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Abstract

We describe the methods and procedures used to calibrate the ALLEGRO reso-
nant detector during the S4 run, when we made a search for stochastic gravitational
waves, in collaboration with the LIGO Livingston Observatory. First, the interaction
of the gravitational field with the resonant detector is calculated. Then the complete
antenna system is described. Then we describe the “calibrator”, or force actuator, and
the methods used to determine its actuation constant. This then allows an absolute
determination of the transfer function (or response function) that connects the gravi-
tational strain to the observable output. We then explain how this response function is
used to back-transform the raw observational data to nominal gravitational strain. A
comprehensive discussion of experimental detail is included, with many links to relevent
log entries.
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1 Introduction

The ALLEGRO resonant detector, operated by a group from Louisiana State University [1],
is a two-ton aluminum cylinder coupled to a niobium secondary resonator. The secondary
resonator is part of an inductive transducer [2] which is coupled to a DC SQUID. Raw data
acquired from the detector thus reflects the high Q resonant mechanical response of the
system. We must undo this transformation to get back the spectrum of the gravitational
wave strain signal. Previous joint searches for gravitational waves involving ALLEGRO
have focused on burst-like sources [3]. In these searches the raw detector output is filtered
[4][5] for burst-like signals. The filtering produces an event list of ‘triggers’ – calibrated
for some standard choice of burst waveform – which is compared with triggers generated in
other detectors. No coherent method is applied to multiple detectors in these searches. In
contrast, with a search for stochastic sources of gravitational waves [6], such as a primordial
background [7], the coherence of the stochastic signal must be preserved in each detector’s
calibrated data. Such a search is being undertaken [8][9] by cross-correlating data from
ALLEGRO and the LIGO Livingston interferometer [10]. Some details of the technique
employed for this search are presented by Whelan et al [11].

In this note we describe the procedures and measurements used to calibrate the resonant
detector. In logical order, we first determine the precise theoretical correspondence between:
1) a gravitational field h(t) and 2) a force F (t) applied to one end of the bar (Sec. 4.1). Then
we measure the absolute “actuation” constant of our force generator, which is a “calibration”
capacitor at one end of the bar (Sec. 5.2.2). This allows us to apply a known F (t) to one
end of the bar. Finally, we measure the absolute response function (or transfer function)
that transforms force into the observable voltage. A key element of this is getting all of the
timing and phase relationships right so that any signal can be faithfully recovered (Sec. 5.1).

All of the above are then used to make the crucial inversion, or back-transformation, from
the recorded detector output to nominal gravitational strain h(t).

2 The mechanics of a resonant detector

To first approximation, the mechanics of ALLEGRO are described in Fig. 1. The antenna
proper is a right-circular cylinder, or “bar”, and is represented in the schematic as the masses
m2 and m3 and the spring k2. They form a mechanical harmonic oscillator that is equivalent
to the first longitudinal mode of vibration of the actual bar, with a frequency near 904 Hz.
The mechanical resonator, or secondary resonator (m4 and k3), is shown attached to the
right face of the bar; it is tuned to have nearly the same resonant frequency, and it acts
as a mechanical transformer, converting small motions of the big masses (m2 and m3) into
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Figure 1: A schematic diagram of the mechanical parts of ALLEGRO, to first approximation

big motions of the smaller mass m4. The inductive transducer and amplifier (the SQUID)
produce an output voltage proportional to the differential displacement x4(t)− x3(t).

The calibrator is a capacitor plate m1 attached to the other face of the bar by a weak spring
k1. It faces a second capacitor plate (not shown), firmly attached to the end of the bar. AC
and DC voltages are applied to those plates to produce equal but opposite electrostatic forces
Fe(t). Because the spring k1 is very weak (the resonant frequency is 200 Hz), a force applied
near 900 Hz on the reaction mass m1 (inner capacitor plate) is almost entirely converted
into inertial motion, and essentially none of it is communicated back to the face of the bar
via the mechanical spring.

3 The complete detector

The path of a signal through the ALLEGRO detector is represented schematically in Fig. 2.
Each block in the diagram represents a particular transfer function that forms a stage in
the overall response of the detector. The first element shown is the gravitational field,
represented by the strain h(t). It produces any true gravitational part of the total force F (t),
conventionally assumed to be applied to one end of the bar. This force is simply proportional
to the second time derivative of the strain. All end forces excite the longitudinal vibrational
mode of the bar, which is strongly coupled to a secondary mechanical resonator mounted
at the right end. Motion of this secondary resonator x(t), relative to the bar face, drives a
current I(t) in a superconducting inductive transducer. A DC SQUID operating in a flux-
locked loop acts as a flux-to-voltage transducer. Its output voltage (vS) is then demodulated
by a two channel lock-in amplifier. The lock-in reference oscillator is synchronized to a
frequency source which is synchronized to a GPS receiver. The lock-in is used to heterodyne
the output of the SQUID, demodulating from ∼ 900 Hz down to DC, thus reducing the
required sampling rate and data volume. The value of this reference frequency is chosen to
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Figure 2: Diagram of the signal path for the complete detector. The blocks are components
that can be represented by linear input-output relations. The dots represent inputs or
outputs that may or may not be directly observable, but are useful for understanding the
dynamics of the system. All of the mechanics are included in the block labeled G. Unlike
interferometric gravitational wave detectors, feedback plays only a minor role.

be near the center of the sensitive band, about half-way between the normal mode frequencies
of the bar-resonator pair. For the S4 data run, this value was fixed at 904Hz.

The in-phase and quadrature outputs of the lock-in (v1, v2) go to low-pass anti-aliasing filters
and then to a data acquisition system which samples and stores the data (c1, c2) to a hard
disk at a fixed rate of 250 samples/s.

3.1 Feedback

There is an undesired, but weak, direct feedback from the SQUID input to the mechanical
resonator. Its effect is to “pull” the normal frequencies by a small amount (< 80 mHz), and
to destabilize the resonances. To counteract this, another feedback path has been added
from the SQUID output to the calibrator at the other end of the bar, to add some small
negative force feedback (“electronic damping”) to the modes. Both feedback couplings are
weak, and their effects are adequately summarized by determining the experimental mode
frequencies and decay times. We have thus omitted both feedback paths from the diagram
and from further discussion.
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4 Transfer functions

Here we explain the frequency domain transfer functions represented by the triangles and
boxes in Fig. 2.

4.1 Strain to Force

The first of these is the strain to force relationship J(f). The gravitational wave strain,
having tensor components ḧij, induces a tidal force distributed throughout the bar with the
force density at a coordinate xj in a bar of mass density ρ given by

fGW
i =

ρ

2

∑
j

ḧijxj (4.1)

We represent the displacement of an element of an elastic body with u. This obeys a
differential equation[12]

üi = (λ + µ)∇i(∇ · u) + µ∇2ui + fGW
i + fX

i (4.2)

Where λ and µ are the Lame form of the elastic moduli. The elastic body equation has
solutions of the form

u =
∑
m

am(t)Ψm(x) (4.3)

We will only be concerned with the first longitudinal mode. The cylinder axis is denoted
as x, with x = 0 at the center of the bar. The term Ψ1(x) is the mode shape, and for
this first mode we have Ψ1(x) = sin πx

L
where L is the physical length of the bar. We have

Ψ1(x = L/2) = 1 so this means a1(t) is the amplitude of motion of the end of the bar. Our
differential equation now becomes

ä1(t) + ω2
1a1(t) =

1

ρN1

∫
(fGW + fX) ·Ψ1d

3x (4.4)

The term N1 is a normalization constant (N1 ≡
∫

Ψ1 · Ψ1d
3x). This is a volume integral,

and integrating over two of the three dimensions gives us the cross sectional area of the bar
(A). So we have

N1 = A

∫ L/2

−L/2

sin2 πx

L
dx =

AL

2
=

V

2
(4.5)

The normalization is equal to half of the volume of the bar. We now evaluate the right
hand side of Eq. 4.4. We go back to our force density from the gravitational wave from
Eq. 4.1. For the external force density fX we choose a force that approximates the force
applied by the calibrator. This is a force applied to one end of the bar at a single point
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(fX = Fc · δx(x− L/2) · δy(y) · δz(z)). Our equation is now

ä1(t) + ω2
1a1(t) =

2

ρV

∫ L/2

−L/2

(
1

2
ρḧx + Fc · δx(x− L/2) · δy(y) · δz(z)) · sin πx

L
d3x

=
2

ρV
[
V ρḧL

π2
+ Fc]

=
2ḧL

π2
+

2Fc

M
(4.6)

We have two terms on the right hand side, the first for the distributed tidal force due to
the strain, the second for a direct force applied to a point on the end of the bar. It is this
second force which we can then use with the mechanical model discussed in Section 2. We
can replace the strain term with an effective force applied to the end of the bar with the
following.

