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Suwmary

The coincidence probabilities for a network of Laser
Interferometric Gravitational-Wave detectors, observing
bursts from coalescing binary systems contsining neutron
stars or black holes, are calculated by developing the
theoretical results deduced in 8 previous paper. After
deriving the formula for the single-detector antenna pattern
n for plane-waves from binaries, we calculate the single-
detector detection probability as well as double, triple and
quadruple coincidence rates for likely detector locations in
USA and Europe. We find that proposed detectors would be
able to see events from sources out to 550 Mpc with a
probability greater than BOA when working at their expected
sensitivities.

In cuvincidence experiments with two, three or four
detectors the coincidence probabilities decrease to  a
typical value of 70% for double coincidences, 63V for lriﬁlv
and 57% for quadruple. This allows us to calculate the mean
number of coincidences per unit time for coalescing compnct

binaries cut to 8 given distance. d



1. Introduction

Since the early experiments of Joseph Weber at the
University of Merylend, work on gravitationasl wave detectors
has long been motivated by the expectetion thet supernova
explosions are the most important and interesting events for
the detectors to see. While these may still prove to be
isportant sources, there is still greet uncertainty about
the likely strength of the waves they produce. In recent
years a new class of gravitational wave source has begun to
occupy a central place in the thinking of experimental and
theoretijical relativists: the coalescences of compact
binaries (contsining neutron stars or black holes). They
were first discussed by Clark and Eardly (1977), but it was
Kip Thorne who first pointed out their importance for broad-
band laser Interferometric Gravitational-Wave Observatories
(L1GOs).

Although possibly weaker than the waves from
supernovse, those from coalescing binaries have a unique
signature that enebles them to be extracted from wide-band
deta by digital filtering techniques (see Thorne 1987,
Schutz 1986, Dewey 1986). This signature is their acceler-
ating sweep upwards in frequency as the binary orbit decays.
Since the signal from s supernova is short-lived (and hard
to predict), coslescing bineries bhave the advantage over
supernovae in signal-to-noise ratio by a factor depending on
the square-root of the ratio between the corresponding
number of cycles in the wave trasins (see Thorne, 1987).
This is in fact the enhancement in effective signal thet the
experimenters will achieve by optimal signal processing in
their sesrch for these frequency-sweeping bursts. The key
to being eble to take advahta(e of this is the confidence
with which we can predict the wave form. Because the binary
system spends more time in the low-frequency part of the
sweep than in the high-frequency part or in the final

coalescence, and because gravity wave detectors have less
amplitude noise at low frequencies (-100 Hz) than at high
(>100 Hz) (see Hough et a&J., 1986), it will be easier for
detectors to see the Newtonian regime of the sweep than the
post-Newtonian one. In the Newtoninn regime, if we orient
the wave's polarization axes along the sxes of the projec-
tion of the orbital plane on the sky, then the wave's
smplitudes sssume the following form, (units: c = G = 1)

he = Q(l+com?i)(u/r)(mf)2/3cos(2nft) (1.1)

hy = & 4cosi (u/r)(mMf)2/3gin(2nft) (1.2)
where i is the sngle of the inclination of the orbit to the
line-of-sight of the detector: M and u sre the total and
reduced masses, r the absolute distance to the binary end f
the frequency of the waves (equal to twice the orbital
frequency), (see Thorne, 1987).

From & study of the wave form (1.1,2) by using a

network of broad-band detectors loceted st different places

on the Earth, we cen in principle deduce the following

information: (i) the direction to the source: (ii) the
inclination of the orbit to the line-of-sight; (iii) the
direction the sters move in their orbit: (iv) the com-

bination uM2/3 of the reduced and total masses; (v) the
distance r to the source. In particular in coincidence
experiments with four detectors it would be possible to test
Einstein's predictions regarding gravitational wave polar-
ization: four detections over determine the solution for a
transversely polarized quadrupole wave, so any inconsistency
among the data would be evidence for other polarization
states. Besides this important point, Schutz (1986) has
shown from a detailed analysis of the expected noise in
future LIGOs that it would be possible to obtain a signifi-
cantly better value for the Hubble constant than now we
have.

Although it is possible to predict the shape of the




signal with great confidence, there ia considerable
uncertainty about the rete of coalescence events. Clark,
van den Heuvel and Sutantyo (1979) have estimated, froms
neutron star observations in our own galaxy, that to see
three coalescences of neutron-star binaries per year one
sust look out to & distance of -100 Mpc. Recent improve-
ments in the steatistics of neutron star binaries reinforces
this conclusion but, at the same time, shows that this
number might be drastically changed by plausible astro-
physical scenarios. In what follows we shall adopt the
figure of three per year out to 100 Mpc, bearing in mind its
uncerteinty.

In this peper we shall calculate the coincidence
probabilities for e network of Interferometric detectors
observing bursts from coalescing compact binaries, by
extending the investigation begun in the previous papers by
Schutz & Tinto (1987) and Tinto (1987), referred to as paper
I end 11 respectively. In 1 we deduced s remarksble
reletionship between the geometrical factors affecting the
responses of two detectors working in coincidence and their
thresholds.

