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Abstract

We make a proposal for the detailed statistical approach to the joint analysis of the LIGO
& TAMA data to bound the rate density of a galactic population of gravitational wave burst
sources.

$Id: T030049.tex,v 1.7 2003/03/31 23:43:06 lsf Exp $
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1 Introduction
LIGO and TAMA will analyze jointly data taken during the period 14 February to 14 April. A
primary target of this joint data analysis effort is to bound the rate density of a galactic population
of gravitational wave burst sources of unknown origin and, correspondingly, unknown waveform
or other character. In these notes we describe a statistical approach to this problem based on
the distributional properties of candidate gravitational wave events identified in each detector and
characterized by a signal-to-noise ratio and time-of-arrival.
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2 From source population to candidate gravitational wave events
2.1 Introduction and nomenclature
The beginning of our statistical analysis is a set of candidate gravitational wave events. Candidate
events are each characterized by a set of properties (e.g., amplitude, arrival time, frequency, band-
width, etc.). The set of candidate gravitational wave events consists of two disjoint subsets: one of
events whose origin is noise, and which we refer to as background events, and the other of events
whose origin is gravitational, and which we refer to as foreground events.

Gravitational wave bursts incident on our detector array arise from some astrophysical source
and population distribution. Not all gravitational wave bursts arising from some source population
and incident on our detector array are detected as candidate events. We refer to the set of all bursts
events drawn from some population as source events.

Part of our goal is to determine, from the set of all candidate events, what fraction are fore-
ground events. Knowing the relationship between foreground events and source events we can
determine, from the number of foreground events, the number of source events. Another part of
our goal is to bound the properties of a source and population distribution from which the observed
foreground events can be thought to have derived based on the properties (amplitude, arrival time,
frequency, bandwidth, etc.) of the candidate events and their distribution.

Gravitational wave bursts incident on a gravitational wave detector array can be characterized
by their propagation direction and waveform in each of two polarization modes. Consistent with
our focus on gravitational wave bursts of unknown origin we can’t suppose we know the wave-
form or how the sources are distributed throughout space. Nevertheless, we can interpret what
we observe in our detector in terms of a source and population model. The more detailed our
characterization of the observed bursts and the greater their number the better we can distinguish
between alternative models. Here we assume that candidate events are characterized by an overall
event amplitude, though nothing we do in what follows restricts us from also considering candidate
events that are characterized by separate amplitudes in each polarization mode, propagation direc-
tion, frequency, bandwidth, etc. We further assume that our source and population model has a
single component distributed according to a fixed spatial distribution, in which case the model can
be characterized by two parameters: an event rate ṅS and an intrinsic source amplitude h0 (though,
again, nothing we do here restricts us from considering source and population models that have
multiple components with different rates, more complicated luminosity functions, and multiple or
parameterized spatial distributions.) For example, our source model may consist of axisymmetric
sources that radiate a Gaussian pulse of fixed width and amplitude, and our population model may
be a galactic distribution with a fixed disk scale height, bulge size and shape, etc. Our goal in this
note to describe how we can relate the observation of a number of candidate events characterized
by amplitude to the intrinsic amplitude h0 and event rate ṅS of our source population model.

In the first subsection below we describe the relationship between source events and an under-
lying source population model that we assume for the purpose of interpretation. In the following
subsection we relate source events to foreground candidate events, including the relation between
the source event characterization and the candidate event characterization. Background events are
the subject of section 3. The likelihood for individual events and for an observation of N events is
given in section 4 and Bayesian and Frequentist statistical analyses that determine a bound on the
population rate ṅS vs. the source strength h0 based on these are described in section 5.
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2.2 Population model to source events

As we proceed from observation to interpretation we will need to calculate intermediate quantities
that characterize the radiation from our source and population model. In order to follow how those
intermediate quantities depend on our source and population model it is useful to give names to
different elements of the model names. Let

I =

(
A source population model, exclusive of the
source rate ṅS and intrinsic luminosity h0

)
(1)

ṅS =

(
rate of gravitational wave events from
the population characterized by I

)
(2)

h0 =

(
intrinsic strain amplitude associated
with sources in the population model I

)
. (3)