ḧ =
π2Feff

ML
(4.7)

In the frequency domain this becomes

h̃ =
−π2F̃eff

ω2ML

h̃ =
−F̃eff

4f 2ML
(4.8)

Inverting gives our transfer function

F̃eff = −4f 2MLh̃ = J(f)h̃

J(f) = −4f 2ML (4.9)

The mass M and length L of the aluminum bar are known parameters.

4.2 Force to displacement

Next we deal with the mechanical response of the system to this effective force. We use
a model based on the mechanics discussed in Sec. 2. We have a pair of damped coupled
oscillators.

x̃(f) = G(f)F̃ (f)

x̃(f) = α

 1(
f 2

p − f 2 + ifpf

Qp

) − 1(
f 2

m − f 2 + ifmf
Qm

)
 F̃ (f) (4.10)

G(f) = α

 1(
f 2

p − f 2 + ifpf

Qp

) − 1(
f 2

m − f 2 + ifmf
Qm

)

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Here fp, Qp are the normal mode frequency and Q of the ‘plus’ mode (the higher frequency
mode in the bar-transducer system) and fm, Qm refer to the ‘minus’ mode. These quantities
can be extracted directly from the raw detector output as described in Sec. 5.2.4. The
factor α has dimensions of inverse mass. In our mechanical model of Sec. 2 it would have
a value 1

2
√

m3m4
. In the end though, this value is folded into an overall scale factor which is

determined experimentally as described in Sec. 5.2.4.

4.3 Displacement to current

What follows in the chain is the superconducting transducer. Motion of the secondary
resonator pushes magnetic flux through a coil which induces a time varying current.

Ĩ(f) = K · x̃(f)

Ĩ(f) =

(
IDC

g

)
x̃(f)

K =

(
IDC

g

)
(4.11)

Here IDC is a persistent current stored in the transducer, which is measured at the time that
it is injected. The effective gap between the secondary resonator and the superconducting
coil, g, is a parameter that can be determined by independent measurements of the trans-
ducer made prior to its installation on the bar (https://sam.phys.lsu.edu/ALLEGRO/552).
However, the value of K can be folded into an overall scale factor which is determined ex-
perimentally as described in Sec. 5.2.4.

4.4 Current to voltage

For the DC SQUID, input current passes through a coil and produces flux – which then
gives an output voltage. We fold the gain of a room temperature amplifier into the transfer
function. The result is a simple constant which has the dimensions of an impedance.

ṽS(f) = Z · Ĩ(f) (4.12)

The parameter Z can be determined from properties of the SQUID, and it will scale with
the SQUID amplifier setting. But again, the value of Z can be folded into an overall scale
factor which is determined experimentally as described in Sec. 5.2.4.

4.5 Demodulation

The lock-in amplifier and anti-aliasing low-pass filters are taken together. This step demod-
ulates the signal and also introduces a time delay and phase shift to the signal. We treat
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the output as a complex number, defining zv(t) = v2(t) − iv1(t). Care must be taken to
preserve the phase of the signal at this point. The output depends on the relative phase
of the signal and the lock-in reference oscillator, so the phase of this reference with respect
to the time base of the measurement must be known. This is set so that it has zero phase
(positive-going zero crossing) at each GPS 1 pps pulse. The reference frequency fr is set to
an integer number of Hertz so that this is possible. The convention chosen above preserves
the phase – Fourier components are shifted in frequency by the demodulation but their phase
is unchanged. We have

z̃v(f − fr) = A(f, fr)ṽS(f)

z̃v(f − fr) = aLei(td2π(f−fr))e−iφL ṽS(f) (4.13)

The overall amplifier gain aL is determined, and will vary with the amplifier setting. Again
this is folded into an overall scale factor which is determined experimentally as described in
Sec. 5.2.4. The reference frequency fr is set by the reference oscillator. The phase shift φL

and a time delay td are parameters determined by measurements discussed in Sec. 5.1

Lastly the two analog voltages (real and imaginary part of zv) are digitized. There is a scale
associated with the discretization D – units of counts per volt. The discrete time series is
represented here by zc

z̃c(f − fr) = Dz̃v(f − fr) (4.14)

The constant D is a known parameter of the data acquisition system.

4.6 Overall response function

The overall response of the detector is thus represented as a product of these six transfer
functions and we recover a frequency domain representation of the equivalent strain applied
to the bar.

h̃(f − fr) =
z̃c(f − fr)

JGKZAD
(4.15)

We do not undo the demodulation, so the final output of the back-transformation are the
demodulated frequency components of the strain. An inverse Fourier transform of h̃ produces
a complex heterodyned time series hH(t) which has information in a 250Hz band centered
at the reference frequency (near 900 Hz) at the 250 samples/s rate.

4.7 Calibrator actuation constant

Finally, we look at the path of the calibration signal, which shares the same path with a
gravitational wave signal starting with the mechanical response of the bar to a force. Since
we cannot produce a calibration gravitational wave in our laboratory that is strong enough
to detect, we apply a force to the end of the bar. We already know how to relate a strain

page 9 of 47



LIGO-T060096-01-Z

Draft

to such a force through Eq. 4.9 – though it is apparent that this relationship cannot be
verified with a direct measurement. The force is applied via the calibrator discussed in
Sec. 2. Given the transfer function of the calibrator H we can apply a known force to the
end of the bar and directly measure the response GKZAD. The calibrator was designed to
have a very simple geometry and mechanics. In principle, knowledge of the capacitance and
the area of the plates would allow us to calculate the actuation (applied voltage to force)
constant (see Sec. 5.2.1). It was discovered that this simple model of the force generator
is inadequate. Reciprocal measurements, where excitation and response were both done
through the calibrator, allow a determination of H. Details are discussed in Sections 5.2.2
and 5.2.3.

5 Measurements

5.1 Timing

The goal is to produce a strain time series that has the correct phase relation with respect
to a time scale that will allow comparison to signals from other detectors. There are some
special considerations for the timing that arise for data that is demodulated through mixing
with a reference signal in a lock-in amplifier prior to sampling. In the signal chain prior to
the mixing, the information is passed at a higher frequency – in this case a band around
∼ 900 Hz. A time delay in the signal chain before the mixing will have a different effect than
one that occurs after the heterodyning. For example, a 30 µs delay before the heterodyne
shifts the phase of 904 Hz by 9.8◦. The range of the phase shift over a 100 Hz band centered
at 904 Hz is only about a degree. A delay of this nature thus could be approximated by a
constant phase shift over the relevant band.

After the mixing the information is passed in the relevant (∼ 100 Hz) band around DC. In
this case a 500 µs delay gives a 9◦ phase shift at 50 Hz – and a nearly 20◦ span over the
relevant 100 Hz signal band (−50 to +50 Hz). This sort of delay is not well approximated
as a constant phase shift and must be treated as a frequency dependent phase shift.

For the data acquisition system it is the reference oscillator that provides the timing before
the mixing. This is why we synchronize the oscillator to GPS. It is the sample time of the
DAQ that provides the timing for the low frequency demodulated signal after the heterodyne.

5.1.1 reference oscillator

The phase of the 904 Hz reference oscillator, an SRS model DS345 function generator, was
reset three times just prior to and during S4. (For a list of resets see https://sam.phys.

lsu.edu/ALLEGRO/1097, https://sam.phys.lsu.edu/ALLEGRO/1223, https://sam.phys.
lsu.edu/ALLEGRO/1238)
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Figure 3: Plot of measurements of the reference oscillator drift during and around S4. The
red line is a fit to a linear drift rate, which shows that the osciallator, which is a frequency
synthesizer, is offset from the desired frequency by 48 nHz.