We proved that the wmean overlap of the squared
modulue product of two different antenna patterns equals the
sversge of the coincidence probability C over all thres-
holds. By studying the geometrical properties of this
function for several peirs of likely detector locations we
deduced values for the orientstions of the instruments that
saximize wean coincidence rates and we showed that these
sngles ere insensitive to whether the wave is linearly or
elliptically polerized, (see for details 1 and 11). In
paper 1 we pointed out that the wsesn coincidence proba-
bility, defined as the average of the coincidence proba-
bility over all thresholds, does not give s fair indication

of the typical probebility for two detectors of registering

the same burst. The concidence probability depends on the
thresholds of the instruments. In this paper we shall
develop an elgorithm for calculating the full coincidence
probability for broad-band detectors, at several widely
spaced locations on the earth, as a8 function of their
thresholds relative to the amplitude of the wave. Here we
briefly summarize our method.

In 8§82 we write the analytical expression for the
antenns pattern n for waves from coalescing compact
binaries. This function depends on the source angle (9;9),
the polarization angle of the wave ¥, the inclination i of
the anguler womentum of the binary to the line-of-sight of
the detector and the angles (&;B;») representing the
orientation, latitude and longitude of the detector,

After recalling the theorem proved in paper I for the
mean coincidence probabilities (eq.(2.8) below), we point
out that future LIGOs would be able to see comlescing
compact binaries with signal-to-noise ratios large enough to
enhance considerably the resl coincidence probabilities with
respect to the corresponding mean velues calculated in I and
I1.

In 63 we evaluate the single-antenna detection
probsbility as well as the double, triple and quadruple
coincidence rates in terms of the detectors' thresholds
relative to the smplitude of the wave. We take 4 detectors
in their proposed locations: California, Maine, Scotland and
Bavaria. A fifth detector may be built in France, but we do
not include that here. We find that in the expected range
of thresholds triple coincidence probabilities follow
ressonsbly well double coincidence rates but are about 10%
below them, and that quadruples similarly follow triples
with a further drop of around 5%. Physically this is due to
the fact that the two European detectors will lie on roughly

the sase tangent plane to the earth. Therefore, a trans-



atlentic double coincidence will usually be a triple and a
coincidence involving the two American detectors and one
BEuropean one will generally involve the fourth detector as
well, In 84 we discuss the result and conclude that @
network of four large-scale laser interferometric
gravitetional wave detectors, working at their optimum
sensitivites, will have a probability greater than 50% of
detecting simultaneously bursts froms compact-neutron-star
binaries out to 550 Mpc.

2. Antenns patterns for waves from s binary systes

The response of en interferometric detector of
grevitetional weves consists basically of the change $2/2,
in the relative length of the two arms. Itse analytical
expression has been deduced in I for plane waves and in the
long-wsvelength approximation (reduced wavelength X/2n >
arm-length f9,). The general expression may be written as

follows:

%! = sinZO[E(c:!:r-o:O;v)h‘ + E(«;B;y-.;e;wo45')hxejs].
[
(2.1)
where j is the imsginary unit.

For a derivation of the function E, its properties
and a complete description of the geometry involved we refer
the reader to §(2-3) of 1. HRere we only point out that:

i) 20 is the angle between the two arms of the
interferometer (see Figure 1);

(ii) the parameters «, B and ¥y are respectively the angle
between the direction of the detector bisector and the local
meridian, the letitude and longitude of the detector on the
Earth (see Figures 1-2):

(iii) (e,0) and ¥ are associated, respectively, to the

direction of the incoming wave end the inclination of the

axes of the polarization ellipse.
(iv) h, and hy are the amplitudes of the two independent
polarizetion states (referred to the orientation angle ¥),
and § is the phase lag of one polerization with respect to
the other.

If the wave is radiated by a coaslescing compact-
binary, the wave's two amplitudes h,, h, and their relative
phase € may be written as follows in the Newtonian

approximation: (Thorne, 1987)

S$:=eg:h, =1 (lecos®i)h; h_ = cos(ilh (2.2)

where i is the inclination of the esngular momentum of the
source to the line-of-sight of the detector and h is equal

to:

h=a [ u ] [vmr]’/’ (2.3)

where M snd 4 are the total and reduced masses, r the
absolute distance to the binary and f the frequency of the
wave (Thorne, 1987). Notice thet h is the maximum possible
emplitude one can receive from the source; for most events,
the angular factors in Eq. (2.2) will reduce the observed
amplitude below h. From Eq. (2.2) we easily deduce the

following form for the antenna pasttern n:

nae %lg = sinZO[ g (l#coszi) ¢t j cosi E] (2.4)
°

where we heve denoted with E the function E(x; B; y-e;
6, ¥+457).

The size of the detector’s response depends not only
on the geometrical factors mentioned in points (ii) and
(iii) but also on the level of noise and its statistical
distribution. In practice a variety of noise sources will
set an effective threshold (S$#/25)g on the level of response



$9/95 that can reliably be distinguished from noise during a
given observation time. According to the hypothesis made in
1, we shall assume that any (§2/%#,) larger than ($8/2,)y is
detected and any smaller one is lost.

