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ABSTRACT. Full exploitation of the potential of a laser interferometric gravita- -
tional wave detector to detect sources emitting periodic gravitational waves will
require the development of specialized search techniques and place unprecedented
demands upon computer memory and speed. Traditional approaches to detect-
ing small amplitude sinusoidal signals of unknown period in the presence of broad-
band noise must be modified to accomodate the unusual nature of the received sig-
nal from a gravitational wave source. This paper outlines two methods that have
been developed and presents the results of an application of these methods to data
taken with the M.L.T. 1.5 meter prototype. Based on these results, a combined
hardware/software solution to the data analysis problem is needed before full scale
gravitational wave astronomy with periodic sources becomes practical.

1. INTRODUCTION
1.1 The Ideal Search

The rapid developement of gravitational wave antennas has raised the possibility
of a new branch of astronomy that could provide information about strongly in-
teracting astrophysical systems that cannot be obtained any other way. One type
of detector, the laser interferometric antenna, has two special properties: it has

a broadband spectral response and a non-directional spatial response. Full use

of the antenna to detect sinusoidal signals is thus a two dimensional problem be-
cause both the frequency of the signal and the direction from which it comes are
unknown. The ideal search technique would be a method that could recover both
the frequency and the location of the source. :

The search is complicated by the fact that the relative motion between the
source and the detector modulates the signal in a manner that depends explicitly
on the location of the source, even for a source emitting monochromatic radiation.
Traditional signal processing methods for extracting a sinusoid buried in broad-
band noise are not applicable without modification. In addition, the sheer volume
of data generated by a wide bandwidth detector presents special problems for col-
lection, storage, and analysis.

After a brief discussion of typical sources of periodic gravitational radiation
and the model of the source adopted for this discussion, two different techniques
for conducting a broadband search will be presented. The first is a method for per-
forming an ideal two dimensional search, although with a finite limit on the sensi-
tivity. The second method has no such limit on its sensitivity, but reduces the sky
coverage to a small area around a single direction.
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1.2 Possible Astrophysical Sources

Source of gravitational waves may divided into three basic categories: periodic, im-
pulsive, and stochastic. Several recent reviews describe each of these categories in
detail.}'2 This discussion is concerned only with periodic sources, which may be
divided into two (overlapping) classes: binary star systems and rotating neutron
stars.

1.2.1 Binaries. A binary star system is perhaps the simplest of all periodic sources
because it has an intrinsically time-varying quadrupole moment that is easy to cal-
culate. Indeed, the famous binary pulsar PSR 1913+16 is the only physical system
discovered so far in which gravitational radiation provides a conclusive explana-
tion of the observations.? Furthermore, it has been estimated that more than half

“of the stars in the galaxy have at least one stellar companion. However, the short-
est known binary period is ~ 685 seconds,or v = 1.5 X 102 Hz, which is much
lower can be achieved with ground based gravitational wave antennas. The best
present prototypes have useful sensitivities down to ~ 100 Hz, and even the most
optimistic predictions for future suspension designs estimate that ground motion
will begin to dominate the spectrum below 10 Hz. Thus ordinary binaries are not
an important source for ground based antennas.

However, a binary system may be a catalyst for an important high frequency
periodic source. Wagoner?* has proposed a model of a rotating neutron star in a
close binary system in which accretion drives the rotation of the neutron star in a
steady state in which the viscous damping timescale matches the timescale for the
growth of gravitational wave instabilities. He estimates that monochromatic emis-
sion of gravitational radiation could occur with 200 Hz > v > 800 Hz.

1.2.2 Rotating Neutron Stars. The best known example of this type of source is
the pulsar. A pulsar is thought to be a rotating neutron star whose symmetry
axis does not coincide with the axis of rotation. Such a system has a time chang-
ing quadrupole moment and could radiate gravitational waves. The fastest known
pulsar spins at 642 Hz (1.5 msec), which is well within the bandwidth of an earth
based detector.

There are approximately 450 known pulsars in the galaxy, and the total popu-
lation has been estimated® as 70(£17) x 10%. The number of fast (msec) pulsars in
the galaxy has been estimated® as 30. Thus, if pulsars produce gravitational radia-
tion, there should be several sources.

1.2.3 Source Model. For the purposes of this analysis, the standard source assumed
to be a simple narrowband sinusoidal emitter with a (f) frequency spectrum. The
detection strategy is simply to integrate for as long as possible increase the signal
to noise ratio (SNR). To see that a delta function source is a reasonable model,
assume that the search bandwidth is 10 kHz and the integration time one year.
Then if the delta function is to be a good approximation, the source must have a

Q > fmaz/Afres = 3 x 10!}, where A f,., is the frequency resolution bandwidth,
~ 1/Tin¢t. Table 1 shows estimated Q’s for a few periodic sources.

Taken at face value, the delta function source approximation is quite reasonable.



Table 1
Typical Q’s of some periodic sources.