Here and below we assume that I is fixed. Our eventual goal is to bound (ṅS, h0).
Gravitational wave bursts incident on a gravitational wave detector array can be characterized

by their propagation direction and waveform in each of two polarization modes. Since here we
assume a single component source model we can, in the context of our model, fully characterize
the wave burst incident on the detector in terms of its direction of propagation and the wave am-
plitude in each of the two polarization modes. Write the full set of parameters that characterize a
gravitational wave burst incident on the detectors as

�h =

(
Parameters describing gravitational
waves incident on detector array

)
. (4)

(In a more complicated source model additional parameters may be needed to fully characterize a
wave burst incident on the detector array and �h would represent this fuller set.)

The population I leads to a distribution of events at the detector that we write as p(�h|h0, I):

p(�h|h0, I) =

(
probability of source event characterized
by �h given population I and h0

)
(5)

Note how we have explicitly kept track of the dependency of this distribution on both h0 and I).

2.3 From source event to foreground event

Not every source event leads to foreground event. Whether it does or does not depends on the
analysis method, including thresholds, etc., and the detector noise character and calibration. Define

J =
(
Analysis pipeline that identifies and characterizes events

)
, (6)

K =
(
Detector calibration and noise character

)
. (7)

Now define the probability that a source event �h leads to an to an observed event:

ε(�h|IJK) =



probability that the source event �h gives
rise to a foreground event in the detector
characterized by K and processing pipeline
characterized by J


 (8)
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Note that ε(�h|IJK) depends on the detector noise K, processing pipeline J , and source popula-
tion model I (which gives meaning to the amplitudes in the polarization modes), though not the
rate or the intrinsic source amplitude h0.1 With these specified, however, ε(�h|IJK) is readily
determined by simulation.

Also important is the total detection efficiency: the fraction of source events that lead to ob-
served events. The total efficiency is readily calculated from the distribution of source events
p(�h|h0, I) and the event detection efficiency ε(�h|IJK):

ε(h0IJK) =

∫
ε(�h|IJK)p(�h|h0, I) dnh, (9)

where dnh is the measure on �h. For example, if �h is the polarization amplitudes h+ and h× and
the wave propagation direction �n then dnh is dh+dh×d2S, where d2S is the surface element on
the sphere described by the wave propagation direction. From the total detection efficiency we can
calculate the foreground event rate ṅF in terms of the source event rate ṅS:

ṅF =
(
rate of observed foreground events

)
(10)

= ṅSε(h0IJK) (11)

Each candidate event is characterized by some set of parameters that we denote �H:

�H =

(
Parameters describing gravitational wave
event identified in the detector array

)
. (12)

Note that we refer to a detector array. We assume that, having different detectors, we use coinci-
dence with time-of-arrival and amplitude constraints to characterize events. At the very least �H
will include some measure of the event amplitude; additionally, through time of arrival measure-
ments it may include also a set of possible event origins on the sky. With enough detectors it may
be that �H includes the amplitudes in both polarizations, a single location on the sky, and other in-
formation about the character of the burst. The dimensionality and details of the parameterization
�H depends on the character of the detector array (e.g., number of interferometers, their positions
and orientations) and the nature of the analysis that identifies an event. For LIGO and TAMA we
will need to be concerned about consistency between the burst amplitudes in the different detectors
and the burst “arrival time” in the different detectors.

A critical relationship for us is the one between actual events, described by �h and detected
events, described by �H . Let q( �H|�h, IJK) be the probability that the foreground event associated
with source event �h is characterized by �H:

q( �H|�hIJK) =

(
probability that observed event associated
with actual event �h is characterized by �H

)
. (13)

In the absence of noise we would expect that there is a one-to-one mapping from �h to �H . Noise
makes this a one-to-many mapping. The probability q( �H|�hIJK) can be thought of as the uncer-
tainty in the determination of the properties �H associated with the event �h. Note that q( �H|�hIJK)