In paper ] we have been able to prove a relationship
between the geometricel factors affecting the response of
the detector and its thresholds relative to the amplitude of
the wave. Here we only summarize the main results while for
8 full proof and analysis we refer the reader to 1I.

Over s large number of observations we cen expect the
time of arrival end polarizetion angle of the gravitational
weves to be random. We may therefore take the angles ¢ and
¥ to be random varisbles uniformly distributed on the
intervel (0, 2n7) and calculete the following expectstion
values:

X, Xy X (2.5)
where X = [€8/8,h|2 is the antenna’s power pattern, the
angle brackets denote averages over random variables, and
the indices 1, 2 refer to different detectors. We shall
discuss below how these quantities should be interpreted in
order to get wmeaningful information about coincidence
experiments.

Independent detections of any given gravitational
weave event by different detectors is vital for its reliable
identificetion as a gravitational wave. This is beceuse the
events may not be much larger than the noise level. In
white-Gaussian noise, the type of noise expected at the
output of & shot noise limited interferometric antenna, a 50
excursion will be likely once in every 17x10% sampling
times. For coslescing compact binaries the sample time is
of thé order of 10 millisecond, so 50 events occur 5 times a
dey. Coalescences of neutron stars out to 500 Mpc occur §
times a week or so, and may not be more than 50 in amplitude

for thé proposed detectors. More detectors will lower the
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rate of noise events. Two detectors will have 50 coinci-
dences within a 40 sampling-time window (to allow for time
delays as the wave travels from one detector to sanother)
once every 7x101° sampling times. This corresponds to sbout
2 noise events per yesr, sllowing events closer than 2Gpc to
be reliably identified if they occur at the predicted rate.
Extra detectors could be built on the seme site to gain this
advantage, but by spacing them out across the globe one
automatically gains much more information, such es the
direction to the source.
The probability of coincident observations of a given

event depends not only on the geometrical factors but also
on the thresholds of the detectors relative to the amplitude

of the wave. let Xy be therefore the threshold of the
squared modulus aaplitude, the wminimum detectsble value of
|82/02oh12. For a given h the detection probability of e

single antenna is:

N 1
S(X,) = ] —= dedw (2.6)

Xxg 47

and the coincidence probability is therefore equal to:

) ) 1

C(X,4iX,,) = I —= dedv (2.7)
XXy,
X2>X2e

where the integrals are extended over the region of the
(e,%) space in which the sntenna's power patterns are
simultaneously greater than their corresponding thresholds.
In 1 we proved that the mean value of C, over all possible
thresholds, is equal to the mean overlap of the antenna
power patterns <X X,>, that is:

1 b
XX = [o Io C(X, 41X, 0dX X, (2.8)

where the limits of integration are the extreme velues that
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the thresholds can take. It was therefore possible to
extract meaningful inforiation about coincidences by
plotting this as & function of the detector orientations,
for several pairs of likely locetions, for incoming waves
from a fixed source us well as from rendomly distributed
sources on the sky (see diagrams in 1 and I1).

This function tells us how we should orient two
detectors sited in two different places in order to meximize
the chance of coincidence but does not contain quantita-
tively exact information of the probability itself. The
velues of the function <X ;Xp> that we plotted in I and II
are typically 5 to 10%, which wmight suggest that the
probability of e coincidence for two detectors is very
swmall. This is not correct, however. We recall that (Xy4Xp>
is @& mean value end that the real coincidence probability
depends on the thresholds X,y and X,4. Thresholds near zero
mean that the signal is strong relative to the noise level,
and it will therefore be detectable almost regardless of
what direction it comes fros. Thresholds near 1, on the
other hand, are weighted strongly in the right-hand side of
Eq. (2.8) and they mean that the signel is relatively wesak:
it will be detectable only in s narrow range of incoming
directions and polarizatiobns. Since the signal strength, at
frequency f, from a binary system of total mass M, reduced

mass i, at & distance r, is:

hoxsesea0n? [ L0pee J[ B )T [ ) pgf )7

(2.9)
(Mg is the mass of the sun), end the amplitude noise for e

1 km antenna, working with light recycling (see Hough et
el., 1986), is equal to:

o 6610 =" | Mg | #;

]'/z (2.10)

12

we deduce that with a threshold at 50, at 100 Hz snd for a
binary composed of two 1.4 Mg neutron stars, a detector with
a 1 km arm-length (as the one proposed by the research group
in Glasgow) could see to 550 Mpc with a value of Xg¢M(s 50/h)
of ambout 0.25. 1In such a case the thresholds are in a range
where the coincidence probabilities are highest. The
average in Eq.(2.8) therefore weights low coincidence
probabilities too strongly for this case. We can expect
that our calculations of real coincidence probabilities will
yield values wmuch lerger than the wmean for interesting
cases.

We observe that the figure given above of 550 Mpc,
for a 200 observation in a 1 km antsnna, disagrees with that
used in the literature (Hough et sl., 1986; Schutz, 1986)
where a velue of 100 Mpc at the same level of signal has
been assumed. The resson of this is because we are norsal-
izing to the maximum wave amplitude h rather than to its

averaged value over detector and source orientations.

