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1 Introduction

KleineWelle is a multiresolution method which attempts to find and characterize transients
in an input timeseries. The method may be applied to the interferometric gravitational wave
channel (LSC-DARM_ERR) or to other interferometer and environmental channels to search
for statistical artifacts. KleineWelle makes use of the dyadic wavelet transform [2] to search
for regions of excess energy in the time-scale decomposition. The strength of this approach
lies in the computational efficiency of the transform, as well as its multiresolution properties.

2 Algorithm

2.1 Wavelet Transform

The Wavelet transform[T], 2] for timeseries f(¢) is defined by the integral,

+oo —u
Witws) = [ s o (S50 ar )

where the wavelet, 1, is a time-localized function of zero average.

The coefficients W (u, s) are evaluated continuously over times, u, and scales, s. Our ability
to resolve in time and frequency is then determined by the properties 1) assumes at each scale.
At large scale, v is highly dilated yielding improved frequency resolution at the expense of
time resolution. At small scale, we achieve good time resolution with large uncertainty in
frequency.

For the case of discrete data, a computationally efficient algorithm exists for calculating
wavelet coefficients over scales that vary as powers of two: s € {2/7'|j € ZT}. This is
the dyadic wavelet transform, which can be implemented for a limited family of wavelets
using conjugate mirror filters. The filters consist of a high pass filter, H , and low pass
filter, j}, which can be applied in a cascade to obtain the wavelet coefficients. Beginning
with the original time series, Ay, of length N, two sequences of length N/2 are obtained by
application of the high pass and low pass filters followed by down-sampling. The sequence
of detail coefficients, D;, and approximation coefficients, A;, are defined at each level, j, of
the decomposition by )

Dj = %I(Aj—l) and (2)
A; = L(Aj).

J

The detail coefficients for scale s, where s = 277!, calculated in this manner are the same as
the wavelet coefficients obtained from Equation [1L If N is a power of two, so that N = 2™,
the final approximation sequence will be A,,.
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The simplest dyadic wavelet is the Haar function:

1 0<t<1/2
phear)y =4 -1 1/2<t<1 (3)
0 otherwise.

The corresponding high pass and low pass filters are

[ Haar [+1,-1]/v/2 and
[Hear = [41,+1]/V?2,

(4)

from which we see that the detail coefficients are related to the differences of each pair of
points in the parent series, while the approximation coefficients are related to the averages
of each pair.

2.2 Data Conditioning and Linear Predictive Filtering

KleineWelle supports the use of linear predictive filtering to whiten the data prior to the
wavelet decomposition. This simplifies the statistics of the analysis, and removes the other-
wise dominating effects of strong lines and other coherent noise sources from the calculation
[3]. A user enables linear predictive whitening by setting the filter option to Ilpef. A Butter-
worth high-pass prefilter is automatically applied and the linear preditive filter order is set
automatically depending on the frequency range of the search.

2.3 Event Selection

As the whitened data are passed to the dyadic wavelet transform, for a sufficiently large
scale, 7, the wavelet coefficients, D, within the scale will approach a zero-mean Gaussian
distribution with standard deviation o; by the central limit theorem. We therefore define
the sequence of squared normalized coefficients, or normalized pixel energies at scale 27,

E; = D} /o3, (5)
which is chi-squared distributed with one degree of freedom

It is then simply a matter of thresholding on the energy of individual pixels, €¢; € E;, to
identify statistical outliers. We may also choose to cluster nearby pixels to better detect
bursts which deviate from the dyadic wavelet tiling of the time-frequency plane. For a
randomly selected cluster C' of N pixels, we define the total normalized cluster energy,

EC: Z El'j, (6>

(1,5)eC
which is also chi-square distributed, but with N degrees of freedom.
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The significance of this cluster of pixels is defined by,

S = —ln/OO X~ (E)dE, (7)

Ec

So that the significance is a function of cluster energy Fo and the number of pixels in the
cluster V. It is therefore possible to select a threshold significance to achieve a desired white
noise false event rate.

3 DMT Implementation

KleineWelle currently runs as a DMT Monitor [4]. This allows for the possibility of running
online using streaming realtime data, however the current focus of the pipeline is offline
analysis. The most current version uses the DMT multistream offline build which does not
support online data access but allows for two input file streams to be processed at the same
time (useful for adding software injections).

3.1 Dependencies

KleineWelle depends on a DMT implementation of linear filtering, LPEFilter, by S. Chatterji,
and a dyadic wavelet library, mywv2lib, by E. Katsavounidis and G. Martin. LPEFiler itself
inherets from the FIRFilter class in DMT, and is used in the same way. The wavelet library
provides a simple interface via arrays of floats to both set the input series, and to get the
decomposition coefficients.