Each reset moved the sinusoid zero crossing to occur at the start of the GPS second. Looking
at the amount of drift for these and several other resets done before and after S4, we see
that they indicate a steady phase drift of magnitude 3.03× 10−7 rad/s. Figure 3 shows the
data points with the fitted slope. This drift rate, along with the time since the last phase
reset of the oscillator, was used to determine the reference oscillator phase (φL in Eq. 4.13 )
for all times during the data run.

5.1.2 DAQ timing

When we attempted to understand the stochastic hardware injections in detail, it was dis-
covered that the data acquisition system (DAQ) had a significant absolute offset between
the nominal sample time and the actual sample time, an offset that varied from one injection
to the next. Due to some fortunate foresight (thanks Bill Hamilton!), a DAQ channel had
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been dedicated to recording a GPS 1 pulse-per-second (1pps) signal. Using this pulse, it was
found that each launch of the DAQ (itself done with a GPS 1pps pulse) had an uncertainty of
up to one sample time (4 ms in this case) (see https://sam.phys.lsu.edu/ALLEGRO/1436).
Figure 4 shows the recorded 1pps signal for three different ‘timing epochs’ between which
the DAQ was restarted. It appears as if the initial “trigger” input to our DAQ never actually
started the sampling sequence, but instead acted as a “gate” to allow the next pulse in an
unsynchronized pulse sequence to become the first in that epoch.

During a continuous run, or timing epoch, the stability of the DAQ timing was much better
(see https://sam.phys.lsu.edu/Data_Analysis/307). The histogram plot reproduced
here as Fig. 5 shows the spread of times extracted from the 1 pps. The stability is seen to
be within a few µsec.

Therefore each restart of the DAQ produces a new timing epoch, where the timing stability
is satisfactory, but the overall absolute timing needs to be determined. The absolute timing
of a particular epoch was determined in two sets of measurements. First, by injecting a
sine wave, whose zero crossing had been synchronized to the GPS 1pps, directly into a
DAQ channel (https://sam.phys.lsu.edu/Data_Analysis/276). Second, the hardware
injection system was used to inject a known broad-band signal at a known time (see https:

//sam.phys.lsu.edu/Data_Analysis/282). Using these epochs of known absolute timing
we can go back and determine the absolute timing of any epoch using a relative timing
offset. That relative timing offset is obtained via the recorded GPS 1pps channel and an
interpolation method (see https://sam.phys.lsu.edu/Data_Analysis/275).

All of this leads to a correction offset of 1.24 ms for the timing during the S4 run (see
https://sam.phys.lsu.edu/Data_Analysis/281). The sign is such that we should sub-
tract 1.24 ms from the nominal time labels. In practice this timing offset is applied via a
phase factor in the frequency domain by the calibration routines (see Sec. 7).

5.1.3 filter delays

Once the timing of the DAQ is known we can then turn to the time delays associated with
any filters in the signal path.

The input filters of the lock-in produce a nearly frequency independent phase shift over
our frequency band of interest. The output lock-in filters and the anti-aliasing filter that
follows introduce a significant time delay. These values are determined in measurements
of the isolated electronics (see https://sam.phys.lsu.edu/Data_Analysis/291) and were
determined to be a 10.9 ms delay and a 15◦ phase shift. In fact, we see from these data
that a constant phase plus a term linear in frequency (the time delay) do no account for the
entire effect on the phase due to these filters. Higher order terms (quadratic in frequency
and so on) can be fit as well. Although this is a small effect, these terms were included
(see https://sam.phys.lsu.edu/Data_Analysis/319). As with the DAQ correction, these
factors are applied via a phase factor in the frequency domain by the calibration routines
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Figure 4: The figure shows fine detail at the leading edge of 6 recorded timing pulses, or
“GPS 1pps” pulses – a pair for each of three different epochs in 2005. It can be seen the
variation is miniscule during an epoch. There was a restart on day 153 at 19:37:15 and a
restart on day 181 at 20:39:45. Each restart of the DAQ significantly shifts the recorded
1pps relative to the data point times. The horizontal axis shows a the sample number.
The spacing between data points is 4 ms. (This plot is also available from the elog at
https://sam.phys.lsu.edu/ALLEGRO/1436)
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Figure 5: Histogram of the timeshift between the exact sample time and the leading edge of
the GPS1pps pulse during one epoch of S4, showing that the time distribution function was
about 4 microseconds wide.
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(see Sec. 7).

5.1.4 Further checks

Tests were performed to check the timing accuracy of the hardware injection system. An
input file was generated which produced a 1pps output that could be directly compared to
the GPS clocks. The agreement between them was observed to be better than a microsecond
(see https://sam.phys.lsu.edu/ALLEGRO/1453).

Additionally, as a sanity check, several sets of tests were done to compare the two independent
GPS clocks (an HP 58503A and a TruTime) used in the system. They agreed to better than
a microsecond. See https://sam.phys.lsu.edu/ALLEGRO/1442, https://sam.phys.lsu.
edu/ALLEGRO/1443 and https://sam.phys.lsu.edu/ALLEGRO/1447)

5.2 Magnitude

The above discussion on timing relates to producing h(t) with the proper phase. We know
turn to the task of producing it with the correct magnitude.

5.2.1 The force generator geometry

The force generator, or force actuator, or calibrator, or calibration capacitor, is shown in
Fig. 6. The working parts of the capacitor are accurately to scale, the rest is a reconstruction,
and is only approximate.

The capacitor plates themselves are both annular and matched in dimensions, with a nom-
inal outer diameter of do = 5.12 inches and a nominal inner diameter of di = 2.755 inches,
and an design gap g of 0.020 inches (see https://sam.phys.lsu.edu/ALLEGRO/591). Both
are electrically isolated from ground and the bar by sapphire washers or epoxy, and each is
connected to the outside by the center-conductor of a separate coaxial cable. Therefore we
can make a special type of electrical measurement, a “three-terminal capacitance measure-
ment using a ratio-transformer bridge”. Such a system can measure the direct capacitance
C0 between the two plates, and leave out all of the capacitance to ground that inevitably
comes with the cabling.

After assembly, this capacitance was measured to be 163.06 pF at room temperature, https:
//sam.phys.lsu.edu/ALLEGRO/688, and after the S4 run, while still cold, was found to
be 164.04 pF, https://sam.phys.lsu.edu/ALLEGRO/1310. Since stray capacitance is not
included in the measurement, to a good approximation this capacitance will be

C0 = ε0
A

g
(5.1)
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Figure 6: The calibrator, shown in cross-section, drawn to scale. The axis of the bar is
horizontal and coaxial with the calibrator, and a small portion of the bar face is shown on
the right. The lighter yellow capacitor plate is called the “outer plate”, and the darker yellow
one is called the “inner plate”; both plates are electrically isolated by insulators, shown in
green. The gray area is the electrically grounded enclosure. The outer plate is mechanically
connected to the “end cap” by a wide layer of epoxy (not shown), and so is rigidly attached
to the end-cap of the enclosure. The inner plate is attached to its mounting pedestal only
by thin flexures, so that its mechanical coupling to the bar is very weak. Pictures of it can
be seen at https://sam.phys.lsu.edu/ALLEGRO/593.
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where A is the annular area and g it the capacitor gap. Then we can infer the capacitor gap
g (when cold) to be

g = ε0

π
4
(d2

o − d2
i )

C0

= 5.043× 10−4 m = 19.9× 10−3 in (5.2)

where we have assumed a 0.5% linear contraction of the plate diameters due to the temper-
ature change.

From this geometry we can directly calculate the AC electrostatic force Fe(t) applied to the
plates if they are have a combined DC and AC voltage difference between them of VDC−ve(t).
Note the sign convention. The instantaneous electric force Fe is

Fe =
1

2
ε0

∫
E2dA (5.3)

where E is the electric field, so, assuming a constant gap,

Fe =
1

2
ε0

V 2
DC − 2VDCve(t) + v2

e(t)

g2
A (5.4)

and if ve(t) is band-limited, and/or much smaller than VDC, we have accurately

Fe(t) = −
[
ε0A

g2
VDC

]
ve(t) ≡ Hve(t) (5.5)

and we have apparently found our force generator constant H

H =

(
−3.253× 10−7 N

V2

)
VDC (5.6)

The one serious uncertainty left is the degree of tilt, or systematic variation in the gap as
a function of azimuth angle. To first order, such variations must average out, but we don’t
know how to quantify any second-order effects.