3. Coincidence Experiments
(8) Coincidence Probabilities

Over a sequence of observations, besides the arrival

time-angle ¢ and the polarization angle ¥ of the wave, also
the inclinetion i of the orbit to the line-of-sight of the
detector and the azimuthal angle ® can be considered random
variables uniformly distributed over the. sphere. This
implies the following expression for the coincidence
probability, in terms of the thresholds of a network of n

detectors:

R . . - 1
CX ik in ik ) = ] —
XX e
Xz?xz‘ (3.1)

sini sine dededvwdi

Xn>Xpne
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where the integral is over the domain in which the Xs exceed
their corresponding thresholds simultaneocusly. We remind
the reader that in Sﬁ.(a.l) we heve to limit the orientstion
freedom of the detectors in some way, otherwise coincidence-
rate ceslculations would have too many independent variables
to be tractable. We do so by fixing the orientations on the
values thet optimize the mean coincidence probsbilities. In
1] we showed that the orientations optimizing simultaneously
double, triple snd quadruple mean coincidence rates are
essentially independent of the type of polarization of the

wave.

Because of the wmultidimensional nature of the
integrals that we want to calculate, and the complexity of
the domesin of intergration, we have used the Monte Carlo
method. For a full description of this method we refer the
reader to Shreider (1966). Here we briefly summarize its
main features relevant to our probles by a fairly simple
exsmple.

Let us assume that we have to calculate the surface
eres I of & certain plane figure S. It may be a completely
srbitrery figure with curvilinear boundary whether it be
connected or consisting of several sections, and specified
graphically or eanalytically. Let us essume that it is
enclosed within a unit squere. Suppose that we choose =&
rendom point in the square by teking one whose coordinates
are independently uniformly distributed in the interval
(0,1). It is clear that the probability for this point to
lie in the region S is equal to [. By applying the large-
nusber’'s theores we may give an approximate estimate of the

area [.

Let us select N random points, uniforaly distributed
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inside the unit square. Let N° designste the number of
points that happened to fall within S. We have that the
ratio N'/N gives an estimate of the ares that we want to
calculate. The greater N the higher the accurscy of the
estimate. In order to evaluate the precision of this
estimete we wmay use the central limit theorem in the
following fors (see Shreider, 1966):

plin/n - rrce) > - BL=D o L (3.2)
€N

qe°N

that is, the probability of evaluating I within an error ¢
is greater then a quantity depending on the nuamber of trisls
N and € itself. Setting for a given € a guaranteed

probability in the following way:
Pliv/n - Fice] > 1-s (3.3)
we obtain from the inequality (3.2) thet the condition (3.3)

is verified & priori if we have:

1
ac?n

In other words the precision of our estimaste is inversely

€ - (3.4)

proportional to the square-root of the number of trials:

c = 1 (3.5)
278N
We observe that this is an upper limit to the error ¢ and we
should remember this fact when discussing the calculations
for the coincidence probabilities.

From the central limit theorem (Eq.(3.2)) we may
conclude that the number of trails N does not depend on the
dimensions of the integral. Therefore the utilization of
the Monte Carlo method is advantageous in calculating
multiple integrals, as against the use of quadrature
forsulas which involves great difficulties. The principal
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feature of the Monte Carlo method in our problem is in fact
the simple structure of the computation algorithm. As =&
rule, ® progras ijs prepared to perform only one random
trial, that is to select a randoms point within the limits of
@ certain region and check whether it lies within the domsin
of intergration. This trial is repeated N times, each trisl
being independent of all others, and the results of all
trisls are averaged.

(b) Probebility of Detection for s single-Antenna

If we assume n =1 in Eq.(3.1) we obtain the
expression of the detection probability for e single antenna
with threshold X,:

s(x,) = ]
XXy

Since we are averaging over al)l possible directions snd

sini sine dededvwdi (3.6)
16n?

polarization states of the incoming wave, the result will
not be affected by the psrticular location and orientation
of the antenna.

The calculation of the integral (3.6) and of the
eppropriate integrals for the double, triple and qusdruple
coincidence rates, has been done on the ICL-3980 of the
South West University Regional Computer Centre by using the
NAG library for generating uniformly distributed random
numbers and sssuming the nusber of trials N equal to 10¢
If we use Eq.(3.4) for the error ¢, by fixing & to 10-2 and
N to 10* we deduce an error of 5%. In other words the
probability of obtaining & result affected by an error
swaller then 5% is grester than 99x. We shsl]l gsee leater
that the choice we have taken for N provides consistent

results.

