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1. Introduction to LIGO 
 

The Laser Interferometer Gravitational Wave Observatory (LIGO) is an international 

collaboration of scientist and engineers working together in the search for gravitational waves. 

Gravitational waves are ripples in space-time emitted by super-dense objects in space, such as 

black holes and binary stars. They have been predicted by Einstein and proved indirectly, 

through the accurate measurement of the orbital damping of a binary pulsar [1], but the goal is 

that the LIGO project, along with its counterparts around the world, will finally prove their 

existence directly by observing their effect on freely falling test masses. LIGO currently has 

facilities on two sites in Hanford, Washington (see Figure 1.1), and Livingston, Louisiana, 

with which gravitational waves will be measured. 

 
Figure 1.1: LIGO Hanford Site 

 
Potential changes and upgrades to the current facilities are conceived, designed, and tested at 

the California Institute of Technology (Caltech), the Massachusetts Institute of Technology 

(MIT), and the GEO 600 German-British Collaboration. 

LIGO will use an approach known as interferometry to achieve his goal. Light from a laser 

beam enters the two arms of a Michelson interferometer [2] at right angles to each other, and 

the setup will be able to measure differential changes in the length of the arms due to 

(quadrupole) gravitational waves, as shown in Figure 1.2. 
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If there is any change in the length of the arm, 

a change in the light intensity will be detected 

by a photodetector. However, the expected 

change is so small that it will be nearly 

impossible to detect without filtering out 

noise of photon, thermal, and seismic origin. 

Advanced LIGO will incorporate new designs 

to reduce each one of these to acceptable 

values. 
Figure 1.2: LIGO Interferometer 

 

2. Seismic noise and the role of the Inverted Pendulum 
 

Seismic noise is an unavoidable noise source for interferometers built on Earth. It is excited by 

natural phenomena like macro-seismic, oceanic, and atmospheric activities, as well as by 

human activities [3]. The unwanted and unpredictable (random) signal of an interferometer, 

caused by continuous and sporadic ground motion, is named “seismic noise”. The ground 

motion transmits to the motion of the test masses through different paths. The most 

straightforward path is that the horizontal ground motion at the suspension point of the test 

mass causes the longitudinal motion of the test mass. Ground noise was measured at the LIGO 

Livingston site by A. Rohay from October 26 to November 3, in 1995 [4]. The seismometers 

used for these measurements give accurate ground noise readings from 0.1-50 Hz and give an 

upper bound on seismic motion above 50 Hz. The data exhibit a large peak between 0.1-0.3 

Hz, which is the so-called microseismic peak, caused by ocean-wave activity. 

The seismic spectrum of the earth generally shows increasing power towards low frequencies. 

There are two characteristic features that cause large motions over small frequency bands. 

These are the earth tides near 10-5 Hz and a microseismic peak near 0.15 Hz. The earth tides 

are a coherent background driven by the motions of the sun and moon with diurnal and 

semidiurnal periods. The microseismic motion noise is described by a peak in the power 

spectrum whose width and frequency are comparable [5]. The microseismic motion occurs at a 
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frequency below the resonant frequencies of most laboratory apparatus. Thus for any 

apparatus whose physical size is much less than a kilometer, the relative motion resulting from 

microseismic excitation is largely common mode and hence often goes unnoticed. The 40-

meter interferometer, for example, is relatively immune to the effects of microseismic 

excitation and also earth tides. For interferometers with baselines of order several kilometers, 

the largest random contribution to the relative motions of mirrors in the arms can arise from 

the microseismic excitation. A considerable simplification occurs if we choose a non-inertial 

frame for this situation. Since most of the interferometer optics (with the exception of the end 

mirrors) are contained in a corner building with 100m sides. This building and its optics 

probably respond to the microseism like a rigid body. 

 
Figure 1.3: Ground noise spectrum measured at the Livingston, Louisiana site. 

 

 
Since the peak ground motion is of the order of 10-6 m, as shown in Figure 1.3, and the 

expected GW signal is 10-18 m, we need attenuation factors of the order of 10-12. In order to 

obtain an adequate bandwidth, especially at low frequency (~10 Hz), the residual seismic 
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noise acting on the optics needs to be further attenuated within the expected band of the sought 

signals.  