Bound charge effect After several measurements of the transfer function from ve(t) to
output z, we found that they were not consistent between positive and negative values of
VDC. See, for example, https://sam.phys.lsu.edu/ALLEGRO/1219. This turned out to be
explicable in terms of a bound (or fixed) charge on the capacitor plates, whose value can be
parameterized with an offset voltage Voff , so now Eq. 5.6 becomes

H =

(
−3.253× 10−7 N

V2

)
(VDC − Voff ) (5.7)

where Voff = 1V. We made no great efforts to determine the time variation of Voff , because
it was a such small correction for the measurements done at high values of VDC .
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5.2.2 The reciprocity measurements

Introduction After the S4 run, quite a bit of effort went into making the so-called “gamma
measurements”. The ALLEGRO elog shows 25 “gamma runs”, each involving a number of
separate determinations of the various gammas.

The goal was to confirm the absolute value of the actuator constant H from Eq. 5.7. This
constant plays the same role as the “standard source” plays for a radio receiver. When
we have a standard source, we don’t need to understand every link in the chain of compo-
nents that make up the completer receiver, instead we need only to measure the output for
this “standard” input, and we have determined the absolute response function, or transfer
function.

There was an unexplained discrepancy in the early results (the “first trials”). This dis-
crepancy was that the H measured near 200 Hz was 5̃% lower than the “geometric” value,
but 2̃5% higher near 900 Hz. A refined understanding of the mechanics was needed (see
Sec 5.2.3). This note represents an explanation of this resolution of the earlier discrepancy.
A second series of trials to measure the gammas was undertaken as a further check for
systematic and statistical errors, but the earlier results were fully confirmed.

Gamma measurement procedure The concept of the gamma measurement is to make
use of the “reciprocal” property of many “transducers”, such as our force actuator. Reci-
procity says that an actuator is also a position sensor, and that it has the “same” coefficient
for both directions of operation, if those measurements obey certain conditions. Evidently
our capacitive actuator/sensor/transducer falls in this category.

A schematic version of the experiment is shown in Fig. 7. The normal configuration of
the transducer is altered, as shown, so that one plate can be quickly changed from a voltage
generator that applies an input to the capacitor, to a current-sensing amplifier that measures
its output. During the entire operation the other (main) transducer is unaltered, except that
the SQUID is turned off.

The procedure, as suggested in Fig. 7, has two distinct parts: pump, then sense. First, the
sine-wave generator, producing a ve(t) = Vp sin(2πf1t) exactly at the mechanical resonance
frequency f1, is switched on for a short time T , so that the mechanical resonator is pumped
up. Now it has a displacement x = xp cos(2πf1t), where the peak amplitude xp is far higher
than its thermal value. Then the switch is thrown, and this vibration causes a current
Ie(t) = Ip cos(2πf1t) which is sensed by an “ammeter”, also known as a “current amplifier”.
The current amplifier, by definition, senses current, but also has a “low enough” impedance,
compared to the output impedance of the capacitor, so that it will not reduce the current
from its maximum value. Then the result of each experiment can be parameterized by a
gamma, for this mode, defined to be

γ1 ≡
Ip

VpT
(5.8)
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which should be independent of the excitation time T and level Vp.

x

m

~
A

VDC

MPSP

Fe Fe

 I  (t)e

 v  (t)e

Cs

Cs

Figure 7: A simplified version of the “gamma procedure”, which uses reciprocity to measure
the actuator constant H. The moving capacitor plate MP is attached to the mechanical
oscillator but is electrically insulated from it; the “stationary” plate SP (floating in inertial
space) is biased by a battery to have voltage VDC . The switch is first set to allow excitation
exactly on resonance by the sine wave generator voltage ve(t) for a time T , and then is
switched to the “ammeter” A and the amplitude of the pumped-up current Ie(t) is measured.
Then gamma is defined as the ratio of “output” to “input”.

A simple relation between γ and H From the model in Fig. 7, we can then calculate
how gamma is related to the actuation constant. The exciting force is defined, in terms of
the actuation constant H, to be

Fe(t) = Fp sin(2πf1t) = HVp sin(ω1t) (5.9)

The mechanical response function, in the frequency domain, is

x̃(ω) =
F̃e(ω)/m1

−ω2 + ω2
1

(5.10)
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where ω = 2πf is the fourier angular frequency and m1 is the “effective mass” of the mode.
This can be transformed to find the exact Green function in the time domain, which leads
to a time response (neglecting the phase)

x(t) =
Fp

m

T

2ω1

cos(ω1t), t > T (5.11)

or, in other words, the peak displacement caused by the pumping is

xp =
HVpT

2ω1m1

(5.12)

Once the switch is moved over, we calculate the current from

I =
dq

dt
=

dC

dt
VDC +

dV

dt
C0 (5.13)

where V (t) is the AC voltage across the capacitor, and the second term on the right is the
usual current voltage relationship for a capacitor. The first term can be thought of as a
current generator Ie caused by changes in the capacitor gap g + x, i.e. by the motion of the
mass,

Ie = VDC
dC

dt
= VDC

(
dC

dx

) (
dx

dt

)
∼= VDC

(
ε0

A

g2

)
(ω1xp sin(ω1t)) (5.14)

or the peak current, after pumping, is

Ip =

[
ε0

A

g2
VDC

]
ω1

(
HVpT

2ω1m1

)
(5.15)

so immediately we have

γ1 =
H2

2m1

(5.16)

the main result. This result has a simple interpretation: a factor of H comes from actuation,
a factor of 1/(2m1) comes from mechanics, and one factor of H comes from sensing. Note
that the result depends upon the “mode mass” m1.

Extra precautions As noted above, a second set of gamma measurements was made in
the summer of 2006. Their primary purpose was to determine if there were flaws in the
measurement procedure, and as a refinement and check on the earlier measurements.

The main change in configuration was a change in the plates where the DC and AC voltages
were applied. In the first set of trials, we had often applied both voltages to the same plate,
with the other plate grounded. The electric force between the plates (proportional to (VDC +
vAC)2 was exactly as desired, but there must also have been electrostatic fields and forces
with the same exact time dependence being applied to the ‘back-side’ of the biased plate,
and to the enclosure wall behind it. These extra forces could conceivably have contributed,
so we eliminated them in the second trials by adopting the voltage bias configuration shown
in Fig. 7. The DC voltage now was applied to only one plate, the AC voltage only to the
other. Therefore there was no region where extraneous forces at the excitation frequency
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could exist. (See the circuit diagram attached to the gamma18 entry, for an example of
separation of AC and DC voltages. https://sam.phys.lsu.edu/ALLEGRO/1510 )

The measurement of duration T for the excitation phase was improved by using a “burst
generator” for ve(t). It produced a burst with exactly the specified number of cycles of a sine
wave at the desired frequency, thereby removing any errors associated with manual operation
of a stopwatch for measuring the duration.

The current amplifier, a SR830 lockin with two current inputs, was tested for accuracy at
the measurement frequency with a calibrated current source with an output impedance of
107 ohms. https://sam.phys.lsu.edu/ALLEGRO/1313. The input labeled I(108) was not
accurate, but the one labeled I(106)was. Since we used this setting for all measurements, we
were reassured that all measurements of peak ‘return’ current Ip were accurate.

We found that the minus mode frequency was significantly “pulled” by the SQUID feedback
(∼ 80 mHz). This was learned in the middle of the first gamma series (about gamma5).
In all the later measurements we took full precautions to determine the exact frequency for
every mode with the SQUID off, so that we could be certain the pumping frequency was
close enough to maintain good coherence throughout the pumping time T .

Finally, the software used to measure the time and phase dependence of the current Ip was
modified to remove any bias due to DC offsets. It was also modified to determine the “early
decay” correction, that is the effects of frictional loss during the excitation phase. These
changes were only incorporated in the second trials analysis.