Ip Figure 3 we plot the detection probability against
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the detector’'s thresholds relative to the amplitude of the
wave. As expected this is a decreasing function of X;”.
going from 1 to zero as X," get from zero to 1.
For a single-detector experiment, it is more likely
that the experimenters will fix the threshold on 70 than 50
in order to minimize the number of Gaussisn fluctustions
against the rate of burst events of likely amplitudes. In
this assumption we may convert our varisble X‘” into the
more usual signal-to-noise ratio (SNR) simply by replacing
Xe# with 7Xs~™.  From the considerations made in §2 on the
predicted noise and wave amplitudes for LIGOs observing
coalescing binaries, we have that the interesting intervel
for the XyMs is between 0.15 and 0.50. In terms of SNR this
means between 14 and about 45. At SNR 14 the single antenna
probebility is equal to 20%; increasing the SNR to the value
of 25 the probability goes up to 55%. For SNRs greater than
40, which in principle may be achieved by an optimum com-
bination of higher laser power, better and heavier wmirrors,
longer baselines, active seismic isolation and the use of
"squeezed states” (see Caves, 1981), we deduce from Figure 3
that the detection probability will be greater than 85x%x.
For values of X'“ in the intervel [0, 0.5)] we have

done a least-squares fit to our data points by using a
linear combination of Chebyshev polynomials. This provides
o useful way of representing output of these calculastions.
The reason for preferring such a fit relies on the condition
of having independent errors in our data, (see Hasmming,
1973). We have used the set of Chebyshev polynomials
because, among all other orthogonal polynomials, they
minimize the maximum devietion from the data, providing at
the same time an expansion with the fastest rate of
convergence (see Fox & Parker, 1968). Finally we have

chosen the degree of the approximating polynomial by looking

ot the sign changes in the residuals. If we assume the
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residuals to be random and independent of one another, then
we should expect to see about half the number of possible
sign changes. Within & few times the square-root of this
nusber, we have verified this condition when the degree of
the spproximeting polynomial is two. In the appendix, efter
extending the least-squares fit to double, triple and quad-
ruple coincidence rates, we provide the coefficients of the
corresponding Chebyshev expansions.

(c) Double Coincidence Probabilities

In Figure 4(a-f) we plot contours of constant
C(l,.“,l,,”) for the six independent baselines among
California, Maine, Scotland and South Germany. We have left
out from our considerations the planned detector in France
because it will lie essentially on the same tangent plane
containing the Munich instrumsent end therefore will have the
same coincjidence rates, when operating in coincidence with
any other detector in its optimum orientations.

Figure 4(e-f) shows thst the double coincidence
probability is symsmetric under interchenge of its variables
xl'“' x:nni

] ]

]
‘xz!

n-
) = C(th 'x:t

c(x ) (3.7)

1%

This condition, also verified by triple and quadruple
coincidence probsbilities, is & consequence of  having
sveraged over 8ll directions of the incoming wave. The
degree to which the Monte Carlo calculations obeys this
symmetry is a weasure of their sccuracy. The only remaining
geometrical factors affecting the coincidence probabilities
are the detectors’ relative latitude, longitude and the
orientetions. The effect of the angular separation, in each
baseline, on the coincidence probability, appears more
clearly for values of the thresholds X,” greater than 0.25.
At X‘." = l,,“ = 0.5 for instance, the coincidence proba-
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bility goes from 5% for the Californis-South Germany base-
line (Figure 4(c)) to about 17% for the Scotland-South
Germany baseline (Figure 4(f)). This value is only 3%
saaller than the coincidence probability for two identical
detectors sited next to each other (see Figure 3 for the
single~detector probability).

As we said esrlier, we have fixed the orientations on
the values optimizing the mean coincidence rates deduced in
I. However for geographic ressons not el]l detectors will
assume the configurations suggested in 1. In order to
quantify by how much the coincidence probabilties would be
reduced by s different choice of the orientations, we have
calculated coincidence rates in terms of the detectors’
orientations for characteristic thresholds. We have found
that for thresholds equal or smaller than 0.20 the coinci-~
dence probsbilities are not significantly affected by the
angles we choose. Physically this is due to the elliptical
polarizstion of the waves.

This should be remembered when 8 decision for a
suitable orientetion of the detectors in Germany and France
will be taken. By orienting them with 45 degrees of
difference, we would be able to get useful information about
the degree of elliptical polarization of the wave by looking
at the time delay in this baseline (Schutz, 1986).

Before discussing Figure 4(a-f) we recall that in
coincidence experiments the noise sources in the detectors
will be independent. Therefore we may reduce the threshold
levels to 50 in either instruments (see Hough et al., 1986).

Within this assumption the SNR is given by SX,'”.

Figure 4(a) refers to detectors in California (X,¢¥)
and Maine (ngn). Since current detector designs for these
two sites propose a common arm-length of 4 km, we shall

comment only on values of the coincidence prosbibility
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corresponding to the ssme threshold. For SNRs equal to 10
for both instruments the coincidence probability is about
12%. By increasing the SNRs to 20 the probability goes up
to the value of 55%; reaching SNRs 30 the probability is
around 75%x. For SNRs greater then 40, which proposed LIGOs
will probebly achieve, the coincidence probability will be
sbove 85%.

