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This is a brief note (intended for distribution to the coating thermal noise community) to sum-
marize how coating brownian noise (in particular) will change with arbitrary mirror shapes.
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I. INTRODUCTION

I present several different calculations to demonstrate
that coating thermal noise should be proportional to

S ∝ d

∫
d2r|P (r)|2 ∝ d

∫
d2K|P̃ (K)|2 (1)

where d is the thickness of the coating, P is a normalized
function proportional to the beam intensity profile, and
P̃ is the two-dimensional fourier transform of P .

In these calculations, I use the fluctuation-dissipation
theorem. I assume the elastic response is at all times
quasi-stationary as described in ??. I assume the mirror
is half-infinite.

Finally, in the second calculation, I assume the coat-
ing has the same elastic properties as the bulk,
save for the losses, which are far larger in the coating.

II. CALCULATION 1: SCALING ARGUMENTS

My result should not be surprising – it must have
this form, based simply on scaling arguments, because
no other length scale (besides the small thickness of the
coating) exists in the elasticity problem we solve!

In this section, I first sketch the argument for thermoe-
lastic noise (simpler, because no other lenth scale exists),
then describe a similar argument for thermal noise

A. Preliminaries - Scaling for thermoelastic noise

In this section, based solely on the known result that
the thermoelastic noise for a gaussian beam has S ∝ r3

o, I
deduce that the thermoelastic noise integral must satisfy

S ∝
∫

d2K|K||P̃ (K)|2 (2)

• Step 1 : The thermoelastic noise power spectrum
must be proportional to

S ∝
∫

d2KG(K)|P̃ (K)|2
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with a proportionality constant independent of
beam size or shape.

Reason: According to the fluctuation-dissipation
theorem, the noise is proportional to the power
dissipation rate Wdiss associated with a fluctuat-
ing pressure of shape P (r) on the mirror surface.
Manifestly (for half-infinite mirrors), Wdiss must be
proportional to a translation-invariant inner prod-
uct on P , of form

Wdiss ∝
∫

d2R

∫
d2R′V (R−R′)P (R)P (R′) (3)

∝
∫

d2KG(K)|P (K)|2 (4)

• Step 2 : The kernel G must be scale invariant, and
therefore satisfy G(λK) = λpG(K), and thereforem
be of form

G(K) = Kpc1

for some constant c1. After all, no other scale exists
in the (static) elasticity problem we are solving.

• Step 3 : Finally, to recover the usual result for gaus-
sian beams (i.e. S ∝ 1/r3

o), we must have p = 1.
Therefore, we find Eq. (2).

B. Scaling for thermal noise

We proceed as above.

• Step 1a: The brownian-noise power spectrum must
be proportional to

S ∝
∫

d2KG(K, d)|P̃ (K)|2

with a proportionality constant independent of
beam size or shape, or of coating thickness

• Step 1b: In the limit of small coating thickness d,
the first-order contribution to this integral is (prac-
tically by definition) the coating contribution to the
brownian noise:

G(K, d) ≈ Go(K) + dG1(K) + . . .
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• Step 2 : The kernel G1 must be scale invariant, and
satisfy

G1(K) = Kpc1

for some constant c1.

• Step 3 : Finally, to recover the usual result for gaus-
sian beams (i.e. S ∝ d/r2

o), we must have p = 0.

III. CALCULATION 2: USING NAKAGAWA

To check this simple scaling argument, we use an ex-
plicit approach, that relies on the elastic green’s functions
conveniently tabulated in an appendix of Nakagawa et
al[1].

[This discussion applies to Nakagawa et al’s approach
to coating thermal noise – they consider a homogeneous
slab of material with losses confined to a thin region of
depth d near the surface. In particular, we implicitly
assume the coating and substrate have the same elastic
properties.]

