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Abstract. Detectors and control systems frequently suffer from the contamination

of data with coherent backgrounds. A previous paper [1] discussed an algorithm for

subtraction of coherent backgrounds using an acausal filter. This algorithm (EFC) is

useful for the removal of lines in the data outputs of the detectors, but its acausal nature

and resultant group delay makes it unsuitable for incorporation into the control loops

determining the states of the instruments. In this internal note I discuss a related causal

algorithm, EAC, and give a case study on how this algorithm might be incorporated

into a servomechanism to suppress coherent backgrounds. The algorithm also lends

itself to efficient implementation of digital phase locked loops and the analysis of data

having irregularly spaced samples, and thus has a broad range of applications in science,

engineering and data analysis.

1. Introduction

The EFC algorithm [1] permits sample-by-sample estimation of the amplitude and

phase of a signal at the frequency of a coherent background. The measured amplitude

and phase can then be used to synthesize a signal having the same properties at

that frequency, which can then be subtracted from the data to suppress its coherent

oscillation component. The EFC algorithm is based upon an iteration equation

for the Fourier coefficients of a data set, where each new iteration introduces a

single data sample, xN , to the end of the timeseries, and removes a single data

sample, x0 from the beginning. Using a previous estimate of the Fourier coefficient,

Fk(x0, x1, x2, · · · , xN−1), the EFC iteration algorithm for the kth Fourier coefficient is

Fk(x1, x2, · · · , xN ) = e
+2πik

N (Fk(x0, x1, · · · , xN−1) + (xN − x0)) . (1)

Here the number N of samples per Fourier transform times the sampling period ts

should be greater than the timescale for signals that should be preserved, but less than

the timescale for fluctuations in the amplitude and phase of the coherent background.
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This Fourier coefficient is the best estimator of the amplitude and phase of the coherent

background at the mid point of the timeseries, so the estimator is subject to a group

delay of approximately Nts/2 with respect to the data. This group delay limits the

applicability of the algorithm in applications where background subtracted data might

be used to control the instrument in real time as part of a closed loop servomechanism.

We therefore seek a related algorithm with zero group delay.

2. The exponentially averaged coefficients (EAC) algorithm

The EFC iteration algorithm becomes a boxcar averager in the case where k = 0, and

not surprisingly boxcar averagers are subject to the same group delay of half the data

length of the box. An exponential average is a related average that has no group delay.

The iteration algorithm of an exponential averager is

yn = (1 − w)yn−1 + wxn, (2)

where the nth input (output) data sample is xn (yn), and w is a number between 0

and 1. The exponential averager calculates the weighted sum of all previous input data

samples,

yn =
∞
∑

m=0

xn−me
−(n−m)ts

τw , (3)

where τw is the averaging time constant of the filter, related to w by τw ' ts/w. By

tuning w we can define a timescale for the average, though unlike the boxcar averager,

all previous inputs have an influence on the current output.

Attempting to write down an iterative estimator for Fourier coefficients that, like the

exponential averager, has zero group delay, leads us to the following iteration formula,

yn = ei∆ ((1 − w)yn−1 + wxn) , (4)

where ∆ is a real phase, related to the frequency of the coherent background by

∆ = 2π fts. In Appendix A we show that when the input is an oscillation of angular

frequency ω = 2πf , the output yn of the filter tends after a time much larger than τw

to points tracing out an elliptical path in the complex plane, centered on the origin.

Figure 1 shows the output of the iteration algorithm for a choise of w and ∆ such that

the filter response time is a few cycles of the input sinusoid.

The rotation period of the yn is equal to the period 2π/f of the sinusoidal input.

We show that the output yn can be used to generate an oscillation having the same

amplitude and phase as the input xn. As for the EFC algorithm, signals not at the

frequency f are suppressed in the filter output, as are signals at frequency f but varying

in amplitude or phase on a timescale significantly less than τw. The filter is causal in

that only the current input data and current plus a single previous sample of the output

data is used to synthesize the sine wave.

The EAC algorithm consists of the above iteration formula and in addition the

method for using the algorithm output to synthesize a real sinusoidal oscillation having
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Figure 1. The output of the iteration algorithm for input x(n) = cos(n∆) plus some

gaussian noise, starting at n=0, and zero beforehand. The filter output is in blue, the

predicted limiting ellipse is shown in green with good agreement.

the same amplitude and phase as the input. The method is to make a linear combination

of the real and imaginary parts of yn. We define the following quantities:

Af = 1
2
;

Ab = 1

2
√

1−2(1−w) cos ∆+(1−w)2
;

φ = ∆ + arctan
(

(1−w) sin 2∆
1−(1−w) cos 2∆

)

;

α = ∆−φ
2

;

β = ∆+φ
2

.

