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As part of the characterization of the high frequency response of the Hanford 4K inter-
ferometer [1, 2] we observed and analyzed two internal test mass resonances in the vicinity of
f ~ 38 kHz. We also observed the up-conversion of the low frequency seismic and suspension
noise. Finally we discuss the observation of the transverse modes of the X-arm cavity. This
was achieved by sideband injection; the deduced curvature of the test-mass mirrors is in
reasonable agreement with the design value.

1 Test Mass Internal Resonances

The test masses are subject to elastic oscillations due to the finite temperature of the en-
vironment, what is referred to as Brownian motion. Such oscillations induce a phase shift
on the incident (and stored) laser beam and thus contribute a “random” noise at the read-
out channel, in particular at low frequencies. The motion of the mirror surfaces can be
expanded in the normal modes (resonances) of the test mass, as detailed by Gillespie and
Raab [3, 4]. The individual mode n contributes to the displacement power density at the
frequency f = w/(2m).

Sun(f) = AkgT w2, (w) 1)

apymw | (w? — w?)? + wied?(w)

where kg, T are the Boltzmann constant and temperature; w, is the resonant angular fre-
quency of the mode, m the mass of the optic and w = 27 f; a, is an effective mass coefficient
which accounts for the coupling of that particular mode to the laser beam. The coefficient
o, can vary between 1072 —10'. ¢, (w) is the loss function, and on resonance, ¢, (w,) = 1/Q,
where (), is the quality factor of the mode.

At frequencies much lower than w,, one can sum all the modes to find the total displace-
ment power density [3, 4].
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Simulations by Gillespie and Raab find that for f = 100 Hz the LIGO 4km IFO has
S.(100 Hz) ~ 8 x 107*'m?/Hz

Similar results were obtained by Y. Levin [5] using a more general technique.

Fig.1 shows the response of the full IFO to a frequency sweep of ITMX. The same data
was presented in our previous report where parametric conversion was discussed [2]. In that
case however the data was cropped at 37.7 kHz to exclude the two peaks appearing at 37.804
and 37.971 kHz. We attribute these peaks to internal resonances (modes) of the optic driven
by the exciting force applied to the back plane.

To fit the data we model the test mass as a simple harmonic oscillator [3, 4] in which
case the force to displacement transfer function is [6]

1
H(f) = [1 _ (w/wn)2 + Z(Ld/wn)(bn(w)]
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Replacing ¢, (w) by 1/Q and introducing a normalization factor N/Q, we write for the
measured transfer function (Volts drive to Volts signal)

N/Q
T = TGy + (1w W
On resonance |H(f,)| = N independently of the Q-value.

While Eq.(4) is suitable for fitting the data, the real Q-value cannot be extracted because
of the frequency resolution with which the data was acquired. Typically we expect @ ~ 10°
to 107 which implies a full width of .04 to .004 Hz as compared to the resolution of the data
Af =1 Hz. Thus the values of () returned by the fit are lower limits of the real @),,.

The two resonance peaks were first fit independently to Eq.(4) in order to determine
the corresponding values of N and )p,;,.- Then the two resonances were combined with the
parametric conversion response of the IFO [2] to produce an overall fit in the range 37.3 to
38.0 kHz. In this case each of the internal resonances was given an adjustable phase and a
noise floor was added as well. The results of the fits are shown in Tables 1 and 2.

Table 1: Test Mass Internal Resonances

Central Frequency f (Hz) Qmin Normalization N
37804.5 + 0.5 1.03 x 10° 1.87 x 107*
37971.7 £ 0.5 1.00 x 10* 5.65 x 1076

Table 2: Overall Fit Parameters

Resonance #1 Phase —171°
Resonance #2 Phase 1°
Noise Floor Phase 174°
Noise Floor Magnitude | 3.4 x 1077
Overall Additive Phase 93°

As can be seen in Fig. 1 these parameters produce an excellent fit not only to the mag-
nitude of the response but also to the measured phase over the entire frequency band.

Since we are interested in a possible stochastic signal at 37.52 kHz we need to know the
contribution from the internal resonances (thermal noise) and in particular from the adjacent
resonances analyzed above. For the resonances, lying well above 37.52 kHz we can use Eq.(2)
and scale the corresponding numerical result from f = 100 Hz to 37.52 kHz. We obtain
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The rms displacement density is the square root of S, so that

pe o Vo
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To evaluate the contribution of the two nearest resonances, f,, = 37.804 kHz and 37.972 kHz

we must use Eq.(1) and sum the two contributions. However ¢,(w) and «,, are not known.