 

2.1 The Inverted Pendulum: basic principles 
 

An Inverted Pendulum (shortly IP) is a mechanical harmonic oscillator whose peculiarity is to 

make possible to obtain a very low resonant frequency, typically 30 mHz, for horizontal 

oscillations[6]. In fact, using the restoring torque of a flex joint, to balance the torque due to 

the gravity force (see Figure 2.1), an inverted pendulum with a leg of 1m can be tuned to reach 

a resonant frequency below 100mHz. The IP is implemented in the LIGO Seismic Attenuation 

System (SAS) to achieve three main objectives: 

• to guarantee sufficient attenuation at frequencies extending down to the micro-seismic 

peak  

• to realize a mean to position the entire system without requiring large forces 

• to implement a quasi-inertial stage on which to detect the recoil and actively damp the 

motion of the suspended chain. 

 

To achieve these aims, the IP is implemented using an elastic-flex joint counteracted by a 

gravitational anti-spring. To understand the basic dynamics of an inverted pendulum let us 

think of a simple ideal model, sketched in Figure 2.1: a load of mass M is supported by a 

massless rigid vertical rod of length l connected to ground by means of an elastic joint of 

angular stiffness κ [6]. Let θ be the angle between the rod and the vertical.  
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Figure 2.1: Schematic model of the inverted pendulum 

 

The equation of motion is: 

 
(2.1)

where I is the moment of inertia of the system with respect to the suspension point O, 

identified by the coordinates x0, z0, elN kϑ= −  is the elastic torque and   singravN Mgl ϑ= ⋅  

is the gravity torque. In the small angle approximation (2.1) is written: 

 
(2.2)

where 

 (2.3)

is the effective spring constant: the gravity acts as an antispring, reducing the overall stiffness. 

The physics of the system is well described in terms of the potential energy: 

 

 

(2.4)

In the small angle approximation and for κ > 0 the quadratic term in (2.4) dominates and the 

system is a simple oscillator. By reducing the value of κ the potential “flattens” around θ = 0 
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and this corresponds to small restoring force and small resonant frequency. When 0effk ≈  the 

quartic term dominates at small angles (see Figure 2.2).  

When the gravity starts dominating ( 0effk < ) θ =0 is no more a point of stable equilibrium:  

U(θ) has instead two minima at  

 

 

(2.5)

When  the potential is always negative and the system is unstable.  0effk >

In the following, rather than using the angle θ, we shall refer to the IP linear displacement x 

measured at the top ( x lθ= ) of the rod and to the linear stiffness. The equation of motion for 

a (small) displacements x is: 

 

 

(2.6)

In Figure 2.2 the reduced potential energy Upot/k is plotted versus the angle θ for different 

values of the gravity-elastic ratio R = Mgl/k.  

For  the system is far from instability, but the force dependence on θ is steep;  1R <<

for  the IP is still stable and a low frequency is achieved;  1R <

for the restoring force around θ=0 is null;  1R =

for  the system becomes bi-stable;  1R <

for R>>1 there is not any equilibrium position and the IP collapses. 
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Figure 2.2: Reduced potential energy Upot/k is plotted for different values of the gravity-elastic ratio R = 

Mgl/k 

 
When  the system is an oscillator with resonant frequency:  0k ≈%

0

1
2

k gf
M lπ

= −   

(2.7)
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In principle, by properly tuning the spring stiffness and the suspended load one can obtain an 

arbitrarily small resonant frequency. Actually, in the real mechanical system, the frequency 

cannot be made arbitrarily small while still preserving the stability of the inverted pendulum. 

The target frequency of 30 mHz seems to be an achievable compromise between the 

attenuation performance and the need of a safe stability margin.  

 

 
Figure 2.3: Calculated transfer function for an attenuator with 7 filters and no pre-isolator (former design) 

and the new SA with 5 filters and the pre-isolator stage (IP and filter 0) 

         5 filters, IP pre-isolator 
         7 filters, no IP pre-isolator 

 
Figure 2.3 shows the effect of the inverted pendulum on the attenuation performance of the 

Super Attenuator: it introduces a double pole in the transfer function at 30 mHz, thus 

providing 21/ f  pre-attenuation starting at its resonance frequency. The lower the IP frequency 

the more visible is the pre-isolation effect. 
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2.2 Theory of the Inverted Pendulum  
 

To better understand the details of IP motion (see Figure 2.4) we write down the lagrangian L 

of  the IP, including the effect of the rod mass and moment of inertia. 

We also consider the effect of the 

seismic tilt of the ground: let (t)α  be 

the angle of the soil with respect to the 

horizontal axis as a function of the time. 