These later measurements were NOT substantially different from the earlier ones, and con-
firmed their results, within reasonable errors. As a result, no electronic or procedural er-
ror was found. The earlier measurement results are summarized here https://sam.phys.

lsu.edu/Data_Analysis/212, and https://sam.phys.lsu.edu/Data_Analysis/294. Be-
cause the later measurements have better accuracy, and less possibility of systematic er-
ror, we report the details of those only. For a detailed summary of exactly where the
data used for the second series came from, and how the final numbers were arrived at, see
https://sam.phys.lsu.edu/ALLEGRO/1729.

Results for the “calibrator mode” Looking back at the cross-section drawing of the
calibrator, Fig. 6, the inner plate has a low-frequency mode (of translation parallel to the
axis) that is a good test of the entire gamma procedure. Because γ (see eq. 5.16) varies as
the inverse of the “mode mass” m1, this mode has a very large gamma, so is very easy to
excite. It also turns out to have a very long decay time, proving that it has unusually low
vibrational friction in its connection to the bar.

This inner plate resembles a wheel mounted by thin spokes to a pedestal; the pedestal is
attached to the bar via electrical insulators. The plate’s physical mass is estimated to be
318 grams, from measurements of its’ dimensions; the “effective mass” for this translational
mode will be essentially the same as the physical mass. The frequency of the translational
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mode mode of vibration was designed to be 200 Hz, and was measured to be 201.5 Hz when
cold.

Only a few gamma measurements were made of this mode, because its very long decay times
cause a long delay until the antenna can return to observing mode. The second trials, at
VDC = ±40 V, gave identical values (difference < 0.5%) of 2.36 × 10−10mhos/s (orders of
magnitude higher than the bar mode gammas, as expected). Using Eq. 5.16 and the mass
above, we find H = 3.06× 10−7N/V 2VDC . This is 5.3% lower than the value expected from
the 3-terminal capacitance measurement of the gap.

For many purposes, this 5% difference is perfectly good agreement between independent
methods. On the other hand, our current understanding of measurement errors suggests we
should have gotten better agreement, perhaps ∼ 1% difference. Perhaps this is an indicator
of the size of the systematic error in the geometric calculation due to the ‘non-flat’ plates.

Results for the main modes Many more measurements were made of the gamma’s for
the “plus” and “minus” modes of the bar. These results are shown in Figs. 8 and 9. These
measurements tell a pretty consistent story.

The minus mode values have significant scatter, perhaps because they are rather small, about
10 times smaller than for the plus mode. This difference in absolute values indicates that we
are fairly far away from optimal tuning. This value of detuning is consistent with the value
inferred from the “tuning curve” (see Appendix A).

The plus mode results are more sparse, because they take longer to measure. One value was
measured twice, and the reproducibility was remarkably good. (The blue circle and the red
plus fall exactly on top of each other in the figure.)

Modeling shows that we can combine the gammas for the two modes into a single value that
is supposed to be insensitive to the tuning. In other words, we are supposed to replace the
gamma in our initial simple model with the sum of the two gammas, and then use the bar’s
effective mass for m1

H2 = 2(M/2)(γ+ + γ−) (5.17)

where M/2 is the effective mass of the bar, and M is the physical mass. As an aside we
note that this result is in complete agreement with the ‘mixing angle’ formalism that we
have used in the past. The angle describes the degree of tuning of the modes and gives the
following for H:

θ = tan−1(

√
γ−
γ+

) (5.18)

H =

√
γ−M

sin θ
(5.19)

and

H =

√
γ+M

cos θ
(5.20)
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Figure 8: Results of measurements of the gamma ratio for the minus mode.
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Figure 9: Results of measurements of the gamma ratio for the plus mode.
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Figure 10: Results of measurements of the total gamma. Also shown is the best fit linear
function. The ‘enhancement’ factor is the ratio of experimental slope to the slope calculated
from the ‘geometric’ values of Eq. 5.7

Continuing with the measurements, each value of voltage provides an independent measure
of H. The four values obtained are plotted in Fig. 10, and then fit a linear function. The
results of the fit are also shown on that plot. (The data actually determine only H2, so
the overall minus sign for H is supposition.) The remarkable thing about this result is the
enhancement (or increase) in the actuation constant. The enhancement here is 23% over the
simple capacitor result, and 28% over the result obtained at 201 Hz.

Also remarkable is the finding of a voltage offset, as inferred by other measurements at lower
voltages. It is comforting that they agree.

There is not enough data here to nail the uncertainty, but it is consistent with very small
uncertainty, having a rms of the fractional residuals equal to 0.4%.

Again, comparing to the earlier determinations based on different data and an independent
analysis (see https://sam.phys.lsu.edu/Data_Analysis/212 and https://sam.phys.lsu.

edu/Data_Analysis/294) we see the results are reasonably close. In both cases the force
generator coefficient was determined to be ∼25% larger than expected based on geome-
try alone. This agreement between the two sets of measured results gives us considerable
confidence in that result.
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5.2.3 The interpretation of the reciprocal measurements

The full set of the gamma measurements all agree. So the question remains: how can the
actuation constant be 23% high near 900 Hz, as compared to a “geometric” (expected) value?

So we have explored possible mechanical effects, to understand the results, and thus to
determine which of the values to use near 900 Hz. Is it the one deduced from the measured
geometry, or the enhanced value found by reciprocity measurements?

Normal mode mechanics The crucial mathematical tool for these investigations is the
decomposition into normal modes. We restrict ourselves to motion in 1-dimension (≡x) for
N masses, where each mass mi is acted upon by external forces fi(t) in the x-direction. The
masses are coupled by springs to each other and/or to mechanical ground. The math is
described in some detail in Appendix B.

The final general result for the input/output matrix, Eq. B.13, can be simplified, by assuming
only one mode a is excited, and only one force f̃i(ω) is acting, then the input f̃i(ω) produces
an output x̃j(ω)

x̃j(ω) =

[
m

− 1
2

j Vja
1

(−ω2 + ω2
a)

Viam
− 1

2
i

]
f̃i(ω) (5.21)

Reading from right to left, this expression can readily be interpreted:

Viam
− 1

2
i (5.22)

is the factor that converts force applied to i into the amplitude of mode a, and

m
− 1

2
j Vja (5.23)

is the factor that converts mode amplitude of a to displacement of j.

A force ‘enhancer’ ? We can use the expression above to calculate the ‘enhancement’
(or attenuation) of a force, depending on where it is applied. Consider a simple harmonic
oscillator of mass m2 and spring k2, which has a small mass m1 attached to the its face with
a stiff spring k1, as shown in Fig. 11.

We consider only the lower normal mode, or bar mode, and label it a. We are interested in
“case-2”, where we apply a force to the face of the bar m2, and “case-1”, where we apply
the force to the small coupling mass m1, which is also attached to the face. For the same
external force, the ratio of excitation (case-1/case-2) is

η =
V1am

− 1
2

1

V2am
− 1

2
2

(5.24)
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Figure 11: Model for possible force enhancer.

To make the example closer to ALLEGRO, pick m1 = 11kg, m2 = 2296/2, f2 = 900Hz, and
quantify the coupler stiffness with a frequency f1, where k1 = m1(2πf1)

2.

The resulting η is shown in Fig. 12. We do indeed find an enhancement in the force applied to
the system. We find a coupler “frequency” of ∼2000 Hz would account for the experimental
value of H derived from the gamma measurements. Physically what has happened is the
the small mass m1 is acting as an impedance matching device, and allowing somewhat more
energy to flow to the bar. There is no conservation law for force the require it to be constant
along a chain.

There are many modes observed in the vicinity of this plausibility argument. The mode
observed here https://sam.phys.lsu.edu/ALLEGRO/1403 that couples strongly to the cal-
ibrator is a likely candidate.

Sensing enhancement Examination of Eq.5.23 shows that there is an identical enhance-
ment η in the sensing of the normal mode motion, and so the round trip measurement yields
the following equation:

(ηH)2 = 2(M/2)(γ+ + γ−) (5.25)

and so the values for H that we measured earlier from Eq. 5.17 are actually ηH. Luckily,
this is just the quantity we really want.