(5)

It is shown in Appendix A that the following linear combination of the real and

imaginary parts of yn is a real sinusoidal oscillation having the same amplitude, phase

and frequency as the input signal xn.

yR
n =

cos α

Af + Ab
<{e−iβyn} +

sin α

Af − Ab
={e−iβyn}. (6)

Here < and = denote the real and imaginary parts of their arguments.

The synthesized cosine wave can be subtracted from the input drive, which must

include a sinusoid at the filter frequency, but could also include broadband noise. Figure

2 shows the result of the subtraction for the input signal and Gaussian noise used to

generate Figure 1. Subtraction is by eye quite effective after the ring-up time of the

iteration algorithm.
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Figure 2. The upper pane in this figure shows (in blue) the input signal for a test

of the line subtraction with EAC. The blue curve is a line plus Gaussian noise. The

green curve is the I phase output of the algorithm as defined in Appendix A. The

lower pane shows the difference between the two, with the line clearly suppressed after

the response time of the filter, a few cycles for this choice of w and ∆.

3. Application to feedback control systems

Figure 3 shows a generic feedback control loop operating on some plant. Blocks labelled

D denote the plant, blocks labelled C denote portions of the feedback controller. We

consider the case where a coherent background Ni enters the plant at some point.

Portions of the plant before (after) the point of entry of the noise are denoted by DB

(DA). The feedback controller is split into two components, a conventional frequency

dependent controller CF , and a new controller, CN whose purpose is to minimize the

coherent signal, No appearing at the plant output.

The coefficient w is made sufficiently small so that the transfer function CN(ω) is

sharply peaked at 2πf . Therefore this portion of the controller only has a significant

effect on the controller at frequency f . The transfer function G(ω) for the coherent

signal is given by

G(ω) =
No(ω)

Ni(ω)
=

DA(ω)

1 − DAωDBω (CN(ω) + CF (ω))
. (7)

Here DB(ω), DA(ω), CF (ω) and CN(ω) are the complex transfer functions of the

different elements of the loop at frequency ω. We assume that DB(ω), DA(ω) and CF (ω)

are known. Errors in the estimates of these quantities will degrade the performance of
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Figure 3. A controlled system with feedback and noise coupling in to a point in

the plant at frequency f = 2πω. The input to the plant is at the label SIP, then

noise injected is Ni(ω). The noise content of the plant output is No(ω). The feedback

controller is split into two components, CF providing broadband control and CN (ω) the

additional new controller component aiming to suppress the component at frequency

f at the plant output.

the suppression algorithm.

Good suppression of the coherent component at the servo output is achieved when

A = 1/G � 1. We also require that G is real, so that the remaining coherent signal

at the output is in phase with the input signal. The requirement of a particular A

and a real transfer function G are sufficient to constrain the amplitude and phase of

CN(ω). The amplitude and phase of CN(ω) are denoted by CN and ε respectively,

so that CN(ω) = CN exp(iε). The amplitude and phase of the response of the EAG

algorithm can be set by inserting extra amplitude and phase factors into Equation 6,

yielding

yR
n =

CN cos α

Af + Ab

<{e(−iβ+iε)yn} +
CN sin α

Af − Ab

={e(−iβ+iε)yn}. (8)

This signal leads the input waveform by a phase of ε radians and has an amplitude

CN times the amplitude of the input waveform. To determine CN and ε that achieves

the required attenuation of coherent background at the output, we first split the transfer

functions of the other elements of the control system into their magnitudes and phases.

DA(ω) = DAeiρ

DB(ω) = DBeiσ

CF (ω) = CF eiλ

DA(ω)DB(ω) = Dei(ρ+σ).

(9)
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The gain G of the servo may now be expressed as
[

G

DA

]

=
1

A
=

1

e−iρ − DCFei(σ+λ) − DCNei(σ+ε)
. (10)

Equating the real and imaginary parts of Equation 10 we obtain

sin ρ + DCF sin(σ + λ) + DCN sin(σ + ε) = 0

cos ρ − DCF cos(σ + λ) − DCN cos(σ + ε) = A.
(11)

Solving simultaneously we obtain expressions for the amplitude and phase of the

EAC algorithm

ε = arctan
(

DCF sin(σ+λ)+sin ρ
A+DCF cos(σ+λ)−cos ρ

)

− σ

CN = 1
D

(A2 + D2C2
F + 1 − 2DCF cos(ρ + σ + λ)+

2A(DCF cos(σ + λ) − cos ρ))
1
2 .

(12)

If we set CN and ε using Equations 12 then we expect the amplitude of the plant

output at frequency 2πω to be 1/A times the amplitude of the input Ni.