If we use the accepted values of ¢,, = 10~7 and o, = 0.5, as well as m = 12.2 kg we obtain

=3.7%x 10 %/VHz (5)

Sen(37.52 kHz) = 1.3 x 107*° m?/Hz
whereas if we use ¢, = 1/Qnuin as obtained from the fit
Sen(37.52 kHz) < 4.5 x 107°® m?/Hz

and correspondingly the strain sensitivity is

h= % = ‘/f_m — 28x10%/VHz
h= % - ‘/LS_”” < 53x107%/VHz (6)

for ¢, = 1077 and ¢, = 1/Quin respectively. This result is an order of magnitude higher
than the contribution given by Eq.(5).

From the calibration of the ITMX motion [2] we had found that Az = 8 x 1071 m
at 37.52 kHz generates a signal of V;, = 87 x 107=® V. The noise floor for a bandwidth
B = 0.0625 Hz as shown in Fig. 4 is at V,, = 40 x 10~° V. Consequently the sensitivity that
can be obtained from a single FFT at that bandwidth is

T 1A, Vg,

hy=>=-=" =3.7x107%?/vH
L LV,VB x 1077/ VHz

This calibration is for a single arm; a gravitational wave will produce a differential signal in
both arms, thus the same signal would indicate half the strain. In 24 hours of data taking
86,400 measurements with a 1 Hz bandwidth can be acquired. When they are averaged the
fluctuations should be reduced by a factor of 294, so that the fluctuations are

Ahg ~ 6 x 1072 (7)

which is less than the thermal noise predicted by Eq.(6).

2 Up-converted Seismic and Suspension Noise

FFT’s obtained with high resolution when the test mass was driven at the fixed frequency
of 37.52 kHz are shown in Figs. 2, 3 and 4. As expected they show a strong response at the
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driving frequency since it corresponds to the fsr (free spectral range) of the IFO. However
the FFT’s also exhibit sidebands around the main peak. The symmetric appearance of the
sidebands indicates that they are due to low frequency oscillations up-converted to near the
driving frequency.

If the amplitude of the low frequency oscillation (at fg) is 2 then the sidebands will
appear at frequencies (fo £ f3) and with a relative amplitude Ag/Ay = 2kxs. Here f; is the
driving frequency and A, the amplitude of the response at fj; k is the wavenumber of the
laser light £ = 27 /A. We have assumed that the low frequency oscillations are independent
of the high frequency excitation and that the mixing occurs at the detection of the light;
recall that the diode signal is proportional to |Eita|?.

While all three FF'T’s exhibit low frequency sidebands the details of the spectrum differ.
The data in Figs. 2 and 3 were taken in December 2002; Fig. 2 with a 0.5 V drive 0.125
Hz bandwidth and 483 averages. Fig. 3 with a 1 V drive, 0.0625 Hz bandwidth and 41
averages. The data in Fig. 4 were obtained in October 2002 and correspond to different
operating conditions of the IFO; the drive was 2 V, the bandwidth 0.0625 Hz and only 11
averages were taken. The discrete lines at a fraction of a Hz and at a few Hz are identified as
oscillation modes of the suspension, while the broader features, especially apparent in Fig. 3,
are attributed to seismic noise.

To provide some quantitative measure of these data we have fitted the spectra as follows:
A Gaussian was used for the central peak since it’s width is instrumental, and each sideband
was fit by a Lorentzian [Eq.(4)]. In addition a noise floor was included. In Fig. 3 the central
peak was fitted by a double Gaussian in order to account for some of the low frequency
seismic noise. The quality of the fits can be judged better by the log-log plots shown in
Figs. 2B, 3B and 4B. The results of the fits are summarized in Table 3 where we give the
sideband offset frequency and relative amplitude separately for each of the three spectra.

The peak at ~0.75 Hz is clearly the pendulum mode of the suspension which is known to
be at 0.71 Hz [7]. The peak around 2 Hz may be the third harmonic of the above resonance;
possibly the peak at 1.3 Hz seen in Fig. 4 could be the second harmonic. The prominent peaks
in Fig. 4 at ~11 Hz and ~19 Hz can be identified with the bounce mode of the suspension
which is located at 11.9 Hz and the roll mode, expected to be at 17.5 Hz [7]. If we use an
average value of the relative amplitude as A/Ay ~ 102 we conclude that z5 ~ 8 x 107 m
which is of the order of the thermal excitation of such low frequency modes [using Eq.(1)
and Q ~ 10%].