Process Estimated Q
Binary systems 27 (-8—;1;) (8 x 10*®sec) = 2 x 10'3
Pulsars (in general) 27 (52sz) (107yr) =3 x 108
Pulsars (msec) 2r(642 Hz)(3 x 108 yr) = 4 x 10%°
Wagoner’s model 27 (500 Hz)(107 yr) = 1 x 10'°

2. ANALYSIS TECHNIQUES

Two periodic search techniques will be discussed, both based on the same strategy:
estimate the power spectrum of the data and look for large peaks.

2.1 The Naive Approach

2.1.1 Periodogram Estimate of the Power Spectrum. Consider a one dimensional
time series of K points y;(t) = y(t;). The naive way to find a sinusoidal signal of
unknown frequency in noise would be to construct a model of the time series as a
sum of sinusoids:

M-1
ymodel(t) = Z Ame—:21rf,,.t. (l)

m=0

where the A,, are the unknown amplitudes. The model can then be fit to the data
by forming the x?:

K-1
1 2
X2 = E Z (y(tk) - ymodel(tk)) (2)
k=0
and then minimizing with respect to the Apm:
ax*
X _o
O0Am
which leads to
K-1 '
A, = Z y(tk)e"z"f"t". (3)
k=0

This is the expression for the Discrete Fourier Transform (DFT), which can be effi-
ciently computed with the Fast Fourier Transform (FFT) algorithm if the data has
been sampled at equally spaced intervals in time.

The periodogram is just the square of the DFT

N-1 2

Py(mAfo) = % 3 y(nato)e /N (4)

n=0
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and is an estimate of the power spectrum. Here At is the sampling period and
Afo = (NAty)~1! is the frequency resolution of the transform. For convenience the

square root of the power spectrum Sy (m) = (Py(m))/? is usually used because it
represents displacement and hence strain directly. In the discussion which follows,
the terms periodogram and power spectrum are used interchangeably. When it is
necessary to make the distinction, the square root of the power spectrum, S N(m),
will usually be used.

The periodogram is useful because the signal to noise ratio (SNR) in power of a
sinusoidal signal which appears in a single frequency bin of the transfrom increases
directly with the length of the transform, or by the square root of the length in am-
plitude.

2.1.2 Statistical Peak Detection. The purpose of statistical peak detection is to pro-
vide a quantitative criterion for distinguishing possible signal peaks from chance
fluctuations due to noise. Each frequency resolution bin m of the periodogram con-
tains an estimate s = Sy(m) of the the square root of the amount of power at that
frequency in the data. The estimate fluctuates because of the presence of noise,
and the value of the estimate may be regarded as a random variable. The idea be-
hind statistical peak detection is that the probability distribution of Sy (m) when
a signal is present in the data is different from the probability distribution with
Jjust noise. Figure 1 shows an example of the differential probability distribution

of Sy (m) with and without a signal.
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Figure 1
Dlustration of the concept behind statistical peak detection. The probability
distribution for the amount of power in a single bin of a periodogram changes
when a signal is present. The threshold is chosen to minimize the false alarm
probability. '

With just noise, the Sy (m) follow a x? distribution with two degrees of free-
dom (a Rayleigh distribution). The presence of a signal means that there is a non
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zero expectation value for one of the DFT coefficients, so the most probable value
of that coefficient (i.e. the peak of the differential probability distribution) in-
creases. The difference between the distribution with pure noise and the distribu-
tion with a signal plus noise can be conveniently summarized with a single thresh-
old. Any frequency bin containing more power than the threshold is judged more
likely to belong to the signal plus noise distribution than the noise distribution and
is flagged as a possible signal. The probability of a false alarm, that is, the proba-
bility that a chance fluctuation of the noise exceeds the threshold, is just given by
the area under the noise probability curve from the threshold to infinity:

pre= [ " pale)de. 5)

th

Similarly, the probability of missing a signal, which is the probability that
Sn(m) is less than the threshold, is given by

Teh
Prne = / Posn(e')dz'. (6)

The probability of detecting a signal is just

Pdet =/ Ps+n(-"7,)dz’- | (7)

th

In principle one would choose the threshold to maximize the detection proba-
bility while simultaneously minimizing the false alarm probability. In practice, the
threshold is chosen to achieve an acceptable p¢,.

- 2.2 Problems with the Naive Approach

There are three fundamental problems with the naive approach. The first is
that real data is not continuous and sampled at evenly spaced intervals in time as
required by the FFT algorithm. The second is that the expected signals at the an-
tenna, even for a purely sinusoidal source, are not pure sinusoids. The third prob-
lem is that the probability density function used for statistical peak detection de-
pends on the variance o2 of the data, and ¢ in general is an unkown function of fre-
quency.