4. Application to monitoring of irregularly sampled data

This application is not yet developed. It applies to data where we have data samples at

an arbitrary set of times, but we know the timestamps of each data sample. In this case,

we may set the phase shift ∆ between successive data samples in the sequence according

to the known phase delay between the samples at a certain frequency. The result will

be an oscillator at that frequency driven by the frequency component of the data at

that frequency. This may be useful for determining a particular Fourier coefficient of an

irregularly sampled data set from a set of irregularly sampled data points. Applications

in LIGO include deriving information from channels when the interferometer is falling

in and out of lock frequently, and possibly to slow controls data which is irregularly

sampled due to the nature of the slow controls DAQ.

5. Application to digital phase locked loops

From the theory in Appendix Appendix A a sinusoidal input to the iteration algorithm at

the frequency f = ∆/2πts can be used to synthesize a phasor whose argument advances

by ∆ at each sampling time. The output y(n), multiplied by a phase e−i∆ would therefore

be expected to have a stationary phase. We could imagine measuring the phase shift of

y(n)e−in∆ between successive samples and using this variable to feed back to the phase

in the iteration algorithm. This is effectively a phase locked loop as long as the frequency

shift in the line driving the iteration algorithm is sufficiently slow to allow locking to the

line to be maintained. The advantage of this idea over conventional digital phase locked

loops (DPLL) is that no externally synthesized oscillator is necessary. The investigation

of this possibility for DPLLs will naturally follow the analysis of conventional phase
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locked loops in a treatment such as that of Gardener. Applications of this idea include

tracking and subtraction of lines having frequencies that drift significantly with time.

6. Conclusions

We have shown that an iteration algorithm implemented as a complex time-independent

IIR filter on an input data stream can be used to synthesize and subtract sinusoids having

arbitrary amplitude and phase from noisy input data containing coherent features at

high amplitude. By analogy with the closely related exponential averaging algorithm,

the response time τ of the iteration algorithm is given by τ = ts/w, where ts is the

sampling time.

Implementation and testing with real data remains to be done. Testing on simulated

data has proceeded as far as verification that the algorithm can be used to subtract a

single fixed frequency sinusoid from Gaussian noise, and verification that the oscillator

y(n) traces out the ellipse in the stationary state that is predicted by the analysis of

Appendix A. No testing of the performance of EAC in a feedback loop has yet been

attempted on either simulated or real data. The algorithm is sufficiently fast that testing

on simulated data can be done entirely in matlab with no speed or CPU load problem.

For testing on real data, the approach I have taken with EFC, where the algorithm

is coded up as ANSI C code with wrappers into the DMT (as a derived filter class

inheriting FilterBase() and Pipe()) would seem to be a good first step. Following

this, testing of the algorithm on data could proceed using the DMT and some variable

frequency line target, perhaps a violin mode resonance.

This document has been assigned LIGO DCC number LIGO-T080244-00-K.

Appendix A. Coefficients for output phase ellipse eccentricity, rotation, and

phase shift

Consider the algorithm of Equation 4 as a difference equation for a circuit with an

applied driving term. The driving term is an oscillatory input x(n) = cos(ωt). We

express this input in terms of a basis of complex exponentials in the usual way,

x(n) =
1

2
e+in∆ +

1

2
e−in∆. (A.1)

We consider the effect of the two exponential components of the oscillation as two

separate driving terms. The left hand term is easier, because it turns out that the

response of the difference equation to this drive has a phase shift with respect to the

input drive that is independent of w. Write the solution in the presence of this drive

as yn = AFein∆, where AF may be complex. Substitute in to the iteration equation to
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obtain

AF ein∆ = e+i∆
(

(1 − w)AFei(n−1)∆ + wein∆
)

= (1 − w)AF e+in∆ + wein∆e+i∆

AF = (1 − w)AF + wei∆

AF = e+i∆.

(A.2)

Therefore the response of the iteration equation to the driving term x(n) = e+in∆

may be written

yF (n) = e+i(n+1)∆. (A.3)

The driving term x(n) = e−in∆ is more troublesome. Define the response of the

iteration equation to this driving term as y(n) = ABe−in∆+iφ, where AF and φ are real.

Substitute in to the iteration equation again to yield

ABe−in∆e+iφ = e+i∆
(

AB(1 − w)e−i(n−1)∆e+iφ + we−in∆
)

ABe+iφ = AB(1 − w)e+2i∆e+iφ + we+i∆

AB = AB(1 − w)e+2i∆ + we+i(∆−φ).