1We assume here that the noise and instrument calibration are stationary. The problem of analysis in the presence
of non-stationary noise and/or instrument calibration is described in section 6.4.
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depends on the source and source population model (I), the nature of the analysis (J ), and the
nature of the detector noise and calibration (K). Once these are specified, however, q( �H|�hIJK)

is readily determined, along with ε(�h, IJK), by simulation.
The distribution in �H of the foreground contribution to the candidate event distribution is thus

PF ( �H|h0IJK) =

(
probability of observing the event described by
�H given the population characterized by I, h0

)
(14)

∝
∫

dnh q( �H|�hIJK)ε(�h|IJK)p(�h|h0, I) (15)

Note that PF ( �H|h0, IJK) is completely described by the population model through p(�h|h0, I)
and the analysis pipeline J as characterized by simulation.

3 Background distribution and event rate
Candidate events may arise from the source population, in which case they are drawn from the
distribution PF ( �H|h0, IJK), or from environmental or instrumental artifacts. We refer to the
distribution of events associated with environmental or instrumental artifacts as the background
distribution

PB( �H|JK)dnH =

(
fraction of background
events in the n-ball dnH

)
. (16)

Note that the background distribution depends on the detector noise and calibration (K) and the
method used to identify events (J ).

The background distribution event distribution can be determined using time-delay analysis,
under the assumption that background events in each individual detector are uncorrelated at zero-
delay. In addition to determining the background distribution, time-delay analysis also determines
the expected rate of background events:

ṅB =

(
expected rate of background
events of any amplitude

)
. (17)

4 The likelihood function
The likelihood is the probability of a particular observation under a fixed hypothesis. In our case
the hypothesis is that there is a source population characterized by “strength” h0 and a source event
rate ṅS , and the observation is a set of N observed events �H:

H =
{

�Hn : n = 1 . . . N
}

. (18)

Focus first on the probability of a single event �H . That event may be foreground or background.
The rate of foreground events is the product of the detection efficiency ε(h0, IJK) (cf. eqn. 11)
and the signal event rate ṅS , which is what we wish to determine. Write the foreground event rate
in terms of the background event rate ṅB and a parameter α, α ∈ [0, 1):

ε(h0IJK)ṅS = ṅF = ṅB
α

1 − α
. (19)
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As defined the parameter α is the probability that a particular event is a foreground event. In terms
of α the probability of a particular event �H is thus

P ( �H|h0αIJK) = (1 − α) PB( �H|JK) + αPF ( �H|h0IJK). (20)

Now assume that source and foreground events are independent of each other, and that the same
is true of background events. The probability of making the observation H is then product of the
probability of observing N events, which is given by the Poisson distribution, and the probability
that the N observed events are characterized by the particular �Hn, or

P (H|h0T ṅBαIJK) = P (N |µ)

{
1 N = 0∏N

n=1 P ( �Hn|h0αIJK) N > 1
(21)

where
P (N |µ) =

µN

N !
e−µ (22)

is the Poisson distribution and

µ = T [ṅB + ṅSε(h0IJK)] =
T ṅB

1 − α
(23)

is the expected number of events in an observation of livetime T .
In the next section we describe both Bayesian and Frenquentist analyses that use equations 21

and 20 to bound (h0, ṅS).

5 Rate vs. Strength
5.1 A Bayesian analysis
For our Bayesian analysis we begin with the likelihood as given in equation 21. Introduce a prior
for (h0, ṅS), which determines (through the known ṅB and ε(h0IJK)) the prior on α:

P (h0, ṅS) =

(
a priori probability density expressing degree
of belief that h0, ṅS take on particular values

)
(24)

P (h0, α) =

(
a priori probability density expressing degree
of belief that h0, α take on particular values

)
(25)

= P (h0, ṅS)
ṅB

ε(h0IJK)(1 − α)2
. (26)

The observation changes our belief that h0 and α (and, thus ṅS) take on particular values. This a
posteriori probability density is, through Bayes law,

P (h0, α|T ṅBHIJK) ∝ P (h0, α)P (H|h0T ṅBαIJK). (27)

The proportionality constant, which is formally 1/P (H|T ṅBIJK), is obtained by normalizing
the probability density P (h0, α|T ṅBHIJK).
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Determination of the posterior depends on the choice of prior P (h0, ṅS). The choice of prior is
important for setting upper limits and, correspondingly, for marginal detection. When a population
is clearly observable in the data it will, through the strong peakedness it leads to in the likelihood,
overcome any prejudices we impose in any reasonable prior.