2.2.1 Real Data. Real data is not a continuous stream of samples taken at evenly
spaced intervals in time. The limitations of computer memory and hardware, as
well as problems with the apparatus, combine to eventually cause gaps. The seri-
ousness of a gap depends on its length. A data collection system which is triggered
from an external reference clock will keep the phase of the samples across gaps, so
that the data set will in general consist of blocks of data taken at equally spaced
intervals in time separated by gaps of varying widths. A very small gap could be
replaced by the average value of the data without much problem. A gap that is

a large fraction of the length of the data stream must be dealt with in some other
way.
In the MIT prototype data collection system, there are two guaranteed types of
gaps. The first type of gap is the result of having only one 1600 BPI magnetic tape
drive connected to the system. After 15 minutes, a tape is full and data collection
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must be stopped while the tape is rewound and a new one is loaded. The gap is ap-
proximately 5 minutes. There is nothing fundamental about this type of gap. The
15 minute continuous data limit could be extended by purchasing a higher density
drive, and two drives could collect data continuously.

The other type of gap is the result of ground motion induced by traffic on the
street outside the laboratory. In this case the gap is approximately 16 hours, as the
best time to collect data is between 22:00 and 06:00. A more remote location for
the antenna and a better suspension system would increase the length of the avail-
able collection time. However, it is difficult to imagine collecting a month of contin-
uous data without gaps of some sort.

The effect of the gaps is to limit the integration time and hence the sensitivity
of the search by reducing the size of the FFT that can be performed. There is no
possibility of calculating the DFT directly without using the FFT to circumvent
the equally spaced samples in time requirement because the computation time re-
quired for the DFT scales as V2. If the computation were performed on a machine
capable of 102 operations per second,a N = 224 point transform (15 minutes of

data on the MIT prototype) would require 2.8 x 10° seconds, or 32 days of cpu time.
The FFT algorithm would require 4 seconds under the same conditions.

A more serious problem is the loss of information caused by the gaps. One
way to think of the gaps conceptually is to consider a second time series w(t) that
is unity when data exists and zero in the gaps. The observed data set is then the
product of a hypothetical continuous data set and w(t). By the convolution the-
orem, a product in time space is a convolution in frequency space. The Fourier
transform of the data is thus the convolution of the transform of the continuous
data set and the trnsformW (f) of the w(t) function:

Xoba(f) = Xcont(f) *W(f)- (7)

W (f) is called the window function. The effect of the window function is to
smear out the information contained in the hypothetical continuous spectrum. For
a general sequence of gaps, the smearing can be quite severe, and because the win-
dow function has zeros, deconvolution is not possible. Thus even if it were possible
to perform the DFT directly, the resolution of the resuiting spectrum would be de-

graded.

2.2.2 Ezpected Signals. The signal expected at the detector from a stationary,
purely sinusoidal gravitational wave source is not sinusoidal. It is modulated by the
relative motion of the source and the antenna in two distinct ways: FM and AM.

FM. The received signal is frequency modulated by the ordinary relativistic Doppler
shift. The frequency observed by the antenna can be written explicitly as

’ )’ (8)

o |y
b 1

fobs = fcmit"YO : (1 -

where 7o is the usual relativistic parameter (1 — (v/c)?) "}, # is a unit vector from
the antenna to the source, and 7 is the relative motion of the source and antenna.
The two major contributions to the relative motion are the daily rotation of the
earth, which causes a frequency modulation of A f /f = 10~%, and the orbital mo-
tion around the sun, for which Af/f =~ 10~%. In principle there is also a contri-
bution from any motion of the source, but in the simplified model adopted for this
discussion, source motion is neglected.




The effect of FM on the spectrum of the received signal is shown schematically
in Figure 2. The emitted signal has a deita function spectrum centered at some fre-
quency fo. The FM spreads the power in that delta function out over a bandwidth

of order 2(Av/¢) fo.

A,
= 2v,(av/c) —
L \ Tao/(2votv/c)
Vo Vg
Emitted Received

Figure 2
Schematic representation of the effect of FM on the spectrum of a sinusoidal
signal.

The smearing of the signal by FM is significant only when the bandwidth over
which it is spread becomes larger than the frequency resolution bandwidth of the
transform. A rough idea of just when this occurs can be calculated using the fol-

‘lowing formula:

Vrot lint Vorb tint 1
2 —_ 2 > 9
fmaz ¢ 1 day + fma.z ¢ 1 yr t‘nt ( )
g — —_——
Avrgg Avorp Afres
[ c
FM Bandwidth

Solving for ¢;»: and putting in numbers,

tin: > 30 min ~(10)
The Doppler effect is not important for data records shorter than 30 minutes. How-
ever, data collected at different times will contain the signal at different center fre-
quencies.

AM. The amplitude modulation of the received signal is also caused by the rela-
tive motion of the antenna and the source. Although the spatial sensitivity of the
antenna is non-directional, it is not isotropic. The amplitude modulation is sim-
ply the result of the different sensitivity lobes of the antenna sweeping across the
source position as the earth moves.