5.2.4 Magnitude determination measurements

Now that we understand the calibrator (force generator), we can apply a known force to one
end of the bar. The measured response will then allow us to determine the overall scale (or
magnitude) of our data in terms of gravitational strain. Referring to Sec.4 we look at the
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Figure 12: Result: a light coupling mass m1 enhances the force applied to the bar.

full transfer function that takes us from calibrator input to recorded output.

z̃c(f − fr) = HGKZADṽe(f) (5.26)

Taking the H we determined above (really the enhanced ηH), in principle we just solve and
get GKZAD. This then gives us the complete detector response. In practice we still treat
some of the terms individually.

Mode frequencies Beginning with the frequency dependent terms we see in G, the me-
chanical response of the bar - secondary resonator system, we see that the response function
requires the two mode frequencies and Q’s. These are obtained directly from the raw data
(see Fig. 13).

The response is extremely sensitive to the precise values of the mode frequencies, so it is
necessary to track the frequencies as they slowly fluctuate due to small temperature changes.
See also https://sam.phys.lsu.edu/Data_Analysis/346 for an explanation of the mode
tracking algorithm.

Figure 14 shows the two mode frequencies as they were tracked by the calibration code in
30 minute stretches over S4. The values of mode Q’s are less critical – so average values over
the entire S4 data run were used.

Frequency independent scale The factors that remain are all frequency independent
constants and thus constitute an overall scale factor or gain. Some of the factors, such as
the lock-in gain aL and the digitization factor D can be determined independently quite
easily. Others such as the mechanical gain α (see Eq. 4.10) and the effective gap g (see
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Figure 13: The figure shows the ALLEGRO raw amplitude spectral density (in counts
√

Hz)
for 8 minutes of data taken during the LIGO S4 science run. The mechanical modes are the
largest peaks at fm = 880.8 Hz and fp = 917.8 Hz. There is a calibration line (sinusoidal
voltage applied to the calibrator) at 837 Hz. The other peaks are due to nuisance modes
which add noise but do not couple significantly to a gravitational wave strain.
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Figure 14: The figure shows the ALLEGRO normal mode frequencies tracked during S4.
The three distinct jumps up correspond to LHe transfers. The jump down to a slightly
noisy section, around March 20, occurred immediately following the rotation to the NULL
orientation. The change is due to a higher level of feedback which was then corrected while
still in the NULL orientation. (see https://sam.phys.lsu.edu/ALLEGRO/1239)
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Eq. 4.11) of the transducer cannot be measured independently on a working detector. It
will be preferable to measure this overall gain by introducing a calibration signal as alluded
to above. This calibration procedure will serve at once to determine this overall scale and
to verify the entire signal flow model. The procedure used for ALLEGRO is the following:
a band-limited white noise signal is applied to the calibrator. First, the excitation signal
is recorded by the usual DAQ through a separate lock-in. There are corrections for the
small differences between this ‘excitation lock-in’ and regular ‘signal lock-in’ (see https:

//sam.phys.lsu.edu/Data_Analysis/193). With this correction we can then effectively
divide through by ADṽe(f)

HGKZ =
z̃c(f − fr)

ADṽe(f)
(5.27)

Note that for the division on the right hand side of Eq. 5.27 we must associate the frequen-
cies in the excitation spectrum with the demodulated output by shifting by the reference
frequency fr. We divide by the frequency dependent part of G, denoted Gfreq (see Eq. 4.10).

HαKZ =
z̃c(f − fr)

GfreqADṽe(f)
(5.28)

Now, we divide by the calibrator transfer function – the force generator constant – H

αKZ =
z̃c(f − fr)

HGfreqADṽe(f)
(5.29)

The right hand side is the number that the calibration procedure provides. It is convenient
to provide nominal values for K and Z, but we do not have precise independent knowledge
of these. Any error in these assumed value will be absorbed by the value for α We thus
determine an overall gain for the gravitational wave detector. The results of this procedure
are presented here: https://sam.phys.lsu.edu/Data_Analysis/196. We notice that even
after the modeled frequency dependence is divided out there remains a small frequency
dependent slope. One possible explanation is the effect of higher frequency mechanical
modes (see https://sam.phys.lsu.edu/Data_Analysis/211 and Appendix A). Given the
uncertainty of this origin and complications in incorporating this into the model it was
decided to leave the model unchanged. It was however determined that this unmodeled
slope contributes to the overall uncertainty of the calibration.

Chronologically, these measurements were done before we had complete understanding of
the calibrator. So the results need a correction factor of 1.24 – this is just the ratio of
the calibrator actuation constant determined by the gamma’s to that determined by the
calibrator geometry (see Sec. 5.2.3). This corrected factor is implemented in the parameters
file (S4params.m) as the factor bar trans gain. See Sec. 7 for more on the implementation.

Finally, the lock-in gain is not completely frequency independent, but was found to have
a slight roll-off at higher frequencies. This is a small correction described here: https:

//sam.phys.lsu.edu/Data_Analysis/296.
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5.3 The nuisance mode

Figure 13 shows an evident peak at 885.8 Hz. This very low Q, noisy mode was dubbed
the ‘nuisance mode’. The question arises as to whether this mode, which is highly excited
by injections through the calibrator, should be considered as a ‘detection’ mode. There is
good evidence that this mode is not strongly coupled to gravitational strain, but is strongly
coupled to the calibration force generator. First, the tuning curve (Appendix A) which
describes the mechanics of the readout transducer, is well-modeled without this extra mode.
Second, the gamma for the nuisance mode is larger even than the plus mode, even though
it is less well tuned to the fundamental bar frequency. This suggests a small effective mass
for a mode as it is excited by the calibrator. Finally, the gamma measurements described in
the previous sections were done at three different stored currents – three different tunings.
The nuisance mode shifted much less in frequency than the plus and minus modes (see
https://sam.phys.lsu.edu/ALLEGRO/1508). This again points to this not being a mode of
the main readout transducer. We are able to notch out a band around this mode and ignore
it in the calibration procedure. We are confident that not treating it as a detection mode is
the proper thing to do. As seen in Fig. 17, in terms of strain, the peak for this mode thus
becomes a noisy band.

5.4 Overall sign

It is crucial to get the overall sign of the response function correct, and there are multiple
sign flips along the signal chain. The determination of the overall sign is discussed in detail
here: https://sam.phys.lsu.edu/Data_Analysis/293

5.5 Hardware injections

See the following elog entries for descriptions of the analysis of hardware injections for a
single detector https://sam.phys.lsu.edu/Data_Analysis/320 and https://sam.phys.

lsu.edu/Data_Analysis/321 An important check is the ability to extract an injected signal
with the appropriate phase – and understanding the injection system is essential for deter-
mining what ’appropriate’ means. For ALLEGRO the dominant effect that needed to be
accounted for was the ’sample and hold’ of the D/A portion of the injection system. See
https://sam.phys.lsu.edu/Data_Analysis/290 and https://sam.phys.lsu.edu/Data_

Analysis/282

The same type of effect is present for LIGO injections as well. It can be summarized by
noting that the actuation function is the transfer function between an injection file and the
mirror motion and so this must be accounted for in determining the actual injected strain sig-
nal. http://ldas-sw.ligo.caltech.edu/ilog/pub/ilog.cgi?group=stochastic&date_

to_view=12/06/2005&anchor_to_scroll_to=2005:12:30:14:19:55-mchugh
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5.6 Stability

Fig. 15 shows the stability of the calibration line in the version 2.1 calibrated S4 data. This
is a constant voltage amplitude sinusoid applied to the calibrator continuously over the run.
The stability of the output is better than a couple of percent. See the figure caption for
details.

6 Uncertainties

6.1 Magnitude

The overall magnitude uncertainty will include contributions from the uncertainty in the
known input and the uncertainty in the measured output. The input level amounts to
knowing the force generator constant (H) of the calibrator, as well as knowing the DC bias
and AC excitation voltages. We estimate its uncertainty at 2%. Output level uncertainty
is given at 7% in https://sam.phys.lsu.edu/Data_Analysis/196. This is the statistical
uncertainty coming from the spread in the measurements. There is also an unmodeled slope
in the scale factor. We chose the value from a single point at the center of the sensitive band
of the detector. This is at the ‘plus’ mode near 917.8 Hz. We estimate there could still be up
to ±5% systematic uncertainty over the whole detection band arising from this unmodeled
slope.