Finally we consider the quasi-continuous noise level extending out to ~15 Hz and that
is most pronounced in Fig. 3. We believe that it is due to seismic noise exciting the mirror
suspension as well as tables and chambers on which the optics are mounted. Support for this
interpretation is provided by Fig. 5 which shows low frequency measurements made with a
seismometer (top) in the LVEA and of the motion of the Beam Splitter, ITMX and ITMY
(bottom). The similarity of this spectrum with the sidebands in Fig. 3 is notable, including
the cut-off at ~15 Hz which is probably due to vibration suppression or active feedback.



Table 3: Up-converted Noise

From fig.2 From fig.3 From fig.4
f1(Hz) 0.75 0.73 0.61
Ai/Aq 7x 1073 7.9 x 1073 1.6 x 1072
f2(Hz) —— —— 1.35
Ay/Ap —— —— 1.3 x 1072
f3(Hz) 1.91 2.09 2.01
A3/A0 7x 1073 8.3 x 1073 7x1073
f1+(Hz) 7.60 —— ——
Ay Ao 1073 —— ——
f5(Hz) —— —— 11.90
A5/A0 —_— —_— 3.8 x 1072
fe(Hz) —— —— 17.44
AG/A() — — 2 X 1072
f=(Hz) —— —— 19.13
Az/Ap —— —— 2.3 x 1072

3 Transverse Modes

It is well known that optical cavities will support Hermite-Gaussian modes of the fields [8, 9].
Such modes are distinguished by the axial index n ~ L/2\ ( L is the length of the cavity and
A the wavelength) and labeled by the small integers m, £ which specify the field distribution
in the two directions transverse to the cavity axis. For a cavity with spherical mirrors of
radii Ry and R, the frequency of the n, m, ¢ mode is

—1
C COS
o7 n A m =Y VL9 8)

Vpme =

and

We decided to search for the lowest transverse mode [10] by injecting a sideband onto
the carrier. When the sideband frequency is exactly at the difference between the populated



TE My, mode and a transverse mode, a dip should be observed in the demodulated signal
as demonstrated in the case of the fsr [1].

The TFO is injected with a laser beam precisely aligned to the axis of the optical cavity
and matched to the T"E My, mode. Thus the transverse modes are not excited in the arm.
To observe the transverse mode we locked a single arm and intentionally misaligned the
cavity. Using the digital suspension controls, the input test mass was rotated either around
a vertical axis (yaw) or a horizontal axis (pitch). This coupled the input laser beam to the
¢ =1,m = 0 (horizontal) mode in the first case or to the £ = 0,m = 1 (vertical) mode in the
second. Fig. 6 shows a typical response curve obtained when the suspension control “slider”
was set at 2.241 units; the observed frequency was 11.48 kHz.

Misalignment of the I'TM not only increases the coupling to the transverse mode but
also shifts the frequency of the mode. This was immediately evident from the data shown
in Fig. 7 for the horizontal mode and in Fig. 8 for the vertical mode. In these figures the
mode frequency is shown as a function of pitch or yaw of the I'TM, the angle being labeled
in slider units. Since the frequency shift must be symmetric with respect to the pitch or yaw
angle the lowest contribution is proportional to the angle squared. Therefore a quadratic fit
was made to the data as shown. The peak of the curve corresponds to the properly aligned
cavity for which the measured frequency shifts are

AVhorizontat = 11,530+ 5 Hz
(10)
AVverl;ica,l = 11, 560 £+ 5 Hz

From Eq.(9) we see that the frequency shift is related to the mirror curvatures by

VSI' —
Av = % cos ™ (/9192) (11)

and find
g19o = 0.3239 4 0.0004 horizontal mode

= 0.3215 £ 0.0004 vertical mode

The values deduced from the measurement of the two modes differ by ~ 40 and this may be
due to a deformation of the mirror surface.
The design values for the curvature are given in [11] and the “as built” values [12] are

R, = 14,240 m (ITM)
R, 7,260 m (ETM)

This leads to
g1 =0.719 go = 0.450 and 9192 = 0.324

in close agreement with the g, g, product obtained from the frequency of the horizontal mode.
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Figure 2: FFT of AS_T with mass excitation of 0.5V, @ 37.52 kHz taken in December of
2002. Linear frequency and Log frequency plotted as magnitude frequency away from 37.52
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Figure 3: FFT of AS_T with mass excitation of 1.0V, @ 37.52 kHz taken in December of
2002. Linear frequency and Log frequency plotted as magnitude frequency away from 37.52
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Figure 4: FFT of AS I with a 2V excitation @ 37.52 kHz taken in October of 2002 (at this
time the drive was not calibrated). Linear frequency and Log frequency plotted as magnitude
frequency away from 37.52 kHz
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Figure 5: Seismic Noise Spectrum
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Figure 6: Sideband Injection Sweep for Transverse Mode Characterization
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