The effect of the AM on the spectrum of the received signal is illustrated by
Figure 3. The emitted signal, with a delta function frequency spectrum centered at
frequency fo, develops sidebands spaced at 1/24 hours (=12 uHz). The AM begins
to exceed the resolution bandwidth of the transform for integration times longer
than 6 hours.

2.2.3 Unknown o(f). The real and imaginary amplitudes of a single DF T follow
an independent Gaussian distribution for each frequency. The distribution for
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’Ao — = 1/(24 Hours)
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Figure 3
Schematic representation of the effect of AM on the spectrum of a sinusoidal

signal.

the amplitude in a bin of the square root of the power spectrum, s = Sy(m) =
V/(real)? + (1mag)?, is given by

Pnoiae(3)=<;s§) =3 (1)

This is a x? distribution with two degrees of freedom (Rayleigh distribution)
and it depends on one only parameter, o. To use this distribution function, o must
be known, and in general ¢ is a function of frequency because the spectrum is not
white. The statistics of an individual frequency bin still follows a Rayleigh distribu-
tion, but the variance changes from point to point. The statistical peak detection
method cannot be used to separate signals from noise unless o can be estimated re-

liably.
2.3 Solutions

A solution to each of the three fundamental problems will be outlined in gen-
eral in the following sections, then in discussed in more detail in Section 3 in the
context of an analysis of data taken in June 1985 with the MIT prototype gravita-

tional wave antenna.

2.3.1 Gaps. The obvious solution to the problem of gaps in the data stream that
are small compared to the length of the data stream was mentioned above - simply
fill in the gap with the average value of the data.

The obvious solution to the problem of large gaps in the data is to analyze the
continuous pieces separately, then combine the pieces with an r.m.s. (root mean
square) average. This is easy to do, but has the disadvantage that the power SNR
increases only with the square root of the integration time and not directly with
the time as could be achieved with continuous data. Adding more data still im-
proves the SNR, but not as quickly as if the data were continuous.

The gap problem for the June 1985 data taken with the MIT prototype was
much more severe than it should be for a real antenna. It is worthwhile exploring
methods to deal with the gaps, however, because any real data set will always have
gaps of some size if it is large enough. The gap problem may become moot for an-
other reason. The computational problems associated with large data sets may
impose a separate constraint on the length of the data set that may be easily ob-
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tainable with a better site and a more sophisticated data collection system than the
one used by the MIT prototype.

2.3.2 Ezpected Signals. Two different solutions to the problem of a direction depen-
dent received signal have been developed. One solution approaches the ideal of a
broadband full sky search, but with a limited sensitivity. The other solution can
achieve a higher sensitivity, but only in one direction at a time. Details of the im-
plementation of these ideas will be discussed in Section 3 of this article.

Full Sky Search. A full sky search can be achieved by making use of the FM and
AM modulation as signatures to distinguish signals from local disturbances. As
discussed in the Section 2.2.2, the FM modulation becomes important only for in-
tegration times longer than 30 minutes. Thus, if the data is analyzed in.continu-
ous pieces shorter than 30 minutes in length, a real signal will still appear as a delta
function in frequency. However, the signal will appear at different frequencies in
different pieces, and this difference in center frequency can be used to localize the
source to a region of the sky. For a data set consisting of pieces spanning a week
baseline, the dominant Doppler shift is that due to the orbital motion of the earth.
Figure 4 shows the expected Doppler variation for a source located at the center

of the galaxy in early June 1985. The vertical scale is marked off in units of the
frequency resolution of a 15 minute FFT, or ~ 1.5 mHz. Since the daily Doppler
shift is small, the Doppler shift for the week may be characterized by a single slope,
in units of Hz/Hz/sec, for each direction. Furthermore, the slope has a maximum
physical value that corresponds to +v,.3/c. Figure 5 is a map of the sky showing
areas of constant Doppler slope as a grey scale. A known value of the slope identi-
fies a locus of points on the sky as possible source locations.
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Figure 4

Doppler variation of the recesved frequency for a sinusoidal source at the
center of the galazy. T=0 for June 4, 1985.

The AM modulation can be used to further localize a source. As with the FM,
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the modulation per continuous piece is small, but the signal strength difference be-
tween pieces can be significant. The AM can be used to predict the relative signal
strengths in each piece of continuous data as a function of the position of the source
on the sky. A candidate signal that has been detected in more than one piece must
have a physically reasonable Doppler slope and must also match the AM response
pattern before it can be considered a possible astrophysical source.
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Figure 5
Doppler slope as a function of position of source on the sky, ezpressed as a grey
scale from +vopp/c to —v,p/c.

The drawback with this procedure is that the sensitivity is limited by the
Doppler modulation to what can be achieved with an integration time of 30 min-
utes or less. Since the signal appears at different frequencies in different piece of

data, averaging does not help.