Nevertheless, at present we are in the regime of upper limit setting and/or marginal detection
of a gravitational wave source population and our choice of prior is, consequently, meaningful.
Still, it is not so consequential that the validity of a result turns on the precise choice. In the case
of an upper limit, the choice of prior plays a role similar to the choice of ranking principle in a
Frequentist analysis leading to a confidence interval or upper limit. Most important is that in the
presentation of the results of an analysis we should

• state, up front, our methodology, which for Bayesian includes the choice of prior and for the
Frequentist the choice of ranking principle;

• report the likelihood, which permits the audience to make their own choices and draw their
own conclusions;

• be clear when the observation is, in fact, uninformative, rather than simply draw the confi-
dence interval, upper limit, or credible set and leave it at that.

5.2 A Frequentist analysis
Having determined the likelihood P ( �H|h0αIJK), the probability of observing the single event
�H , we can proceed to find from H the joint bound on (h0, ṅS): i.e., instead of finding the bound
on the rate assuming the source distribution characterized by h0 we can find the region in (h0, ṅS)
space that best explains the observations.

Begin by introducing a partition of the parameter space spanned by �H . For example,

• if �H is just the event amplitude, then introduce a partition in amplitude;

• if �H is the amplitude in two different polarizations and the wave propagation direction, then
introducing a partition in the amplitude in each polarization and a partition on the sphere for
the wave propagation direction.

Bin the individual events in the observationH according to this partition of the parameter space.
From our knowledge of P ( �H|h0T ṅBαIJK) and the observation duration T , and under the

assumption that the events are independent, we know the expected number of events in each bin
introduced above. Form χ2(H|h0T ṅBαIJK), the χ2 statistic for the observation H as binned.
Note that, because we expect a particular number of events (we have specified T , ṅB and ṅS) the
χ2 statistic is drawn from the χ2 distribution with N degrees of freedom, where N is the number
of single events inH.

We can now ask what hypotheses (h0, ṅS) lead to χ2(H|h0TαIJK) such that the probability
of obtaining this χ2 is greater than, e.g., 90%. While not a confidence interval in the usual sense,
it has a similar interpretation as the range of hypotheses for which the observation is likely in the
χ2 sense.

This approach has the added advantage that it provides, coincidentally, a measure of goodness-
of-fit: in particular, if there is no set of hypotheses that include the observation as likely, no “con-
fidence region” will be returned.
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6 Discussion
6.1 Introduction
In the first sub-section below we highlight several issues that need to be addressed to realize the
analysis describe herein. In ensuing sub-sections we address how we overcome issues of noise
and/or calibration non-stationarity, etc.

6.2 Realizing the analysis
6.2.1 Source and population model

The analysis described here interprets gravitational events in terms of a canonical source and dis-
tribution of sources in space. The simplest astrophysically motivated model might assume that
the source is axisymmetric, in which case there is a single wave-shape and the radiation in each
polarization mode depends on the wave shape and the angle between the symmetry axis and the
wave propagation direction in a well-defined manner.

6.2.2 Coincidence

The analysis described here begins with events that have been identified as coincident in the LIGO
and TAMA detectors. The better job we do with the coincidence cut the more sensitive our analysis
will be. With four detectors at three sites we can, in principle, make use of time of flight and event
amplitude information to make our coincidence quite strong against background. In particular:

• Events at H1 and H2 should have calibrated amplitudes that are in the ratio 2:1;
• A gravitational wave event propagating in a given direction will, when incident on our de-
tector array, lead to arrival times and calibrated wave strengths that have a particular relation
amongst each other. The wave strength relationship depends, in varying degrees, on the
source model: in particular, there is no room for variation between H1 and H2, some little
room for variations between H1 and L1, and considerable (but still limited) room for vari-
ation between any of the LIGO detectors and TAMA. We can insist that coincident events
share amplitudes and times-of-arrival that are consistent with a single wave propagation di-
rection.