Let us name m the leg mass and J its 

moment of inertia with respect to its 

centre of mass (c.o.m.) C. Let ( ,x z ) be 

the coordinates of the suspended mass 

(top of IP), ( ,c cx z ) the coordinates of 

the leg c.o.m., 
0x  the horizontal 

coordinate of the suspension point,  

 the soil tilt with respect to x axis, θ the 

leg angular displacement with respect to z axis. Let k be the linear stiffness of the elastic joint 

(defined so as to provide a restoring force 
elF k

Figure 2.4 Schematic model of the inverted pendulum 

 

xδ= − ⋅  when the top is displaced by an 

amount xδ ). We neglect the vertical seismic motion, which is completely transmitted to the 

top up to very high frequencies and then attenuated by the first filter of the cascade.  

The lagrangian is: 

 

 

(2.8)

For a uniform leg and for small oscillations we can write: 
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Eq. (2.8) thus becomes: 

 

 

(2.9)

2.2.1 Equation of horizontal motion 
 

The equation of motion is obtained from 

 

 

(2.10)

yielding: 

 

 

(2.11)

Equation (2.11) is immediately solved in the frequency domain1: 

 

 

(2.12)

Where: 

                                                 
1 Letting 1( ) ( )

2
j tx t X e ω dω ω

π

∞

−∞

= ∫  
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(2.13)

 

 

(2.14)

 

(2.15)

Treating the leg as a uniform beam (below its own resonant frequency) one has: 

 

 

(2.16)

and the previous equations simplify as follows: 

 

 

(2.17)

 

 

 

(2.18)

 

 

(2.19)

To plot the transfer function (2.12) one has to eliminate the singularity at ω = ω0, keeping into 

account the dissipation in the system. The main source of dissipation is internal friction, which 

can be described by replacing the stiffness k with the complex stiffness: 

 
 

(2.20)

The loss angle ( )φ ω  can be assumed to be constant ( )φ ω φ=  over a wide range of 

frequencies and its value depends on the material. Then in (2.12), (2.17) and the (2.19) must 

be replaced by the new expressions: 

 

 

(2.21)
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2.3 The centre of percussion effect 
 

Equation (2.12) is, in some way, surprising: at frequencies 
0 /f f β>> , the (spectral) 

motion of the rod top is: 

 
 

(2.22)

There is a critical frequency 
0 /cf f β=  above which the transfer function flattens and the IP 

does not behave as an attenuator anymore [6]. Including the effects of dissipation and 

neglecting the effect of tilt eq. (2.12) is written: 

 

 

(2.23)

In Figure 2.5 the transfer function (2.23) is calculated using the actual values of the parameters 

foreseen for the IP final design and plotted for 3 different values of β. The presence of the 
2βω  term in (2.12) is associated to the center of percussion effect: when the base of the leg is 

shaken by translation seism at “high” frequencies (
0 /ω ω>> β  ), the leg rotates around a 

“center of percussion” which remains still. Therefore, the leg top countershakes of an amount 

depending on β  (as shown in eq. (2.22)).  

From (2.22) it appears that for the correct operation of the IP superattenuator stage, it is 

necessary to make 0β =  or small enough to push the critical frequency beyond all other 

superattenuator resonances ( 5cf Hz≥ ). This is equivalent to push the percussion point toward 

s = l, that is to make P to coincide with the suspension point of the load, or with the hinge 

point of the elastic joint.  

To make 0β =  there are essentially three ways:  

• to have massless legs (m = 0, 0β = ) : unfeasible, but it is still useful to design legs as 

light as possible;  

• to suspend the top table at the level of the percussion point: this would require an 

heavy leg segment sticking above the top table;  

• to provide the legs with a counterweight below the elastic joint to move the percussion  
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point near the hinging point of the  flexible joint.  

 
Figure 2.5: Inverted pendulum transfer function (2.23) calculated for different values of β: when 0β =  the 
transfer function is that of an ideal pendulum (no centre of percussion effect). When 0β >  the centre of 

percussion effect turns into a flattening of the transfer function. When 0β < , a dip is present, above which the 
transfer function  flattens. 

 

2.3.1 Implementation 
 

The technical solution adopted is to have light aluminum legs and fit them with a 

counterweight below the elastic joint. The position of the percussion point along the leg 

depends on the mass and the position of the counterweight, which both can be used to make P  

coincide with the desired position. 

The new IP is shown in Figure 2.6: the counterweight is fixed below the IP point by means of 

a bell shaped structure. We define the following design parameters: 

• masses: m1 (load mass), m2 (leg mass), m3 (bell mass), m4 (counterweight mass); 

• lengths: l1 (leg length), l2 = l1/2 (distance of leg centre of mass from the suspension 

point); 
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We assume momenta of inertia: 
1 4 0J J= =  (the load and the counterweight are considered 

as point masses),  (the leg and the beam are considered as thin rods). 2
2,3 2,3 1,4 /12J m l=

 
Figure 2.6: Schematic model of the inverted pendulum provided with a counterweight. Beside, the notation used 

in the calculation is shown.   
 