Single Direction Search. Better sensitivity can be achieved by demodulating the
FM, so that a candidate signal would always appear at the same frequency in dif-
ferent pieces. The separate pieces could then be r.m.s. averaged together to im-
prove the SNR. The length of each piece could be much longer than 30 minutes in

principle.
The idea is simple. The general form of the signal is:

s(t) = A-cosp(t), (12)
where © is the phase. From the expression for the Doppler shift, the observed
frequency is
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foba=femit'70'(1_%‘;')- (13)

The phase of the observed signal is then

t
p=2r [ f(t")dt (14a)
to

a t

=27 fvo (t —to — 2 . / 6‘(t’)dt’> (14b)
to

= 27 fyot’ ’ (14c)

where

a t
t=t—to——- / v(t')dt’ ' (15)
¢ Ji

is called the rescaled time and depends explicitly on the position of the source.
Equation (14c) is the relationship between frequency and phase if the frequency is
constant in time. One rescaled time function demodulates all frequencies simulta-
neously, but for only one direction.

 In practice, what is needed for the FFT computation is a time series that is
sampled at evenly spaced intervals in rescaled time. The recorded data is a time
series taken at evenly spaced intervals in laboratory time. If the recorded data is
treated as though the samples were collected at unequal intervals in rescaled time
and then resampled to equal intervals by interpolation, the desired result is accom-
plished. Figure 6 depicts the process schematically. The solid curve is the origi-
nal data which was recorded at equally spaced intervals in laboratory time. It is
plotted with each data point mapped into its equivalent rescaled time value, so the
points are not evenly spaced. The dotted curve represents the new time series that
is generated by interpolating between the unevenly spaced samples in rescaled time
of the solid curve to get an evenly spaced set of samples.

Interpolation is not a clean procedure. The rescaled time and laboratory time
can slip by several sampling periods over the course of 30 minutes. Since the error
in interpolation increases as the point to be estimated falls further from the known
point, the interpolation error puts a low frequency modulation in amplitude and
phase on the original time series. The effects of the modulation may be reduced by
using a more complicated interpolation algorithm or by oversampling the original
time series. Neither is desirable. Oversampling increases the data acquisition and
storage problems, and a complicated interpolation algorithm is computationally
very slow.

2.3.3 Unknown o(f). One solution to the problem of the unknown variance as a
function of frequency is to determine the variance from a local average of the data.
The power spectrum is divided into pieces referred to as the averaging bandwidth.
The variance of the spectrum is assumed to be constant over that bandwidth, and
an estimate of o is derived from the mean value of the spectrum in that bandwidth.
Explicitly,
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Figure 6
Schematic representation of the resampling procedure to produce a new time se-
~ ries sampled at equally spaced intervals in rescaled time.

o
<s?> =/ 82 Proise(s)ds
0
= 20? (16)

where s = Sy(m) is the amplitude of a bin in the square root of the peri-
odogram and ppoise Was taken from equation (11). The estimated value of g can
be used to normalize each bin in that averaging bandwidth. The normalized values
of the whole spectrum may then be compared on an equal basis.

2.3.4 Summary. To quickly summarize the techniques discussed so far, the desired
signal is assumed to be a high-Q, essentially delta function in frequency. The strat-
egy is then to integrate for as long as possible to increase the SNR. The fact that
the received signals are modulated even if emitted by monochromatic sources is
handled two different ways. A full sky search can be conducted by analyzing the
data in pieces and using the Doppler FM and the AM between pieces as a signature
for which to search. An enhanced sensitivity search can be conducted by perform-
ing a demodulation for one specific direction at a time. The demodulation collapses
the received signal back into a delta function in frequency which can then be av-
eraged to improve the SNR. The statistical variance is estimated as a function of
frequency by using local averages over a specfied bandwidth. These techniques will
now be discussed in the context of a specific example — the analysis of data taken in
June 1985 with the 1.5m MIT prototype antenna.
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3. EXAMPLE: ANALYSIS OF JUNE 1985 DATA

3.1 Data Set

The data analysis scheme for periodic sources has been outlined conceptually.
An application of these ideas to a real data set illustrates not only how well the
ideas work in practice, but also points out some of the practical problems which
will have a profound impact on the way data analysis for a large antenna should be
conducted.

The MIT 1.5m prototype antenna and data collection system have been de-
scribed in detail elsewhere.” The raw data consists of the demodulated output
of the interference fringe lock servo, digitized at either a 20 kHz rate, or a 6 kHz
rate. The digitization is triggered from a rubidium standard that is sychronized
to WWYV. As mentioned above, limitations in the recording hardware restrict the
length of a continuous data stream to approximately 15 minutes (N = 2%¢ =~
16 x 10° points).

The data collected in June 1985 consists of approximately 50 magnetic tapes
collected over 6 days, representing roughly 10% coverage of the total possible time.
One half of the tapes were sampled at 20 kHz, the other half at 6 kHz. Eight of the
25 tapes sampled at 20 kHz were selected for the final analysis.