• Owing to the large variation in sensitivity among the different detectors, sources that would
not be observable in one detector may be observable in others. If we allow for this possibility,
we can set thresholds for each detector based on their intrinsic sensitivity and have, in the
end, a more sensitive search.

• We will need to develop a method that conflates the separate amplitude measurements at
the different detectors into a single amplitude measurement that characterizes the coincident
events.
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6.2.3 Simulations

Simulations will play an especially important role in enabling the joint LIGO/TAMA analysis
described here. In particular,

• Propagating the source model through the coincidence step described above will require
simulations that add identical signals drawn from the source population to the output of each
detector.

• Determining the time-of-arrival difference windows that are important in the coincidence
step will require simulations;

• Determining the amplitude ratio windows that are important in the coincidence step will
require simulations.

In order to be effective these simulations will require close and careful agreement on the source
and population model.

6.2.4 Background determination

The analysis described here depends on an estimate of the background event rate ṅB and distribu-
tion PB( �H). Under the assumption that events that contribute to the background arise coincidence
among uncorrelated events at each site, time-delays between sites (i.e., not between H1 and H2)
can be used to estimate these quantities.

6.3 A “weak” analysis
Having determined an expected background distribution, we can immediately consider a weaker,
but simpler, analysis than has been described above. In particular we can ask whether the observed
events are consistent with the expected background event number and distribution. For a Bayesian
analysis, the likelihood that the observed distribution is background is given by equation 21 with
α equal to 0 (i.e., ignoring the source model entirely); for a Frenquentist analysis, the distribution
and number of observed events can be compared, using a χ2 test, with the expected distribution
and number from the background. A test of this kind does not place a limit on the rate or strength
of a gravitational wave source population; rather, it makes the simple statement that the observed
distribution and number are, or are not, consistent with the expected background.

6.4 Non-stationarity
The detector noise and calibration are not steady over the entire observation T . We can accom-
modate a time-varying noise and calibration if we can treat the noise and calibration as piecewise
constant in time and know in what interval each of the N events in the observationH occurs.

Partition the total observation time T into M sub-intervals of duration tk,
∑M

k tk = T , in
which the noise and calibration are constant. Similarly partition the observationH intoM disjoint
sub-observations Hk, with the union of the Hk equal to H, such that all the events in Hk occur in
the interval tk. Associated with each sub-observation is the likelihood of making that observation
given the expected background rate in the given interval: P (Hk|h0, tk, ṅB,k, ṅS). Note that the
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background event rate ṅB and the distributions PB( �H) and PF ( �H) will in general be different in
each sub-interval. The likelihood for the complete observation of duration T is then

P (H|h0, {tk, ṅB,k} , ṅS) =
M∏

k=1

P (Hk|h0, tk, ṅB,k, ṅS) . (28)

From the likelihood we can derive the bound on ṅS in the usual way.
Handling non-stationarity thus reduces to identifying epochs over which the noise and calibra-

tion are approximately stationary. Residual non-stationarity in each epoch will lead to a systematic
error in the analysis. The degree to which stationarity should be required in an epoch is thus set by
the level of the other systematic errors in the analysis.

Tracking calibration line amplitudes provides one method of identifying epochs over which
the calibration is stationary. Observing the time dependent rate of background events and using a
Bayesian Block analysis (cf. Scargle) is a possible approach to determining epochs when the noise
is stationary.

6.5 Background rate uncertainty
The background rate ṅB is determined experimentally. Associated with the experimental back-
ground rate is an uncertainty. Let

PB (ṅB) dṅB =
(
degree of belief that ṅB is in [ṅB, ṅB + dṅB).

)
(29)

We can marginalize the likelihood over this uncertainty, obtaining a new likelihood that is inde-
pendent of uncertain ṅB

P (H|h0, T, ṅS, IJ ) =

∫
dṅBPB(ṅB)P (H|h0, ṅB, ṅS, IJ ) (30)

The uncertainty PB (ṅB) may be estimated by making many estimates of the background rate,
all at different delays, as long as the delays are much greater than any residual correlation time in
the input time series from which the events are determined.
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