Figure 4(b) is for detector 1 in Los Angeles and
detector 2 in Glasgow. In this baseline the detector in
North America will be in primciple more sensitive than the
detector in Scotland because of the proposed longer earm-
Jength. Roughly we may predict a ratio of 2 in sensitivity
when the detectors are working with light recycling (see
Rough et al., 1986). We should therefore focus our
attention on values of the coincidence probability on the
streight line x,." =z 2x,.“. From the estimate of 0.25 given
in 82 for X¢™, in the case of a 1 km detector working with
light recycling at 100 Hx snd searching for a binary of two
1.4 Mg neutron sters et 550 Mpc, we deduce a coincidence
probability of about 61% for this baseline.

Figure 4(c) refers to the Los Angeles-Munich base-
line. The coincidence probability is not much different
(the order of 1%) than that shown in the previous figure for
the pair Los Angeles-Glasgow. This is due to the small
anguler separstion between Glasgow and Munich, Current
designs for the German detector anticipate en arm-length of
3 km with en included angle of 60°. We should therefore
consider this apparatus with an effective arm-length of
2.5 km, in principle 1.6 times more sensitive than the
British detector and 1.2 times less than the Americans, when
all instruments are working with light-recycling.

Figure 4(d) is for the detectors in Maine (X‘.") and
Scotland (x,,“). Since the angular gseparation in this

baseline is only about 15 degrees greater than that in the
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peir California-Maine, we have a coincidence probability
nearly equal to that shown in Figure 4(a), with a maximus
discrepancy of sbout 2X. Namely, at SNRs 10 the probability
is 11x, at SNRs 20 is equal to 53% and 75% when SNRs are
equal to 30.

Figure 4(e) refers to the baseline Maine (X;,¥) and
Germany (ng”). The same considerations made for Figure
4(c) apply here and therefore we shall not repeat thenm.

Figure 4(f) considers the two European detectors:
Glasgow (X,4M) and Munich (ng”). Since the angular
separation between these two sites is smsller then 20
degrees, the contour plot is nesrly equal to the one for two
detectors sited next to each other. For instance, at SNRs
10 the Glasgow-Munich baseline shows 8 coincidence proba-
bility of 17% egsinst the value of 20% for two detectors
located at the same point on the Esrth. For SNRs 20 the
probebility gets to 61X and goes up to BOX for SNRs 30.

(d) Triple coincidence probabilities

The main reasons for preferring triple coincidences
to double are because they give added confidence that an
event has occurred and also provide much improved direc-
tional informstion for good SNR. If the events sre not
corroborated by an electromagnetic detection (optical, X-ray
or radio telescopes) this could be crucial. In the case of
neutron-star bineries, it may well be possible that a
gravitational wave event will be accompanied by an optical
activity (Schutz, 1986). However, even if there is an
optical activity, an all-sky survey is nearly impossible
optically. With three detectors, from the two independent
time delays and the three amplitude observations, one has in
principle enough information for determining the position of
the source in the sky within two separate error boxes, to

calculate the two independent polarization amplitudes of the
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wave and the phase lag between thenm.

Since the two Europesn detectors will be relatively
close together, they will see mostly the same events. This
means that a transatlantic double coincidence probability
calculetion can roughly be considered ss e triple, and a
coincidence involving both American detectors and st least
one European one will also turn out to be a quadruple. Here
end in the next peragraph we only point out a few values for
triple and quadruple coincidence rates corresponding to
certain combinstions of SNRs. We shall reproduce in the
appendix the analyticel expression of the fits we have done
to the full calculations.

Among the four possible triple configurations it
sppears cleer from the geometry, and assuming sll detectors
with the same thresholds, that the combination Maine (X,,”)—
Scotland (X,g”)-cernany (X,,”) is the optimus. For this
case, and with X4 equal to 0.5 for all detectors, the
coincidence probability is BX; at X,“ 0.25 it goes up to 48B%
and et XyMs equal to 0.125 is about B0X. Assuming all three
detectors will be working at their optimum-light recycling
configuration and looking for signals of amplitudes greater
then 5 times their own rms noise levels, a possible combin-
ation of the thresholds corresponding to binaries out to
550 Mpc would be the following: X, = 0.125, X,,% - 0.25
and X,.” = 0.15. For this sequence the probability is equal
to 63x.

A triple coincidence experiment with detectors in
Californie (X‘.”). Scotland (ng”) and Germany X,.”) gives
instesd a coincidence rate of 5% when all thresholds are at
0.5, it incresses to 44%x for Xg” 0.25 and is equal to 78%
at x,“ 0.125. At a working configuration equivalent to the
one considered for the triple Maine-Scotland-Germany we have
a probsbility of 60%.
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For the combinstion California (X,,”)-Huine (X24%)-
Scotland (X,,") the coincidence probability is 4% when the
Xz" are 0.5; it increases to 43% at X, 0.25 and goes to
75% st X¢ 0.125. The combination X,4% = X,¢™ = 0.125 and
X33¥ = 0.25 gives a coincidence probability of about 59x.

The remaining possaible combination, namely
California-Maine-Germany, gives the following values for the
coincidence rates et equal thresholds: 3% at Xy 0.5; 41%x at
X' 0.25 and 74% when the X¢Ms sre 0.125. In this triple
coincidence we may assume as indicative the following
sequence of thresholds: X, 4% = X ¢ = 0.125 and X,4% = 0.15.
Correapondingly the coincidence rate is 73%.