3. Finite element analysis: Ansys  
 

Ansys is a general purpose finite element modeling package [7]. In general, a finite element 

solution may be broken into the following three stages: 

1. Preprocessing: define the problem through the following major steps: 

• Define key points/lines/areas/volumes 

• Define element type and material/geometric properties  

• Mesh lines/areas/volumes as required  

The amount of detail required (i.e. the meshing and related computational burden) will depend 

on the dimensionality of the analysis (i.e. 1D, 2D, axi-symmetric, 3D).  

2. Solving:  
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• Specify the loads (localized or distributed), the contraints (translational and 

rotational), finally solve the resulting set of equations.  

3. Postprocessing: further processing and viewing of the results; in this stage one may 

e.g. wish to see:  

• Lists of nodal displacements  

• Forces and torques  

• Deflection plots  

• Stress contour diagrams 

 

3.1 Inverted Pendulum 
 

Inverted pendulum, of which a picture is shown in Figure 3.1 a, is a structure composed of 

several elements. I designed it in each detail using Solid Works® tool, as shown in Figure 3.1 

b, starting from the drawings shown in Figure 3.2 [9]. 

 

 
 

 

 

                                                

 

 

 

 

 

 

 

 

 

Figure 3.1 a: Prototype of IP Figure 3.1 b: IP drawn in Solid Works
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(b) 

 

 

 

 
(c) 

(a) 

Figure 3.2: Drawings of the Inverted Pendulum2; (a) IP; (b) flex joint base; (c) small flex joint; (d) leg 
(d) 

 

                                                 
2 All HAM-SAS drawings are available from the LIGO DCC data base www.lio.caltech.edu/DCC with the 

drawings numbers ranging from 051100 to 051200 
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The most important elements of IP, for the purpose of simulation, can be reduced to: 2 flex 

joints (the small one and the main), counter weight bell (the bell where counter weight is 

mounted) and leg. The parameters of these components affect significantly the results. The 

table on the top of the system is made of aluminium, is 40 mm thick, and is weighting 357 Kg. 

In the following table the relevant parameters of the main elements mentioned above are 

reported. 

Name of element Length (mm) Diameter (mm) Material Modulus of 

elasticity 

IP leg 448.1 50 EN6082  70 GPa 

Main flex joint 76 10 Maraging 190 GPa 

Counterweight bell 125 68 AISI 304 193 GPa 

Small flex joint 30 3 Maraging 190 GPa 

Table 3.1: Values of a few components of IP 

 

In Ansys® I further assigned the material properties of each part of the IP. The first operation 

was the meshing, as shown in Figure 3.3, as usual in every finite element code.  

 

 
Figure 3.3: Meshing of the IP                                   
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The convergence test, shown in Figure 3.4, was made to check that the simulation finds stable 

resonance frequencies. I changed the mesh in a range between 300 and 20000 elements for 

each of the 6 normal mode that Ansys found. 
 

 

 Figure 3.4: Ansys convergence test for the first normal mode 
 

The next step was to simulate the complete isolation stage. I assembled four legs of the IP on 

two tables in Solid Works: one on the top of the flex joint base and another in the bottom, as 

shown in Figure 3.5. 
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(a) 

 

 

 

 
 

(b) 

 
Figure 3.5: (a) Complete isolation stage; (b) corresponding drawing 

 

I imported it to Ansys where I applied the “Standard Earth Gravity” model, I chose the 

boundary conditions. Ansys was able to solve the model, analyzing the first 20 modes (see 

Figure 3.6). 

 

 Figure 3.6: Ansys window for SAS simulation 
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4. Results 
 

Ansys found 20 modes; the first 3 are “table normal modes” and concern the motion of the 

table in order of increasing frequency: the first is the yaw motion, the second the longitudinal 

motion and the third is the transversal motion (see Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

First frequency: yaw motion 
f = 0.665442 Hz  Second frequency: longitudinal motion 

  f = 1.01076 Hz 

Third frequency: transversal motion 
f = 1.01252 Hz 

 
Figure 4.1: Table normal modes: (a) yaw motion; (b) longitudinal motion; (c) transversal motion

I changed the mass of the table on the top in a range bet

ased with increasing 

ween 300 Kg and 1100Kg. I choose as 

maximum value 1100 Kg because it’s 

the limit that the table can admit 

According to theory (Equation 2.7) 

frequency decre

of the mass (see Figure 4.2). The 

longitudinal and the transversal 

motion remain almost unchanged and 

1.4

Figure 4.2: Mass vs frequency 
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the zero-frequency point is the same for all the 3 main modes. The results obtained by 

measurement on a prototype [8], shown in Figure 4.3, and those found by Ansys are compared 

in Figure 4.4. Ansys results are fully validated by the measurement results, which proves the 

validity of the model. 