3.2 Full Sky Search

The first step in the analysis is to choose a value of the averaging bandwidth.
For the statistical peak detection scheme to be valid, the statistics of the power
in each resolution bin must agree with the theoretical Rayleigh distribution The
choice of an averaging bandwidth was made by constructing an experimental prob-
ability distribution for several different values of the averaging bandwidth and
choosing the value which gave the best least squares fit to the theoretical distribu-
tion.

Figure 7 shows the fit with a good choice of the averaging bandwidth. The ex-
perimental distribution is computed by normalizing the value of the each frequency
bin in the square root of the periodogram to the local . The normalized points are
then binned in a histogram which counts the number of points with a given nor-
malized amplitude versus that normalized amplitude. The solid curve is the the-

oretical distribution for pure noise, p(§) = Ee’fz , integrated over each bin in the
histogram. A x?2 fit of the experimental distribution to the theoreticai distribution
was performed, and the value of the averaging bandwidth used in the final analy-
sis was that which gave the lowest value of the x? for the fit. For this data set, that
value was 0.35 Hz.

The arrow is set at a threshold of 4.97¢, which represents a false alarm prob-
ability of pf, = 5 x 107°. A frequency bin containing enough power to place it
to the right of the threshold is a candidate signal. For this particular distribution,
with =~ 2 x 10° total resolution bins, a spectrum containing pure noise would con-
tain on average 11 peaks above the threshold. In this case, the threshold was cho-
sen conservatively so as not to miss any potential signals, and it was also placed at
the point where the experimental distribution exhibits a non-Rayleigh tail.

Once the value of the averaging bandwidth has been chosen, the first step in
the analysis is straightforward: the spectrum of each piece of data is binned sep-
arately, and candidate signals are identified with the threshold criterion. A list
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Ezperimental fit to the theoretical probability distribution for pure notse (solid
curve) for a particular value of the averaging bandwidth. Normalized to ~ 2 x
108 total points. The arrow indicates a 4.97c threshold which gives a false alarm
probability ps, = 5 x 107,

of the possible signals in each piece is compiled, keeping track of the frequency of
the signal, its magnitude in absolute units, and its value relative to the local o are
recorded, along with an estimate of the number of adjacent frequency bins that also
qualify as possible signals (a measure of the width of the peak).

The complete spectrum of each piece extended from 0-10 kHz, but only the re-
gion from 2-5 kHz was searched. The low frequency cutoff was chosen at a point
where the noise spectrum of the antenna begins to increase rapidly with decreasing
frequency, and hence the sensitivity to gravitational radiation becomes small. The
high frequency cutoff was chosen to avoid problems with the interpolation method
used in the single direction search.

These lists of possible peaks are then examined for a series of peaks whose cen-
ter frequency changes over the course of the week. The method for finding such
a series is called a Doppler sieve. Figure 8 describes the operation of the sieve
schematically. One piece of data is selected as the reference. If a peak in the refer-
ence list is actually an astrophysical signal, then it should appear in the lists of the
other pieces, but with its center frequency shifted by a known amount. The sieve is
applied by dividing the allowable range of Doppler slopes into discrete values. Each
peak in the reference list is used to estimate the center frequency for each of those
slopes that that peak would have if it were observed at the time the other data was

collected. To get the center frequency of a peak in the j** tape:

fcentcr(j) = fcenter(ref) *mp - (tj - trcf) (16):

where mp is the Doppler slope in units of Hz/Hz/sec. The actual list of candidate
signals from the j;5 tape is examined for anything within a given capture width )
A feap to the projected center frequency. If at least one other tape has a peak which
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satisfies this condition, the reference peak is recorded. Note that the condition for
acceptance of a peak is the weakest possible. A single pair of peaks that falls along
a physically plausible Doppler slope is enough to qualify. In general, there could be
more than two peaks, but the received signals are also AM modulated. A weak sig-
nal is therefore most likely to be seen only in the two most favorable observation

windows.
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Figure 8

Schematic operation of the Doppler sieve.
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1e8

Typical histogram of the number of peaks in a reference list which n_zatch at
least one other peak in another list versus the Doppler slope for which there
ts a match. Only slopes between +50 units are physical.

For each reference piece, the peaks that fall through the Doppler sieve are
binned in a histogram of the number of peaks with a given Doppler slope versus



the slope. Figure 9 shows a typical histogram, with the horizontal axis in units of
the quantized Doppler slope. A larger range of slopes than is physically possible is
plotted to estimate the “background”. The physical region in Figure 9 is between
=+ 50 units.

