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Abstract

The initial goal of the LIGO search for inspiraling compact binaries is to bound their rate.
Candidate gravitational wave events generated by the existing binary inspiral search are char-
acterized by a signal amplitude, a chirp mass, and a characteristic event time. The source
population, from which true binary inspiral gravitational wave events are drawn, has binaries
distributed with galaxies and, within our own galaxy, following a distribution not too different
than that associated with pulsars. In the S1 analysis the totality of candidate events are charac-
terized by the largest amplitude event observed. In this note we show how to make fuller use
of the number of events and their amplitude in bounding the binary inspiral event rate. The
analysis described here is an application of an analysis first described in [1].
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1 Introduction

The initial goal of the LIGO search for inspiraling compact binaries is to bound their rate. Can-
didate gravitational wave events generated by the existing binary inspiral search are characterized
by a signal amplitude, a chirp mass, and a characteristic event time. The source population, from
which true binary inspiral gravitational wave events are drawn, has binaries distributed with galax-
ies and, within our own galaxy, following a distribution not too different than that associated with
pulsars. In the S1 analysis the totality of candidate events are characterized by the largest ampli-
tude event observed. In this note we show how to make fuller use of the number of events and their
amplitude in bounding the binary inspiral event rate. The analysis described here is an application
of an analysis first described in [1].
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2 Source population and gravitational wave strain events

In this section we define the source population and relate it to the population’s contribution to the
events identified in the analysis.

Begin by characterizing thelocal specific rate densityof binary coalescenceN :

Ṅ ≡ d5N

dt d3x dM
, (1)

whered3x is a spatial volume element andM is the chirp mass that charactrerizes each binary. We
assume that the local specific rate density is a function of location~r and chirp massM. The local
specific rate density fully characterizes the source population.

It is convenient to “factor”Ṅ into several components, each with a physical meaning:

Ṅ = ṅSf(~x|I)P (M|~x, I) (2)

where

ṅS =
(

total rate of binary coalescence in a “standard” galaxy
)
, (3)

P (M|~x, I) =

(
probability that a binary coalescence at~x (in
the galaxy located at~x) has chirp massM

)
, (4)

f(~x|I) =

(
Binary coalescence rate at~x relative to the rate in a standard
galaxy; a density with units [standard galaxies/volume]

)
, (5)

I =

(
parameters describing the coalescing binary
distribution model in space and chirp mass

)
. (6)

Note thatP (M|~r, I) may be independent of~r. For the purpose of binary inspiral observations
I might represent our parameterization of the galactic source distribution (density in and size of
bulge, scale height, etc.), the variations among galaxy type (density in ellipticals vs. spirals), and
the variations in the distribution of binaries by chirp mass (which may also depend on galaxy type).
Here and henceforth we assume thatI is fixed and consider how gravitational wave observations
can bounḋnS, which we take to be the rate in our own galaxy. Having said that, however, note that
nothing we do here or below excludes the possibility of using the observations to bound additional
model parameters included inI.

The population modelI leads to a distribution of gravitational wave events incident on the
detector array. Each individual event in this distribution is characterized by two wave polarization
amplitudes(h+, h×), a chirp massM and a wave propagation direction~n.1 Denote this parame-
terization of a real source event by~h,

~h =

(
Parameterization of binary inspiral
wave event incident on detector array

)
, (7)

and write the distribution of real source events in the population modelI by

p(~h|I) =

(
probability of strain event characterized
by~h given population characterized byI

)
. (8)

1The polarization amplitudes measured at the detectors depend on the internal orientation of the binary system’s
angular momentum axis relative to the propagation direction of the radiation. The angular momentum points in a
random direction and the effect this has on the distribution ofh+ andh× is readily calculated: see, e.g., [2].
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An obvious “Olber’s Paradox” afflicts the definition ofp(~h|I). Distant sources are more nu-
merous than closer ones; correspondingly, weaker sources are more numerous than stronger ones.
Without a source strength cut-off the fraction of sources with non-zero intensity is zero. In the
real universe the paradox is resolved in the usual way by the cosmological redshift and the finite
age of the universe. Intuitively we know that the details of the cut-off are not important as long
as the events with amplitude less than the cut-off do not contribute to the events that are actually
observed; we will see in quantitative detail how this comes to pass below.