 
Figure 4.3: Prototype attenuation system  

 
 
 

 

 
Figure 4.4: Validation of results 

 
From eleventh mode to eighteenth there are the “rigid leg resonances”, so called because the  

leg is not stressed, as shown in Figure 4.5 d. The main flex joint presents a “C-stress”, the 

small one a “S-stress”, so called because of the shapes of two joints (see Figure 4.5 b and 4.5 

c). There are 8 such modes because each leg has 2 (degenerate) modes, in fact they’re free to 

move around the main flex joint. Ansys results show that for a system build with 1.5 mm 

diameter small flex-joints, without counterweight bell (1.212 Kg), the resonance frequency for 

the first of these 8 modes is 122 Hz; measurement on the prototype gave 103 Hz, resulting into 

a discrepancy of 20%. Adding a counter weight bell didn’t reduce significantly the resonant 

frequency, which decreased to 110.6 Hz. This resonance could be damped using eddy-current 

dampers: the damping times can be thus reduced by a factor of the order of 100, as shown in 

Figures 4.6 a and b. 
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(d) 

(a) 

(b) 
(c) 

Eleventh frequency: f = 122 Hz

Figure 4.5: Rigid leg resonances (a) Table; (b) small flex joint: S-stress; (c) main flex joint: C-stress; (d) leg 
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Figure 4.6: Effect of Eddy current dampers (a) before installation, (b) after installation 

 

For a system build with 3 mm diameter small flex-joints, without counterweight bell, the 

resonance frequency is 235.3 Hz, adding a counter weight bell it decreases to 178.3 Hz; these 

results are shown in Table 4.1. 
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Resonance 
frequency with 
counterweight 

 
~110.6 Hz 

 
~178.3 Hz 

Resonance 
frequency without 

counterweight 

 
~122 Hz 

 
~235.3 Hz 

Diameter of 
small flex-joint: 

3 mm 

Diameter of 
small flex-joint: 

1.5 mm 

Table 4.1: Rigid leg resonances
 

 
Modes from nineteenth to twenty-sixth are the “banana resonances”, so called because of the 

shape of the leg, as shown in Figure 4.7. In this modes not only the 2 flex joints are stressed 

but also the leg. The frequencies are higher and these resonances move the head of the legs, so 

damping will be even more effective. 

 

Nineteenth frequency: f = 415 Hz 

Figure 4.7: Banana resonances (a) Table; (b) small flex joint; (c) main flex joint; (d) leg 

(a) 

(b) 
(c) 

(d) 

 
For a system build with 1.5 mm diameter small flex-joints, without counterweight bell, the 

resonance frequency for the first of these 8 modes is 415 Hz, adding a counter weight bell it 

decreases to 210.6 Hz; using 3 mm diameter small flex-joints, without counterweight bell, the 
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resonance frequency is 424 Hz, adding a counter weight bell it decreases to 253.3 Hz; these 

results are shown in Table 4.2. 

 Resonance 
frequency with 
counterweight 

 
~210.6 Hz 

 
~253.3 Hz 

Resonance 
frequency without 

counterweight 

 
~415 Hz 

 
~424Hz 

Diameter of 
small flex-joint: 

3 mm 

Diameter of 
small flex-joint: 

1.5 mm 

 

 

 

 

 

 

 

Table 4.2: Banana resonances 

 

The fourth, fifth and sixth resonances are “spring box resonances” (see Figure 4.8). The only 

dangerous one is the pitch motion, but the problem can be mitigated with magnetic dampers; if  

those are not enough, extra resonant dampers may be required  

 
 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fourth frequency: pitch motion 
f = 38 Hz 

Fifth frequency: roll motion 
f = 45 Hz 

Sixth frequency: up-down motion 
f = 38 Hz 

Figure 4.8: Spring box resonances: (a) pitch motion; (b) roll motion; (c) up-down motion 
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5. Future steps 
 

Next step will be to characterize the dynamic behavior of SAS in terms of transfer function(s) 

between the top and the bottom tables motions. 

        Monitor 

 

 
 

       Movement 
 

Figure 5.1: Representation of the transfer function 

 

From a design viewpoint, the aim is to determine a counter weight that effectively neutralizes 

the percussion point effects. Prototype measurements indicate that the transfer function 

saturates at 80 dB without counterweight. A proper counter weight should allow 100 dB 

attenuation, which is the design goal. 
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