Peaks caused by local disturbances will not exhibit a Doppler shift over time
and will thus appear in the histogram with a slope near zero. For this reason, any
candidate peak appearing in coincidence with a peak in another list connected
by a Doppler slope of mp = 0 in quantized units, was eliminated from consid-
eration. Figure 10 shows the histogram of Figure 9, but with the zero-slope bin
deleted. A real source near the zenith of the detector would also exhibit no doppler
shift, so the exclusion of the zero-slope bin could in principle be eliminating some
real sources. If the sources are uniformly distributed on the sky, only 8% of the
source would be eliminated. This is a small price to-pay for the elimination of a
large number of spurious coincidences. The change in the vertical scale indicates
that some of the peaks eliminated appeared in the histogram with more than one

Doppler slope.
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Figure 10
Histogram of the Figure 9 with peaks in the zero-slope bin deleted. Only slopes
between £50 units are physical.

The peaks that manage to fall through the Doppler sieve are then associated
with a region of the sky using Figure 5. The sky is divided into discrete bins, and
for each bin in the region picked out by the Doppler slope, the expected pattern
of signal strengths is determined. Figure 11 is a map of the sky showing, for each
bin, which pair of the particular data tapes used in the analysis should have the
strongest signals based on the AM response to a source in that portion of the sky.
Figure 11 is for a plus polarized wave. A similar map can be made for the cross po-
larization. The actual strengths can be compared against the predicted pattern.

Figure 12 summniarizes the full sky search procedure. A total of three peaks out
of = 2 x 108 frequency bins actually passed both the Doppler sieve test and the AM
signal strength pattern. None of the peaks is a good candidate signal for a number
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Map of the sky showing, for each possible source location, the pair of tapes in
which the signal should be most strongly received. See key at right.

of reasons, but the primary reason is that all occured in a region of the spectrum in
which there was appreciable structure in the spectrum on the same scale size as the
averaging bandwidth. The local estimate of o is therefore not a good estimate, and
the statistical peak detection method fails because the experimental distribution is
not a good approximation to the theoretical Rayeigh distribution.

There are several strategies that could be adopted to circumvent the failure of
the statistical peak detection method. One could use a more sophisticated fit to
each averaging bandwidth: instead of assuming a flat spectrum, one could allow a
slope plus a constant. Another alternative would be to allow the size of the aver-
aging bandwidth, which is chosen by a global optimization of the statistics for the
entire spectrum, to vary over the spectrum and select it by some local optimization
procedure. Individual peaks could also be modeled and subtracted from the spec-
trum. Of course, the best solution is to eliminate the noise sources in the antenna
to produce a flat spectrum with which to start.

3.3 Single Direction Search

The single direction search procedure is similar to the full sky search in the ini-
tial stages of analysis. The particular direction to be searched with this data set
was chosen to be the center of the galaxy. Each piece of data was demodulated ac-
cording to the algorithm described in section 2.3.2, using a piecewise continuous
spline interpolation procedure. An average spectrum was computed by r.m.s. av-
eraging each averaging bandwidth, weighted by the ¢ for tha bandwidth, with the
corresponding bandwidths in other pieces of data. The net improvement in SNR, if
all of the local o were identical, should be v/8. A reference r.m.s. spectrum was also
computed by following the same procedure without the Doppler demodulation.

The best value of the averaging bandwidth is chosen as before with a global
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Figure 12
Summary of the full sky search procedure.

minimization of the fit of the experimental differential probability distribution to

the theoretical distribution. The Doppler demodulation procedure did not change

the value of the best fit averaging bandwidth. Both average spectra are then be |
subjected to the statistical peak detection analysis and a list of candidate peaks in
each spectrum is generated. The expected probability distribution is slightly dif-
ferent because of the r.m.s. averaging. The expected distribution for the amplitude
in a single bin of the square root of the power spectrum with only noise present in
the data is a x? distribution with 2¢ degrees of freedom, where ¢ is the number of
pieces combined in the average.

Real astrophysical signals should have been enhanced by the demodulation pro-
cedure, and thus any new peaks in the demodulated spectrum are potentially sig-
nals. However, local noise driven resonances which appear at the same frequency
in each piece will get smeared by the demodulation procedure. To separate truly
new peaks in the demodulated spectrum from local peaks that have been smeared,
the two lists of peaks were compared with a procedure very similar to an inverse of
the Doppler sieve. First, any peaks that appeared at exactly the same frequencies
in both lists were eliminated on the grounds that such signals were not physical.
Next, any peaks in the doppler corrected spectrum that had a corresponding peak -
in the uncorrected spectrum offset by the frequency shift expected for one of the
component piece of data was eliminated. The peaks that were left over were truly
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NEW PEAKS POTENTIAL REAL SIGNALS
Figure 13

Summary of the single direction search procedure.

new. Figure 13 summarizes the procedure.

Only 22 peaks met the criteria for “new” peaks. For the size data set consid-
ered, 2 x 10° frequency bins, a pure noise spectrum should have generated l't’i'g
peaks above threshold. The error bars reflect a 1% uncertainty in the value of the
threshold. The results are thus consistent with a pure noise spectrum. A closer ex-
amination of the 22 peaks would require more data.