(A.4)

Equating real and imaginary parts yields

AB = AB(1 − w) cos 2∆ + w cos(∆ − φ)

0 = AB(1 − w) sin 2∆ + w sin(∆ − φ)
(A.5)

Eliminating AB by division between these two equations yields

tan(φ − ∆) = (1−w) sin 2∆
1−(1−w) cos 2∆

φ = ∆ + tan−1
(

(1−w) sin 2∆
1−(1−w) cos 2∆

)

.
(A.6)

Squaring and adding Equations A.5 yields

w2 = A2
B (1 − 2(1 − w) cos 2∆ + (1 − w)2)

AB = w√
1−2(1−w) cos 2∆+(1−w)2

. (A.7)

Therefore the response of the iteration equation to a driving term x(n) = e−in∆

may be written

yB(n) = ABe−in∆+iφ, (A.8)

with φ and AB given in Equations A.6 and A.7. Therefore the response of the

iteration equation to a real cosine wave x(n) = cos(n∆), through its expression in terms

of exponentials through Equation A.1 is

y(n) = Afe
+in∆+i∆ + Abe

−in∆+iφ, (A.9)

where Af = 1/2 and Ab = AB/2, AB and φ being dependent on w through

Equations A.2 and A.7. This derivation justifies the definitions of the first three

quantities given in Equation 5.
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We now show that the locus of the yn in the complex plane tends to an ellipse

centered on the origin in the steady state, and calculate the parameters of this ellipse

in terms of w and ∆. Factor e+i∆/2 and e+iφ/2 out of Equation A.9 to obtain

y(n) = ei(∆
2

+φ

2 )
(

Afe
+in∆e+i(∆

2
−

φ

2 ) + Abe
−in∆e−i(∆

2
−

φ

2 )
)

. (A.10)

Using the definitions of α and β written down in Equation 5 and rearranging, this

becomes

yne−iβ = Afe
+in∆+α + Abe

−in∆−α

= (Af + Ab) cos(n∆ + α) + i(Af − Ab) sin(n∆ + α).
(A.11)

These Equations explain the final state ellipse traced out by the output of the

iteration equation. The angle β is the angle between the major axis of the ellipse

formed by the locus of y(n) with respect to the real axis. Rotating the ellipse through

angle −β about the origin yields an ellipse with its semimajor axis along the real axis.

This is shown explicitly by the second equation in A.11, the right hand side of which is

the parameteric equation for such an ellipse. The angle α is the argument of the phase

rotated ellipse at n = 0, when the excitation x(n) is pure real, and is therefore the phase

lead of the phase rotated output with respect to the phase of the drive waveform.

We now use the iterative equation output to synthesize oscillations at the original

frequency and in phase with the drive. From Equation A.11 we can find the expressions

for cos(n∆ + α) and sin(n∆ + α)

cos(n∆ + α) = <(yne−iβ)
Af+Ab

and sin(n∆ + α) = =(yne−iβ)
Af−Ab

. (A.12)

Addition formulae allow us to make linear combinations of these expressions as

follows

cos(n∆ + α) = cos(n∆) cos α − sin(n∆) sin α

sin(n∆ + α) = cos(n∆) sin α + sin(n∆) cos α.
(A.13)

Eliminating the terms in sin(n∆) between these two simultaneous equations yields

cos(n∆) = cos α cos(n∆ + α) + sin α sin(n∆ + α)

= cos α
Af+Ab

<{e−iβyn} + sin α
Af−Ab

={e−iβyn}.
(A.14)

This is equation 6 for the synthesized replica of the real cosine drive input formed

entirely from the output of the iterative equation. We may also eliminate terms in

cos(n∆) to obtain a synthesized sinusoid that is in the Q phase quadrature with respect

to the drive,

sin(n∆) = cos α sin(n∆ + α) − sin α cos(n∆ + α)

= cos α
Af−Ab

=(e−iβyn) − sinα
Af+Ab

<(e−iβyn).
(A.15)

Finally we give an expression for a sinusoid with an arbitrary phase lead ε with

respect the drive x(n). To this end we note that in Equation A.14, multiplying the

output yn by a phase factor e−iβ rotated the phasor through an angle −β with respect
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to the real axis. Therefore multiplying it by a phase factor e+iε should add a phase lead

of ε to the synthesized output. This means that an output of arbitrary phase lead ε

with respect to the drive can be synthesized using the following linear combination of

the real and imaginary parts of the iteration algorithm output.

cos(n∆ + ε) =
cos α

Af + Ab
<{e−iβ+iεyn} +

sin α

Af − Ab
={e−iβ+iεyn}. (A.16)

As a check, if we set ε = −π/2 we should obtain the Q phase result of Equation A.15.

We get a factor of −i from each of these substitutions into Equation A.16, and the real

(imaginary) part of −iz is +(−) the imaginary (real) part of z. These transformations

turn Equation A.16 into Equation A.15, which is what we would expect if retarding the

I phase by π/2 yields the Q phase. This is Equation 8 used to incorporate EAC into a

feedback controller for in loop line subtraction.
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