Combining 5%, 7% and 2% in quadrature we conservatively get a calibration magnitude
uncertainty of ±10% The stability of the calibration as seen in https://sam.phys.lsu.

edu/Data_Analysis/309 is better than a couple of percent.

6.2 Phase

Again we have two distinct cases – pre and post heterodyning timing uncertainty. The first
can be well approximated by a constant phase over our band. The second is gives a frequency
dependent phase offset with a zero at the physical freq of 904Hz.

Pre heterodyne timing The reference oscillator is set to within 0.5 degrees. An estimate
of the uncertain drift rate is ±1 × 10−8 rad/sec, which over the longest stretch without a
reset gives only a 0.8◦ error in phase. Conservatively, we assign ±1◦ or ±3µs. In https:

//sam.phys.lsu.edu/Data_Analysis/291, an uncertainty of ±2◦ for the phase uncertainty.
This comes primarily from lock-in input filter delays. To be very conservative the total phase
uncertainty (pre heterodyne) is ±3◦.
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Figure 15: Stability of the calibration line in strain during S4 (https://sam.phys.lsu.
edu/Data_Analysis/309). There are two epochs corresponding to different DC voltages on
the calibrator. The 837 Hz AC voltage remained constant. The first panel shows the epoch
with VDC=-4V, the second panel shows the epoch with VDC = -6V. We see a single large
outlier at about 25% greater amplitude than the rest. The third panel zooms in ignoring
this outlier to see that the rest of that epoch was stable to better than 1%. The last panel
shows the frequency of the line. The spectra were calculated at 1/24 Hz resolution and the
peak of the line fell into the 837.000Hz bin for all of the data.
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Figure 16: For completeness, we graph the full frequency response function of the ALLEGRO
detector – the product of transfer functions JGKZAD in the notation of Sec. 4
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Post heterodyne timing Phil Miller’s histogram (https://sam.phys.lsu.edu/Data_
Analysis/307) shows that the variation in 1pps timing over the S4 run is about ±2µs.
However, the DAQ timing correction is only made to ±5µs. The residuals shown in War-
ren’s document (https://sam.phys.lsu.edu/Data_Analysis/275 ) are±10µs. All of these
speak to the relative timing. The absolute DAQ timing (https://sam.phys.lsu.edu/Data_
Analysis/276) uncertainty estimate is ±100µs. The lowpass filter delay is specified to
±50µs. In https://sam.phys.lsu.edu/Data_Analysis/291 it is concluded that the un-
certainty is ±100µs for the filter delay. Thus the dominant terms are the absolute DAQ
timing uncertainty and the lowpass filter delay uncertainty. Combining these in quadrature
gives ±140µs. We can combine the pre and post heterodyne uncertainties if we specify the
band over which the uncertainty holds. For the range 850-960 Hz we get a combined phase
uncertainty of ±4◦. The band includes very nearly all of the LLO-ALLEGRO stochastic
search optimal filter contribution.

7 Implementation of the transformation

The back-transform procedure is implemented using a set of Matlab routines. These are kept
in a CVS respository, calib cvs, under the root phgrav.phys.lsu.edu:/home/mchugh
/cvsroot. The files which generated the final data used by the stochastic analysis have the
tag ver2p1 – for version 2.1. On the machine phgrav at LSU in the directory
/home/monitor/calib cvs/matlab/cal 2005/ the following was executed to generate
the h(t) data files:

nohup nice matlab < calibJob.m > calibJob.out &

The file S4params.m contains most of the parameters that implement the calibration as
discussed in this document. We provide here some numbers in terms of the symbols in the
overall frequency domain calibration equation h̃ = z̃/JGKZAD (Eq. 4.15). We also make
reference to the Matlab variables in S4params.m. These are indicated in bold.

We produce z, the complex detector output, by combining the two output channels of
the lock-in as recorded by the DAQ. z = ch2 − ich1 ( https://sam.phys.lsu.edu/Data_

Analysis/78)

D = 4795.146310 counts/V – digitization – this can be read from the raw data header

A = aLei(td2π(f−fr))e−iφL the lock-in amplifier

• aL = 1370 – lock-in gain – for 10 mV sensitivity setting, we also include frequency
dependence due to rolloff of the various filters gfitcoeff.c1, gfitcoeff.c2, gfitcoeff.c3,
gfitcoeff.c4

• td = 12.14 ms– tdelay
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• φL = 15.0◦ – phase shift – there is also a time dependent piece coming from the drift
of the reference oscillator – osc phase drift

• there are also higher order terms phfitcoeff.c2 - phfitcoeff.c7

Z = 5.2083×105 V/A – Zsq – value for the SQUID controller on the 50 φ0 full scale setting.

K = 196700 A/m – obtained with trans current.value divided by trans eff gap – this is
for 14 A of stored DC current in the transducer.

G = α( 1
(f2−f2

m−ifmf/Qm)
− 1

(f2−f2
p−ifpf/Qp)

) α = 8.2027 × 10−4kg−1 fm = 880.773 Hz Qm =

1.8× 105 fp = 917.814 Hz Qp = 5.9× 105 these are only nominal mode frequencies, as they
are tracked throughout the data set, the mode Q ’s are given by – Qmin and Qplus

J = −4MLf 2 M = 2296 kg – physical mass of the bar L = 3.0 m – physical length of the
bar

As implemented we have bar trans gain = 4MLα

Another consideration is how the data are subdivided before the inverse response is applied in
the frequency domain. Since the mechanical response of the detector G has narrow resonant
peaks, long duration stretches of data are used to get the necessary resolution. In practice
the raw data are taken in 30 minute stretches. First a Hann windowing function is applied
to the data in the time domain to reduce the spectral leakage, then the data are FFT’d.
Dividing by the response function as in Eq. 4.15 gives the Fourier coefficients of the effective
strain applied to the bar. An inverse FFT brings us back to the time domain. We then shift
15 minutes to get the next 50% overlapping segment of raw data and repeat the process.
These stretches are added together to produce the heterodyned strain time series. This series
can now be taken in shorter stretches for further analysis as the sharp spectral features have
been removed. Fig. 17 shows the amplitude spectral density for a stretch of data that has
undergone the calibration procedure.
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Figure 17: The figure shows the ALLEGRO strain noise curve for operation as during S4.
This the same data as in Fig. 13 transformed to the nominal strain variable h. The peak
in the noise at the upper mode frequency (917.8 Hz) has changed to a dip, showing that
the peak in the response function at this frequency has overpowered the peak in the noise,
and so made a dip here. It was a surprise that this did not also happen at the lower mode
frequency (880.8 Hz) like in the past; the reason was greatly increased mechanical friction
(aka much poorer Q) for the lower mode, due to a “touch” between the small mass resonator
and the nearby sensing coil.
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8 Conclusions

We have outlined the procedure developed for calibration of the ALLEGRO detector. Details
of the calibration measurements, as well as more complete examination of the transformed
data is forthcoming is a longer publication. The data obtained are being used in a coherent
search for a stochastic background of gravitational waves.

9 acknowledgments

We would like to thank our colleagues in the LSC stochastic sources group. In particular
Sukanta Bose, Harry Ward and John Whelan have provided helpful input as this calibration
procedure has been developed and implemented. This work was supported by the National
Science Foundation under grants PHY-0355372 (Loyola) and PHY-9970742 (LSU),

A The tuning curve

Shortly after each cool-down of the antenna, the “tuning curve” was measured. The amount
of persistent DC current (IDC) trapped in the superconducting pickup coils of the transducer
was systematically varied, and the resulting normal mode frequencies were measured. The
procedure required adding extra helium gas around the bar (for extra cooling power), and
included a special sequence of changing currents in the “heat switchs” used for steering
current through different parts of the circuit. These measurements for the S4 run were done
on Feb 13, 2004, see https://sam.phys.lsu.edu/ALLEGRO/781 .

The magnetic pressure of the persistent current causes extra restoring force on the resonator
mass, and so adds an extra “magnetic spring” between it and the end of the bar which should
be strictly proportional to I2

DC . To model its effect, it is sufficient to solve for the normal
mode frequencies of the model shown in Fig. 18, using an augmented spring constant k′34,
given by:

k′34 = k34 + βI2
DC (A.1)

where the magnetic spring contribution is parameterized by the coefficient β.