A particular inspiral event~h incident on the detector may or may not lead to an observed event.
Denote the data processing pipeline that leads to the identification of gravitational wave event
candidates by

J =

 description of the analysis
method that identifies
gravitational wave events

 (9)

and write the probability that the real gravitational wave event characerized by~h leads to a candi-
date event byε(~h,J ):

ε(~h,J ) =

 probability that the event~h
gives rise to a detector event
when analyzed according toJ

 (10)

Note thatε(~h,J ) depends on the analysis that identifies events (here represented byJ ), the noise
character and the instrument calibration.2 With these specified, however,ε(~h,J ) is readily deter-
mined by simulation.

Eachobservedevent is characterized by a set of parameters that we denote~H:

~H =

(
Parameters describing gravitational
wave event identified in detector array

)
. (11)

At the very least~H will include some measure of the event amplitude and chirp mass. It may
also include a locus of points denoting the possible origin of the incident gravitational wave on
the sky. With enough detectors and a sufficiently sophisticated analysis it may be that~H includes
the amplitudes in both polarizations, a single location on the sky, and other information about
the character of the burst; however, for the remainder of this note we assume that~H represents
estimated signal-to-noise ratio and chirp mass. As above, however, nothing we do here or below
excludes the possibility that~H is of higher dimension.

A critical relationship is the one between actual events, described by~h, and detected events,
described by~H. Let q( ~H|~h) be the probability that the real event~h, if observed, leads to the
characterized observation~H:

q( ~H|~h,J ) =


probability that~H characterizes
the observed event associated
with actual event~h and
identified by methodJ

 . (12)

2We assume here that the noise and instrument calibration are stationary. Analysis in the presence of non-stationary
noise and/or instrument calibration is described in section 7.1.
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The probabilityq( ~H|~h,J ) can be thought of as the uncertainty in the determination of the character
of the signal described by~h; alternatively, it can be thought of as the “point spread function” for
binary inspiral observations. Note thatq( ~H|~h) depends on the nature of the analysisJ , the nature
of the detector noise, and the calibration. Once these are specified, however,q( ~H|~h), like ε(~h,J ),
is readily determined by simulation.

The contribution to the detector output of gravitational wave events associated with the popu-
lationI is thus described by theforeground event distribution

PF ( ~H|IJ ) =
(

probability of making the observation~H given the populationI
)

(13)

∝
∫

dnh q( ~H|~h,J )ε(~h,J )p(~h|I) (14)

wherednh is the measure on~h: i.e., dh+ dh× dM, d2S, whered2S is the surface element on the
sphere described by orientation of the binary relative to the wave propagation direction. Note that
PF ( ~H|IJ ) is completely described by the population modelp(~h|I) and the analysis pipelineJ ,
as characterized by simulation.

We now see the conditions under which we can impose a cut-off on the source population
model: i.e., how we can ignore sources whose signal-to-noise is sufficiently weak in constructing
our source population modelI or p(~h|I). Note thatPF ( ~H|IJ ) is independent of

• the absolute normalization ofp(~h|I);

• the behavior ofp(~h|I) for events~h for which ε(~h,J ) is negligible.

Consequently, in defining our population modelI (and, thus,p(~h|I)) we can assume that there are
no events whose signal strength at the detector is so low that the probability of detectionε(~h,J ) is
negligible.

Associated with the source population is the standard galaxy event rateṅS. Not every source
event leads to an observed event. The fraction of source events that lead to observed events is the
total detection efficiency, which depends on the source population model, the detector noise and
calibration, and the analysis methodology that identifies gravitational wave events. Writing the
total efficiency asε(IJ ) we have3

ṅF =
(

rate of observed foreground events
)

(15)

=

∫
d3xdMṄ (16)

= ṅSf(I)ε(IJ ) (17)

where

ε(IJ ) =

∫
dnh ε(~h,J )p(~h|I) (18)

f(I) =

∫
d3x f(~x|I). (19)

3Again, we assume here stationary detector noise, calibration, etc., and treat the case of non-stationarity in section
7.1 below.
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3 Background distribution and event rate

Observed events may arise from the source population, in which case they are drawn from the dis-
tributionPF ( ~H|IJ ), or from environmental or instrumental artifacts. We refer to the distribution
of events associated with environmental or instrumental artifacts as the background distribution:

PB( ~H)dnH =

(
fraction of background events in
then-ball of radiusdnH about~H

)
. (20)

Background events occur at a given rate, which we denoteṅB:

ṅB =

(
rate of background events
of any amplitude, chirp mass

)
(21)

Both the background distribution and its rateṅB may be estimated from time-delay coincidence
analysis assuming that there is no preference for “zero-delay” background disturbances in the
gravitational wave channel that cannot be vetoed by other means.