3.2.4 Results

The final results of the two searches for periodic signals can be stated rather
simply. The full sky search did not see any periodic signals which produced a mea-
sured strain in the antenna above a level

' 000\ ?
Rrms = 4.6(£0.9) x 1017 <3—f—> (17)

in a frequency band from 2-5 kHz. The indicated error is one standard deviation.
The conversion of this measured strain into a source strength depends on the polar-
ization and the direction of the source. For a source at the center of the galaxy, the
limits translate into

2
2000
By rme = 2.1(£.8) x 10718 (T) (18a)
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2
: 2000
hx rms = T.4(£4.) x 10~%7 (—f—) (18b)

The corresponding limits for the single direction search are

2
00
h+,rrna = 1.0(_+_0.1) X 10_16 (@}_——) (190.)
2
2000
hy,rms = 5.2(£.8) x 10717 <—f—> (196)

The sensitivity gain for the single direction search is slightly less than the /8 =
2.8 expected with eight RMS averages. Some of the discrepancy can be attributed
to the unequal weighting of the individual spectra, and some is due to a choice of
direction for the search that is perhaps not the best for exhibiting the best SNR in-
crease for the method. With more data, the increase in SNR could be much larger.

3.3 Practical Implications for Future Research.

The prospects for data analysis techniques to discover periodic sources of grav-
itational waves may seem unduly encouraging. Two different methods have been
presented to perform broadband searches. However, there are several severe prac-
tical difficulties with these methods which will make any attempt to extend these
methods difficult. Both are rooted in the computational difficulties associated with
large data sets.

It might be expected that single direction broadband search technique could
simply be repeated for many different directions. However, the demodulation pro-
cedure correctly demodulates signals from a finite patch of sky around the desired
direction. An estimate of the patch size can be generated by treating the received
frequency in equation (13) as a function of the position angles a, §, where a is the
right ascension and § is the declination. Then

Af = (g—i) Aa+ (glg-) Ab. (20)

The change in either angle must be small enough to keep A f < A f,.,, Where
A fres is the frequency resolution bandwidth of the transform. Equation (20) can
be inverted to and simplified to obtain an expression for either angle of the form

A(e,6) = £(a,6) <f,:> <%>

where frmaZ = 1/2Atsgmpl. is the Nyquist frequency for a given sampling rate
Alsample, and T is the length of the transform, and € is a function of @, §. For a
source at the Galactic Center, a 20 kHz sampling frequency, and a 15 minute data
record, the patch size on the sky is
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o fmaz \TH(_T N\
Bax? (10kHz 900 sec (210)

-1 -1
Ab = 15° <—f1‘—“f-) ( T ) (210)

10kHz 900 sec

If this patch size were constant over the whole sky (which it is not), this implies
~ 500 patches must be searched. This does not seem like an excessive number,
except that it scales as T2. The computation time for the analysis that was. per-
formed on the MIT data is summarized in Table 2. Unpacking refers to an opera-
tion that converted the data (stored in condensed form) into Cray-2 real numbers.
The volume of data was such that it could not be easily stored in unpacked form on
the available disk space. Net computational speed is approximately 7.5 Mflops for

the FFT.

Table 2

Computation times for the periodic source search.
Computations were performed on a Cray-2.

Operation CPU time (secs) % of Total CPU time (secs) % of Total
Unpacking 225.4 46.5 225.4 32.2
Doppler Demod. — — 216.0 30.8
FFT 71.3 14.7 71.3 10.2
Apodization 8.8 1.8 8.8 1.3
Peak Search 179.8 37.0 179.8 25.5
Total 485.3 100.0 T 7013 '100.0

Based on these execution times, a complete sky search with extended sensitiv-
ity would require 500 x 700 = 3.5 x 10° seconds, or ~ 97 hours of CPU time. This is
a large amount of computation time, and any attempt to extend the analysis tech-
niques much beyond what has already been done will require even more time. Of
course, there may be physical reasons for selecting a direction in which to search,
and then the number of bins required to cover the sky may not be important.

There is another computational bottleneck that is not apparent from the table.
The maximum size FFT that can be computed is determined by the size of the core
memory of the machine. A Cray 2 has the largest core memory of any machine cur-
rently in existence, 228 ~ 268 x 10° words. Based on the measured execution time
of a 22 point FFT, a 2?8 point FFT should require 1331 seconds, or 22.2 minutes
of CPU time. The estimated total CPU time for a doppler demodulation analysis
of this size is 3.2 hours, with 123,000 bins required to cover the sky. Any attempt
to perform larger FFT’s changes the problem dramatically. The computation must
be done in pieces, and it becomes immediately limited by the I/O transfer rate to
the disk. '

The point of this discussion is that a complete solution to the data analysis
problem for periodic sources is not in hand. A different approach will be needed to
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achieve integration times of 108 seconds, and faster general purpose computers are
not the answer. A real solution will require a combined hardware/software solution

and perhaps different analysis algorithms.
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