3.2 Data Access

KleineWelle uses DMT’s DatEnv for data access. In this framework, a certain amount of
data called the stride is available for processing at any one time. The data processing is
done in a loop ProcessData() which obtains the next continuous stride of data each time it
is called. Since there is no guarantee that the data are continuous from call to call, some
amount of data handling is required in kleineWelle to both account for filter transients and
maintain a power-of-two length of data for the dyadic wavelet transform. When kleineWelle
has detected a discontinuity in the current stride of data from the last block, it temporarily
sets the stride to one second and loops once more to include stride+4 seconds of data before
filtering. The first four seconds of data are then discarded leaving exactly stride seconds
of filtered data. The FIRFilter and LPEFilter classes automatically store history to handle
continuous data.

KleineWelle can also be passed a segment list of times to be analyzed using the segmentFile
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parameter. No data will be analyzed which falls outside of these segments. If data is not
available for times within a segment, it is skipped and no error is produced.

Besides the four second loss due to filter transients, kleineWelle also loses some amount of
data at the end of each analysis segment due to the fact that the amount of continuous data
anlayzed must always be a multiple of the stride.

3.3 Simulations

KleineWelle supports loading a separate stream of MDC data sets through DMT’s mul-
tistream class. While the channel parameter defines the gravitational wave channel, the
injections parameter defines the channel containing the injection timeseries. The injections
can be scaled by a multiplicative factor which is 1.0 by default. If there is only one data
stream, kleineWelle will assume the both the data channel and injections channel are in the
available data stream. If there are two data streams, the injections are read from the second
data stream. To use the multistream class to read in two data streams simultaneously, one
must first create the two ASCII lists of frame files which define each stream. Next, the user
must create a third two-line ASCII file which containes the filenames of these lists. This ‘list
of lists’ is passed to DMT using the “—inlists” option.

3.4 Dyadic Wavelet Transform

The stride of filtered data are passed to the wavelet library for decomposition. KleineWelle
currently makes use of the Haar wavelet (equation [3]) though other wavelets could be added
in the future without major changes to the code. The wavelet library returns an array of
floats the same length of the input array that contains all the decomposition coefficients.
For an input series length N, the coefficients for scale j will be available in indicies N/27 to
N/2771 (counting from 1). The standard deviation of coefficients in each scale is stored in a
separate array and used for the subsequent statistical analysis.

3.5 Clustering

The wavelet coefficients which pass a certain amplitude threshold derived from the standard
deviation of coefficients in a given scale are stored as pixels in a vector of Element struc-
tures. Each structure contains information about the pixel’s time and scale, as well as its
unnormalized and normalized energy (Equation .

The pixels are run through a recursive clustering algorithm which takes nearby pixels and

clusters them into a single cluster represented by an Event structure. The clustering method
depends on a single integer input parameter maxDist. The distance between two pixels is
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defined as the sum of the difference in scales and the difference in time, with time measured
in units of the wider pixel. A pixel’s distance with itself is zero, and two pixels with an
adjacent side will have distance 1. Two pixels with an adjacent corner will have distance 1
+ 1 = 2. When clustering, any two pixels with distance less than or equal to maxDist will
be clustered. A pixel can only belong to one cluster, and pixels with distance greater than
maxDist will only be clustered if there are intermediate pixels to connect them.

3.6 Event Generation

Each cluster is represented by an Event structure, and contains derived quantities such as
the absolute start and end times of the event, the energy weighted central time, the energy
weighted central scale, and the cluster significance (Equation .

Clusters which pass the significance threshold are output in multicolumn ASCII format to
standard output. The current list of columns is,

e start time

e end time

e normalized energy-weighted central time

e normalized energy-weighted central scale translated into an approximate frequency
e summed unnormalized energy

e summed normalized energy

e number of pixels in the cluster

e cluster significance

3.7 Syntax

Options to kleineWelle are passed using an options file. Besides the DatEnv arguments, this
is the only argument sent to the program, thus kleineWelle can be run with,

./kleineWelle optionsfile (online)

./kleineWelle optionsfile -infile ‘gwffiles’ (currently unsupported in multistream DMT)

./kleineWelle optionsfile -inlist guffilelist.txt

./kleineWelle optionsfile -inlists listofquwffilelists.tzt
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The current set of available options and their defaults are included and described with the
sample options file in the CVS distribution.
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