4 The likelihood function

The likelihood is the probability of a particular observation under a fixed hypothesis. In our case
the hypothesis is that there is a source populationI characterized by the standard galaxy rateṅS

and our observation is a set ofN observed events~Hk:

H =
{

~Hn : n = 1 . . . N
}

. (22)

Focus first on the probability of a single event~H. That event may be foreground or background.
The rate of foreground events is the product of the total detection efficiencyε(IJ ) (cf. eqn. 18)
and the standard galaxy rateṅS, which is what we wish to determine. Write the foreground event
rate in terms of the background event rateṅB and a parameterα, α ∈ [0, 1):

ṅF = f(I)ε(IJ )ṅS (23)

= ṅB
α

1− α
. (24)

As defined the parameterα is the probability that a particular event is a foreground event. In terms
of α the probability of a particular event~H is thus

P ( ~H|IJ , ṅB, ṅS) = (1− α) PB( ~H) + αPF ( ~H|IJ ). (25)

Now assume that gravitational wave events are independent of each other, and that the same
is true of background events. The probability of making the particular observationH is then
product of the probability of observingN events, which is given by the Poisson distribution, and
the probability that theN observed events are characterized by their particular~Hk, or

P (H|T, ṅB, ṅS, IJ ) = P (N |µ)

{
1 N = 0∏N

k=1 P
(

~Hk|ṅB, ṅS, IJ
)

N > 1
(26)
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where

P (N |µ) =
µN

N !
e−µ (27)

is the Poisson distribution and

µ = T [ṅB + ṅSf(I)ε(IJ )] (28)

is the expected number of events in an observation of livetimeT .
From the likelihood and the observationH we can find the bounds on(h0, ṅS) using Bayesian

techniques. In the next section we describe a Frenquentist analysis for(h0, ṅS).

5 A Frequentist analysis

Having determined the likelihoodP ( ~H|IJ , ṅB, ṅS), the probability of observing the single event
~H under the hypothesis(IJ , ṅB, ṅS), we can proceed to find fromH the bound oṅnS (and other
parameters that characterize the population modelI) using a Frequentist analysis.

Begin by introducing a partition of the parameter space spanned by~H. For example,

• if ~H is just the event amplitude, then introduce a partition in amplitude;

• if ~H is the amplitude in two different polarizations and the wave propagation direction, then
introducing a partition in the amplitude in each polarization and a partition on the sphere for
the wave propagation direction.

Bin the individual events in the observationH according to this partition of the parameter space.
From our knowledge ofP ( ~H|IJ , ṅB, ṅS) and the observation durationT , and under the as-

sumption that the events are independent, we know the expected number of events in each bin
introduced above. Formχ2(H|IJ , ṅB, ṅS, T ), theχ2 statistic for the observationH as binned.
Note that, because we expect a particular number of events (we have specifiedT , ṅB andṅS and
J ) theχ2 statistic is drawn from theχ2 distribution withN degrees of freedom, whereN is the
number of single events inH.

We can now ask what hypothesesṅS (or ṅS andI) lead toχ2(H|IJ , ṅB, ṅS, T ) such that the
probability of obtaining thisχ2 is greater than, e.g., 90%. While not a confidence interval in the
usual sense, it has a similar interpretation as the range of hypotheses for which the observation is
likely, in theχ2 sense.

This approach has the added advantage that it provides, coincidentally, a measure of goodness-
of-fit: in particular, if there is no set of hypotheses that include the observation as likely, no “con-
fidence interval” will be returned.

6 Relation to the “most luminous event” analysis

In the S1 analysis the set ofN observationsH is characterized by the single observation~H0 ∈ H
with the largest signal-to-noise,ρ0. It is certainly the case that all foreground events, regardless
of their number, have signal-to-noise less thanρ0. Given a population modelI and a method for
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identifying eventsJ the fraction of foreground events whose signal-to-noise is less than or equal
to ρ0 is

CF (ρ0|IJ ) =

∫ ρ0

0

dρ

∫ ∞

0

dMPF (ρ,M|IJ ), (29)

where we have assumed that~H0 is completely determined by the estimated chirp massM0 and
signal-to-noiseρ0 (cf. eq. 14). The probability that all foreground events, regardless of their num-
ber, have signal-to-noiseρF less thanρ0 is thus

P (ρF < ρ0|T, ṅS, IJ ) =
∞∑

n=0

P (N |T ṅF )CF (ρ0|IJ )n (30)

= e−T ṅF [1−CF (ρ0|IJ )] (31)

(where the absence of any foreground events of course means that no foreground events have
signal-to-noise greater thanρ0).