In this model, all masses are determined by theory (for the bar) and material density and
geometry. The only free parameters are the static spring constants and the beta factor.
Apparently, a good fit of this model to the data is shown in Fig. 19. Shown in the upper two
panels are the frequencies versus current, and in the last panel, the quadrature sum vs the
quadrature difference of the data in the earlier panels. It can be seen that the fit is good,
but this particular fit required assuming m4 was 80% larger than its physical value, which is
far greater than the estimated error of a few percent. A similarly good fit could be found by
decreasing the bar effective masses m2 = m3 by the same factor of 1.8, but again, this is not
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x2 x3 x4

k'34
k23

Figure 18: The lumped mass model expected to explain the tuning curve. The resonator
spring constant is shown with a prime k′34 to indicate it has been augmented by a “magnetic”
contribution from the persistent current.

physically possible. (We were able to verify our calculation above of the bar’s effective mass,
using a simple serial spring-mass model. ) Exploring the parameter space quickly convinced
us that there was no fit consistent with all the measurements.

Vol Moody, of the University of Maryland, who helped build this transducer, has suggested
an alternative model which simply fits the data. (see https://sam.phys.lsu.edu/Data_

Analysis/30 and https://sam.phys.lsu.edu/Data_Analysis/23 ). He assumed there
was significant compliance in the mounting flange for the transducer, shown in Fig. 20. The
outer case of the transducer is no longer absorbed into the effective bar mass m3, but is a
separate mass mc = 11kg. The resonator mass m4 = 0.632 kg, as determined by its geometry
and the density of niobium, both at room temperature.

Varying only the spring constants and β produces a good fit, which is unique, as shown in
Fig. 21. The spring constants, parameterized in terms of ‘bare’ oscillator frequencies, are

k23 = m3(2π917.2Hz)2 (A.2)

k3c = mc(2π1800Hz)2 (A.3)

kc4 = m4(2π860Hz)2 (A.4)

and the magnetic parameter β was found to be

β = (
320

(A · s)2
)m4(2π)2 (A.5)

in good agreement with the value β = ( 315
(A·s)2 )m4(2π)2 found earlier at Maryland.
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Figure 19: Here is a fit to the data for the model in Fig. 18 which appears to be fine, but it
is unphysical, because it required allowing the transducer mass m4 to be a free parameter,
arriving a a value 1.80 times larger than its actual value. No manipulation of the real free
parameters produced a reasonable fit.
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x2 x3 x4xc

Figure 20: The lumped mass model used to explain the tuning curve, or “Moody’s model”.
The mass of the outer case of the transducer, shown as mc, is now considered as a separated
from the bar, m3, and now has a finite compliance in its connection to the bar.
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Figure 21: Here is a fit to the data using Moody’s model. It assumes that mc is 11 kg, and
finds a good fit for a compliance that should resonate with mc at 1800 Hz.

page 43 of 47



LIGO-T060096-01-Z

Draft

B The normal mode decomposition

We restrict ourselves to motion in 1-dimension (≡x) for N masses, so each mass mi has a
displacement xi(t) and is acted upon by an external force fi(t) in the x-direction. Then the
position and force column vectors x̄ and f̄ are defined by

x̄(t) ≡

 x1(t)
...

xN(t)

 , f̄(t) ≡

 f1(t)
...

fN(t)

 (B.1)

We define the (diagonal) mass matrix M and its diagonal “root” Γ by

M ≡

m1

. . .

mN

 Γ ≡

m
− 1

2
1

. . .

m
− 1

2
N

 (B.2)

so
ΓT ·M · Γ ≡ 1 (B.3)

Then we write out the complete equations of motion, and put all the spring force terms into
a symmetric elastic matrix K, so the Newtonian equations of motion become:

M · ¨̄x(t) = −K · x̄(t) + f̄(t) (B.4)

The mass matrix can turned into the unit matrix by transforming to mass-weighted variables
ȳ, defined by

x̄ ≡ Γ · ȳ (B.5)

so the equation of motion are now

1 · ¨̄y(t) + L · ȳ(t) = ΓT · f̄(t) (B.6)

where
L ≡ ΓT ·K · Γ (B.7)

is the mass weighted elastic matrix, a symmetric matrix.

Then we can simplify further by transforming the position vector to z̄ with matrix V

ȳ ≡ V · z̄ (B.8)

and demand that V diagonalize L, or

VT · L ·V = Λ ≡

λ1

. . .

λN

 (B.9)

page 44 of 47



LIGO-T060096-01-Z

Draft

in other words, we have chosen V so that the z̄ are the normal coordinates, ones which obey
uncoupled equations of motion

1 · ¨̄z(t) + Λ · z̄(t) = VT · ΓT · f̄(t) (B.10)

Most of the information we seek is found in the eigenvector matrix V with elements Via, whose
1st index, i, corresponds to the coordinate xi (of mass mi). Its second index, a, corresponds
the normal coordinate za, with eigenvalue λa ≡ ω2

a, and mode frequency fa ≡ ωa/(2π). V is
not symmetric; but it is a set of orthonormal column vectors, so

VT ·V = 1 (B.11)

When indices are explicitly displayed, V => Via implies VT => Vai. In explicit index
notation, Eq. B.10 becomes

z̈a(t) + ω2
aza(t) =

N∑
i=1

Viam
− 1

2
i fi(t) (B.12)

which can be solved by fourier analysis. Then the general solution, in the fourier domain, is
found by transforming back to the displacement x̃j(ω) of each mass mj

x̃j(ω) =
N∑

i=1

[
N∑

a=1

m
− 1

2
j Vja

1

(−ω2 + ω2
a)

Viam
− 1

2
i

]
f̃i(ω) (B.13)

where the Green function matrix element for the system is contained within the square
brackets, with output index j and input index i. Each matrix element contains a sum over
mode index a. Notice the reversed order of indices in the two terms of the eigenvector matrix
V .

As a simple example, let us calculate the “mode mass” of the “two mass” model for a bar.
The model is two point masses m, connected by a spring k. The elastic matrix is

K =

(
k −k
−k k

)
, (B.14)

so the weighted elastic matrix factors into a parameter and a matrix of integers,

L =

(
k/m −k/m
−k/m k/m

)
= (k/m)

(
1 −1
−1 1

)
. (B.15)

Then we find the eigenvectors V1 and eigenvalues Λ1 of the integer matrix to be

V1 =

(
−1/

√
(2) 1/

√
(2)

−1/
√

(2) −1/
√

(2)

)
Λ1 =

(
0 0
0 2

)
(B.16)

Then L has the same eigenvector matrix V = V1, and the eigenvalues are multiplied by the
factor (k/m).
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So, for the first mode, a = 1, the resonant frequency ωa is zero, and by substitution(
x̃1(ω)
x̃2(ω)

)
=

(
(m)−1

(−ω2 + 0)

) (
1/2 1/2
1/2 1/2

) (
f̃1(ω)

f̃2(ω)

)
(B.17)

which reduces to

x̃1(ω) = x̃2(ω) =

(
(2m)−1

(−ω2)

)
(f̃1(ω) + f̃2(ω)) (B.18)

which says that the two masses travel as one, responding like a single particle with mass 2m,
accelerated by the sum of the forces.

ẍ =
f1 + f2

2m
(B.19)

As for the second mode, a = 2, its resonant frequency follows from

λ2 = (k/m)(2) = ω2
2 (B.20)

and now, from the second column of V , the response matrix becomes(
x̃1(ω)
x̃2(ω)

)
=

(
(m)−1

(−ω2 + ω2
2)

) (
1/2 −1/2
−1/2 1/2

) (
f̃1(ω)

f̃2(ω)

)
(B.21)

Now if we specialize to a single force f1, acting only on mass m1, and ask for the response
at the driving point, x1, we get

x̃1(ω) =

(
(2m)−1

(−ω2 + ω2
2)

)
f̃1(ω) (B.22)

which is the response of a “harmonic oscillator” with mode mass 2m. We could have achieved
this result easier by simpler means (like adding and subtracting the equations of motion),
but they would not generalize to more complicated models.

Compare this to the driving point inertia we find for the face of a bar, with physical mass
M , near its first resonance, which we found to be M/2. So if we wish to model a bar with
two masses coupled only to each other, then we need 2m = M/2, or m = M/4.
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