
Online Adaptive Filtering:
The Bork-Space XFCODE

M. Evans

June 13, 2008

1 Introduction

Conceptually, an adaptive filter algorithm is simply a means of measuring the
transfer function from a noise source to a signal, and using that transfer func-
tion to remove the noise from the signal. The algorithm is adaptive because
it uses feedback to adjust the noise-to-signal transfer function. Online adap-
tive filtering is based on the least mean squares (LMS) algorithm, which can
be shown to produce a Wiener filter under certain conditions. The variant
most closely related to ours appears to be the “Filtered-X LMS” algorithm
(FXLMS), which accounts for system transfer functions. The theory behind
the LMS algorithm, and FXLMS variant, can be found on-line and will not
be discussed here.

2 Algorithm

The LMS algorithm is often drawn in what I will call an “off-line” configu-
ration (see figure 1). The error signal is simply the difference between the
target “Noisy Signal” and the correction signal output by the FIR filter. The
entire algorithm can be written as

Serr = Starg − Scorr, (1)

Scorr = ~vT
FIR~vwit, (2)

with the adaptive part changing the FIR coefficients ~vFIR by

∆~vFIR = µSerr~vwit (3)

1

LIGO-T080151-00-D



Figure 1: Functional parts of the LMS algorithm.

at each cycle. µ is the canonical name for the adaptation rate.
One might imagine that, in the context of LIGO, we would like to min-

imize some control signal by using a witness sensor to predict its value and
cancel its effect at or near the source. For example, one could use a seis-
mometer to move HEPI so as to cancel seismic noise that would otherwise
be seen in DARM CTRL. 1 If we ignore (or compensate) the actuator trans-
fer functions, and assume that our correction signal is sent into a loop with
high bandwidth, we can think of this as a simple rearrangement of the LMS
algorithm in which the LMS error signal is replaced by the control signal
produced by the high-bandwith loop (see figure 2).

Unfortunately, the stability of the LMS algorithm is dependent on the
phase of the transfer function from the correction signal to the error sig-
nal Hcorr→err. In the original form Hcorr→err = −1, but as we move to-
ward a more realistic implementation this simple relationship is lost. While
one can imagine compensating actuator transfer functions so as to maintain
Hcorr→err = −1, there are some inevitable features of real systems which
cannot be compensated in on-line operation (e.g., delays). The FXLMS vari-
ant is designed to deal with the stability problems brought on by a system
complicated by non-unity transfer functions (see figure 3).

As an incomplete summary of the theory behind FXLMS, to have stable
adaptation one must ensure that

Hcorr→err = −Hmatch (4)

1This is, of course, already done, but not adaptively.

2



Figure 2: Analogous to LMS arrangement, but with high-gain loop.

Figure 3: Filtered-X functional blocks with high-gain loop.

3



where Hmatch is the filter applied to the witness signal before it is sent to the
adaptation block. More accurately, it is sufficient to ensure that the phase
of Hmatch is close to that of −Hcorr→err. A non-unity magnitude will effect
the adaptation rate, but it should not prevent stability. This fact can be
exploited to target an adaptive filter to a limited frequency band.

3 Implementation

The OAF implementation currently running at the 40m is shown in figure 4.
The OAF is quite minimal in that it only implements the FIR, up and down
sampling, and adaptation. In order to have a functional system, one must
add anti-alias and anti-image filters, as well as compensation and matching
filters, as described in the previous section. The configuration parameters of
the OAF are:

NTAP the number of FIR coefficients for each witness channel
Rdnsamp the down-sampling ratio
NAux the number of witness channels

These parameters are changed any time the RESET value changes to a value
other than zero. Additionally, there are 3 other values that take immediate
effect when changed:

µ the adaptation rate
τ the FIR coefficient decay rate (fractional loss per downsampled cycle)
delay the number cycles of delay (front-end clock cycles)

The delay given in this field is added to the internally calculated sample-and-
hold delay inherent to the up and down sampling performed by the OAF.

The FIR coefficient decay is a feature I added to allow the OAF to forget
transients. Typically very small values are sufficient (e.g., τ = 10−4µ), though
this value depends on what you are trying to convince the OAF to do. Setting
τ = 1 can be used to clear the FIR coefficients.

The OAF implementation at the 40m is very limited, and intended for use
only as a prototype or proof-of-principal. It currently exists as a Bork-Space
function call block (XFCODE), and is written in such a way that only one
such block can exist on a given front-end. The code, TOP_XFCODE.c, can be

4



Figure 4: Internal blocks of the OAF implementation.

found in the front-end source directory.

4 Tuning

Since the OAF up and down samples the data, you, the user, must make anti-
alias and anti-image filters. These filters should be place in the ERR_EMPH,
CORR, and PEM_n filter banks. Since compensating these filters would make
them worthless, they have to be matched. This is most easily done by placing
the product of the ERR_EMPH and CORR (AA and AI) filters in the PEM_n_ADPT
filter banks.

Still, to make the OAF work, the stability requirement given in equation
4 must be met. To do this you should measure the TF from the correction
signal to the error signal and either compensate it or match it (ignoring the
AA and AI filters which you have already accounted for). Since there is
no easy external way to compensate or match delay, the OAF has a delay
buffer. Compute the delay in front-end cycles from the phase at the Nyquist
frequency of your downsampled system (i.e., for a front-end that runs at
2048 and a down-sample ratio of 16, you should take the phase at 64Hz and
multiply by 16/180). Of course, for a pure delay you can use any frequency,
but this is the one at which the OAF is most sensitive to unmatched delay.

5