The figures given above allow us to get an idea sbout
the mean number of coincident detections of coalescing-
compact objects in a network of three detectors. Assuming
the value of 3 coalescences per year for neutron-star
binaries out to 100 Mpc (Clark et al., 1979), we deduce that
out to 550 Mpc, and with detectors working at their optimums
sensitivities, the mean number of triple coincidences would

be between 290 and 360 per year.

(e) Quadruple coincidence probesbilities

From observations of coalescing binaries with o
network of four LIGOs we may obtain a series of astro-
physicel information of extraordinary relevance.

In & recent paper Schutz (1986) has shown that, by
observing a burst from a coalescing compact binary, four
detectors of sufficiently large SNRs would allow us to
determine to a few per cent the asbsolute distance to the
systems and to locate its position in the sky within an error
of #3°. If the coalescence is optically identifiable, then
by measuring the redshift we can determine the Hubble

constant Hy to a few percent. Otherwise, combining statis-

tically a reasonsble number of events, we can obtain Ho to
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within the seme precision.

Detecting the dominant wsass-quadrupole radiation
allows us to measure the quantity uM2/? (Eq.(1.1-2)). 1f
the wass combination uM2/? ja less than sbout 2Mg%/?, we con
be fairly sure thet the binary was made of neutron stare; if
it is lerger we can be sure that at least one of the bodies
was o massive black hole (Thorne, 1987).

A gravitational observation with four detectors would
test Einstein’s theory of reletivity: four detections
contein three independent time-delay and four emplitude
observetions which all together overdetermine the solution
for a transversely polarized quadrupole wave. Any incon-
sistency smong them would show different spin properties of
the wave,.

With our calculation we are able to give an estimate
of the chence of recording en event, of a given amplijtude,
in ® network of LIGOs characterized by a suitable combina-
tion of thresholds and rms noise levels. The analytical
expression for the quadruple coincidence probability
provided in the appendix allows us in fact to do so. Here,
however, we shall only reproduce a few values corresponding
to certain threshold combinations. This should give us ean
idea sbout a charscteristic range for the coincidence rates.

%hen all detectors have =a Xg” equal to 0.5 the
coincidence probability is about 3%. Reducing by one-half
the threshold X4¥s the chance of simultaneous detection goes
up to 39% and at X.“c equal to 0.125 we get to & coincidence
rate of Bl1X. For the combination of thresholds already men-
tioned for triple coincidences, that is: California and
Msine at X ¥ 0.125, Scotland with X3 0.25 and Germany at
X.“ 0.15 the coincidence probability is 57%x, only 6% less
than the mean value among the four triple coincidence rates
calculated in the previous parsgraph for the same thres-

holds’' sequence. 1In other words any triple coincidence rate
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can be considered to be a good representation of =
quadruple.

If we look for sources twice as far in distance, this
combination of thresholds has to be sultiplied by a factor
two reducing the detection probability to about 17%. So
while at 550 Mpc we have SNR good enough for angular loca-
tion of the source in the sky (Schutz, 1986) and about 280
coincidence detections per year, smaller SNR raise the event

rate by s factor of about 2.5 to 680 coincidences per year.

q. Conclusions
A coincidence experiment with two or more detectors

enhances the probability of detection of grevitational
bursts beceause it singles them out from uncorrelated noise
pulses. The principal result of this peper has been the
celculation of the coincidence probability for a pair,
triple or quedruple of laser interferometers widely located
on the Earth observing coaslescences of compact objects. We
found that the network of four planned detectors in USA end
Europe, working at their optimue sensitivies, would be able
to register a mean number of coincidences of sbout 280 per
year when looking for 1.4 M@ neutron-star binaries out to
550 Mpc.
This would allow us 8 number of astrophysical

observetions otherwise impossible and a test of Einstein's
theory of Relativity,.
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Figure Ceptions

Figure 1

The relationships of the detector's arnms (dashed
lines making an sngle 2Q), the detector's x-y axes (with the
x-axis bisecting the angle between the arms), and the local
compass directions (defining the angle of orientestion «).

Figure 2

The relations emong the detector's axes (x,y,2z), the
Earth's exes (x ',y ,z°) and the wave’'s axes (X,Y,2Z). Here B
and y are the detector's latitude and longitude
respectively, end a« its orientation as in Fig. 1. The
sngles 6 and © give the incoming direction of the wave as
messured with respect to the Earth's axes. The angle &

determines the polerization angle of the wave.

Figure 3
Single-antenna detection probability as a function of
the detector’'s thresholds Xyf.

Figure 4

Parts (a-f) display contours of constent double-
coincidence probability s functions of the detector’'s
thresholds of verious pairs of detectors. See the text for

a full discussion.
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Thorne, K.S., 1987. In: 300 Years of Gravitation, eds. Appendix
Hawking, S.W. & lIssrel, W. Cambridge University Press We provide here the coefficients of the linear fits

to the single-antenna detection probebility and the double,

Tinto, M., 1987. Mon.Not.R.astr.Soc., to appear triple and quadruple coincidence rates for thresholds X,“ in
the interval (0, 0.5). The fits themselves may be deduced
by espplying s least-squares method to s linear combination
of Chebyshev'’s polynomials. Their formal expressions may be
written as follows:
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c(xxt 'xzt 'Xat .X" )
H
" n " "
« 1 DigheTi(Xyy MT (X 0 IT (X g ITo(X g )
i.j.k, 2=0
(A4)

where the functions T are the 18t kind Chebyshev polynomials
defined in the range (0,1), (Fox & Parker, 1968).