Setup: From Nakagawa et al’s Eq. (1) , we know

S ∝
∫

d2R

∫
d2R′P (R)P (R′)Imχzz(R−R′) (5)

where Imχzz(R,R′) is given by their Eqs. (4-5):

Imχzz(r) = φ
1− σ2

πE
[F (r, 0)− F (r, d)] (6)

F (r, z) =
1√

r2 + 4z2

×
(

1 +
z2/(1− σ)
r2 + 4z2

+ 12
z4/(1− σ)
(r2 + 4z2)2

)
(7)

Fourier representation: We can equivalently represent
this integral in the fourier domain, as

S ∝
∫

d2K|P̃ (K)|2
[
F̃ (K, 0)− F̃ (K, d)

]
(8)

where [Nakagawa et al Eq. A1]

F̃ (K, d) = 2π
e−2Kd

K

[
1 +

Kd

1− σ
+

(Kd)2

1− σ

]
(9)

In other words

S ∝
∫ ∞

0

2KdK|P̃ (K)|2 (10)

×
[
−1 + exp[−2Kd]

K
+

d exp[−2Kd](1 + Kd)
1− σ

]
Small-d limit : Naturally, P̃ (K) drops to zero well be-

fore K ≈ 1/d; therefore, we may take a small-d limit. We
therefore conclude

S ∝ d

∫
KdK|P̃ (K)|2

APPENDIX A: THERMOELASTIC NOISE OF
HALF-INFINITE MIRRORS

To evaluate the thermoelastic noise associated with a
given beam shape P (r), we must evaluate the integral
IA [Eq. (??)] given the solution ya to a model elasticity
problem [Eq. (??)]. As discussed in Sec. ??, if the mirror
is sufficiently large compared to the beam shape P (r),
we can effectively treat the mirror as half-infinite (i.e.
filling the whole volume z < 0) in the elasticity problem.
In this case, the bulk acceleration term in the elasticity
problem drops out [i.e. VA → ∞ in Eq. (??)] and we
seek only the elastic response of a half-infinite medium
to an imposed surface stress. This last problem has been
discussed extensively in the literature — cf., e.g., [24,
25] — and there exist simple fourier-based computational
techniques to generate and manage solutions. We apply
these known solutions from the literature to evaluate the
thermoelastic integral IA.

1. Elastic solutions for the expansion (Θ)

In the case of half-infinite mirrors, the response ya to
the imposed pressure profile P (r) can be found in the
literature [cf. Eqs. (8.18) and (8.19) of Landau and Lif-
shitz’s book on elasticity [24], where, however, the half-
infinite volume is chosen above the z = 0 plane rather
than below; see also Nakagawa et al. [25], especially their
Appendix A]. These expressions allow us to explicitly re-
late the expansion Θ to the imposed pressure profile P (r):

Θ (~r, z) =
∫

G(Θ) (~r, z; r′) P (r′) d2~r′ (A1a)

G(Θ)(~r, z;~ro) = − (1 + σ) (1− 2σ) zH(−z)

2πE |(~r − ~ro)2 + z2|3/2
(A1b)

where H(x) is a step function which is 1 when x > 0 and
0 otherwise.

Because we have complete transverse translation sym-
metry, we can make our results more tractable by fourier-
transforming in the transverse dimensions:

Θ̃ (K, z) ≡
∫

e−i ~K·~RΘ(R, z)d2R , (A2)

P̃ ( ~K) ≡
∫

e−i ~K·~RP (R)d2R . (A3)

For example, the convolution relating light intensity pro-
file to the associated elastic response, Eq. (A1a), can be
re-expressed as

Θ̃(K, z) = GΘ(z, ~K)P̃ ( ~K) (A4)

G̃(Θ)
(
z, ~K

)
= − (1 + σ) (1− 2σ)

2πE
e−|Kz| . (A5)
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2. Thermoelastic integral IA

Inserting the solution discussed above into Eq. (??)
and using fourier-transform techniques to simplify the
resulting integral, we find

IA =
(

(1 + σ) (1− 2σ)
2πE

)2 ∫
d2 ~K |K|

∣∣∣P̃ (K)
∣∣∣2 . (A6)
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