
quite stiff. The impedance of a beam in flexure, according to White and Walker’s Noise

and Vibration, is given by £l
Z = (1+i)4p( ) Ve (12)

The impedance of our pipe has a magnitude of about 3 X 108 dyn-sec/cm at 100 Hz. This
is comparable to or larger than the impedance of a patch of ground 40 cm in diameter,
according to Gutowski et al. (Noise Control Engineering, vol. 10, no. 3, p. 94, 1978). Since
it is well known that wind can raise the seismic spectrum substantially above background
levels, a pipe as stiff as the LIGO beam pipe should not be expected to move wildly. The
large increase in motion at wind speeds of 10 mph and greater comes from the especially
large forces due to vortex shedding, a mechanism not involved in coupling wind to the

ground.

§4 Discussion

The next step in a calculation of how this motion would affect the noise spectrum
of an interferometer depends on the evaluation of the amount of scattering. That is not
finished yet. But it seems that baffles could be designed so that motion of the walls makes
a negligible contribution to the scattering noise. Only the baffle motion would enter. If the
baffles can all be placed at strong anchors for the pipe then the wind noise calculated here
will not have any impact on the scattering. Wind is still a factor to the extent that the
ground vibration spectrum is greater on windy days, and the baffie motion should be tied

to the vibration of the ground. But if the baffling can be carried out in the way envisioned
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here, with due consideration given to all sources of DC misalignments, then wind-driven
noise coupled through scattered light is not in itself a sufficient reason to enclose the
vacuum pipe. (A way that this argument could fail is if scattered light which is diffusely
reflected off the baffle faces and pipe walls is able to make a significant contribution to the
interferometer signal.)

Note added 2 Feb 1989: Recent work by Thorne and by Weiss has in fact shown
that the dominant processes by which scattered light causes noise in an interferometer do
involve the interaction of light with the walls. Therefore, the calculation of pipe motion is
more relevant than the argument given in the previous paragraph suggests.

In case the pipe motion does become relevant, I should point out what I think are the
aspects of the calculation most in need of checking. The most important thing to verify is
that the wind force models that I have used are realistic. The article I used as a source cites
only obscure references, and is lax about indicating things such as the frequency range over
which the models are valid. An assumption which would benefit from further investigation
is that anchors can easily be made stiff compared with the pipe. If it should turn out that
the anchors dominate the compliance, then the pipe motion would be larger than we have
predicted here. An experimental check would be the most direct. It is rather easy to imag-
ine how to set up the experiment, but it would require some time and effort to carry it out
well. I have also been rather rough-and-ready with the modal model of the pipe. This can
be done more carefully when engineering details such as stiffeners, supports, and bellows are
well specified. I took Q = 100 for the modes, which is probably close. The numbers will cer-

tainly change some from those I have used, but probably not by enough to worry about now.

Peter R. Saulson
revised 16 November 1988 and 2 February 1989




log power spectrum (dynex*2/Hz)

FIGURE 1: FORCE POWER SPECTRUM, 3 MPH
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FIGURE 2: FORCE POWER SPECTRUM, 10 MPH
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FIGURE 3: PIPE TRANSFER FUNCTION
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log spectral density (ecm/rootHz)
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FIGURE 4: PIPE MOTION, 3 MPH
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FIGURE 5: PIPE MOTION, 10 MPH
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