Since the coincidence probabilities are invariant by
interchanging their arguments, we would expect symmetry in

the coefficients Bjj, Cjyy eand D;j iy under permutation of
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the indices. However, because our data have been obtained
by using s numericel method, we have seen that the symmetry
in the coefficients is not exactly respected. By averaging
the Chebyshev coefficients over permutations of the indices,
we have verified that the accuracy of the fits is unchanged.

Therefore we reproduce below only the symmetric parts of

’ij' cijl( and Dijk"

CHEBYSHEV COEFFICIENTS FOR SINGLE-ANTENNA
AVx 0.3019E~01 A22-0. 11428401 A32-0.1366E+00

CHEBYSHEV COEFPICIENTS FOR CALIPORNIA-MAINE BASELINE
BOO= 0.2830B+00 BO1=x 0.8861E+00
Btz 0.21778+01 BO02: 0.2103E+00
B12: 0.5887B+00 B22: 0.26898+00

CHEBYSHEV COEFFICIENTS FOR CALIPORNIA-SCOTLAND BASELINE
B00=-0.48498-01 B01s-0. 1186E+00
Bi1z 0.1181B+01 B02:-0.2719E-01
B12z 0.1405E+00 B22:r 0.8249E-01

CHEBYSHEV COEFFICIENTS FOR CALIPORNIA-GERMANY BASELINE
B00=-0.6368E-01 B01x-0. 1367E+00
B11z 0.1158E+01 B02=-0.3305B-01
B12:z 0.126TE+00 B22: 0.3239B-01

CHEBYSHEV COEFFICIENTS POR MAINE-SCOTLAND BASELINE
B0O= 0.1417B+00 BO1s 0.20308+00
B11z 0.1756E+01 B02s 0.1032E+00
B12: 0.3990B+00 B22: 0.17768+00

CHEBYSHEY COEFFICIENTS FOR MAINE-GERMANY BASELINE
B0OO= 0.8759E-02 BO1s-0.15068-01

Bi1x 0.1381E+01 BO2: 0.1280B-01

B2z 0.23138+00 B22: 0.93868-01
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_an!mzv COEPPICIENTS POR SCOTLAND-GERMANY BASELINE

B0O: 0.7188E+00
‘ B11z 0.3826E+01

B12s 0. 11378401

CREBYSHEV COEPFICIENTS POR THE TRIPLE CALIPORNIA-MAINE-SCOTLAND

C000= 0.3800E-03
C1112-0.28572+01
€112s-0.67812+00
C2222-0.21542-01

CHEBYSHEV COEPFICIENTS POR THE TRIPLE CALIPORNIA-MAINE-GERMANY

C000=-0.99628-02
C1112-0.23778+01
€112:-0.50968+00

C2222~0.72308-02

CHEBYSREV COEFFICIENTS FOR THE TRIPLE CALIPORNIA-SCOTLAND-GERMANY

C000z 0.3001E-01
C1112-0.380324+01
C1122-0.82108+00

C2222-0. 1729E-01

CHEBYSHEV COEPFICIENTS FOR THE TRIPLE MAINE-SCOTLAND-GERMANY

C000s 0.2395B-01
C1112-0.43268+01
C1122-0. 1130E+01

€222:2-0.2655E-01

BO1=z 0. 11788+01
B02= 0.5201E+00
B22« 0.S277E+00

C0013-0. 1404E+00 CO112-0.N3NTE+00

C002s-0. 1061201

C012:-0. 1113E+00

C022: 0.5822E~-03 C122s-0.1892E+00

C001s-0.9087E-01

C0112-0.25188+00

€002:-0.69258-03 C0122-0.57248-01

C022: 0.1195B-01

C1222-0. 1325E+00

C001x-0. 169TE+00 CO112-0.6225E+00

C002: 0.1289E-01

€022: 0.1128E-01

C012s-0. 1379E+00

C1222-0.2133E+00

C0012-0.28978+00 CO112-0.98838+00

C002:-0. 16 76B-01

C012:-0.2810E+00

C0222-0.4680B-02 (C1222-0.30558+00

CHEBYSHEV COEFFICIENTS FOR QUADNUPLE COINCIDENCES

D000O= 0. 1981E+00
D11112 0.75028+01
D1112= 0.21988+01

D0222: 0.1338B+00

D0001: 0.3356B+00
D0002s 0. 15658400
D0022: 0. 184 18+00

D1222: 0.28328+00

POO11=
D0O12:
D0122:

D2222:

0.79518+00D01112 0.2047E4+01?
0.29558+0000112: 0.6866E+00
0.2639B+00D 11222 0,7¥53E+00

0. 14138400
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