Associated with this probability is the probability density that the most luminous event has
signal-to-noiseρ0:

pF (ρF |T, ṅF , IJ ) =
d

dρ0

e−T ṅF [1−CF (ρ0|IJ )] (32)

= T ṅSPF (ρ0|IJ )e−T ṅF [1−CF (ρ0|IJ )]. (33)

This probability density is also the likelihood for the observation that the most luminous fore-
ground event has signal-to-noiseρ0. In the most luminous event analysis one assumes that the
most luminous event is a foreground event and then, from this likelihood, uses a Bayesian analysis
with a uniform prior inṅS to determine a credible set, bounded below byṅS = 0, associated with
a probabiltiyp. The upper end of this credible set is taken to be the upper limit onṅS. (See [3] for
more details and an alternative interpretation of the most luminous event.)

The critical difference between the “most luminous event” analysis and the more comprehen-
sive analysis in the previous sections is that “most luminous event” analyses discard virtually all
the information gathered in an observation: the number of events observed, the distribution of
events in amplitude, etc.

7 Discussion

7.1 Non-stationarity

The detector noise and calibration are not steady over the entire observationT . We can accom-
modate a time-varying noise and calibration if we can treat the noise and calibration as piecewise
constant in time and know in what interval each of theN events in the observationH occurs.

Partition the total observation timeT into M sub-intervals of durationtk,
∑M

k tk = T , in
which the noise and calibration are constant. Similarly partition the observationH into M disjoint
sub-observationsHk, with the union of theHk equal toH, such that all the events inHk occur in
the intervaltk. Associated with each sub-observation is the likelihood of making that observation
given the expected background rate in the given interval:P (Hk|tk, ṅB,k, ṅS, IJ ). Note that the
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background event ratėnB and the distributionsPB( ~H) andPF ( ~H) will in general be different in
each sub-interval.The likelihood for the complete observation of durationT is then

P (H| {tk, ṅB,k} , ṅS, IJ ) =
M∏

k=1

P (Hk|tk, ṅB,k, ṅS, IJ ) . (34)

From the likelihood we can derive the bound onṅS in the usual way.
Handling non-stationarity thus reduces to identifying epochs over which the noise and calibra-

tion are approximately stationary. Residual non-stationarity in each epoch will lead to a systematic
error in the analysis. The degree to which stationarity should be required in an epoch is thus set by
the level of the other systematic errors in the analysis.

Tracking calibration line amplitudes provides one method of identifying epochs over which
the calibration is stationary. Observing the time dependent rate of background events and using
a Bayesian Block analysis [4] is a possible approach to determining epochs when the noise is
stationary.

7.2 Background rate uncertainty

The background ratėnB is determined experimentally. Associated with the experimental back-
ground rate is an uncertainty. Let

PB (ṅB) dṅB =
(

degree of belief thaṫnB is in [ṅB, ṅB + dṅB).
)

(35)

We can marginalize the likelihood over this uncertainty, obtaining a new likelihood that is inde-
pendent of uncertaiṅnB

P (H|T, ṅS, IJ ) =

∫
dṅBPB(ṅB)P (H|ṅB, ṅS, IJ ) (36)

The uncertaintyPB (ṅB) may be estimated by making many estimates of the background rate,
all at different delays, as long as the delays are much greater than any residual correlation time in
the input time series from which the events are determined.

7.3 Goodness-of-fit

Any observationH will yield a bound onṅS, even if the observation is, itself, very unlikely given
our state of knowledge regarding the expected distribution of events in~H, background ratėnB, and
source population modelI. Given our best estimate ofṅS we can ask whether the corresponding
model is consistent with the observations using aχ2 test.

Alternatively, the value of the likelihood for the observationH provides a measure of the de-
gree to which the observations are expected in the context of the model. Focus attention on the
maximum of the likelihood over the source rateṅS given the observation. Simulations for thisṅS

will determine a distribution of observations and, correspondingly, values of the likelihood under
the assumption that the rate isṅS. The value of the likelihood for the actual observation can be
compared to this distribution in order to determine how exceptional the observation is. If the ob-
servation is too exceptional given the best-fit (i.e., the maximum likelihood value of)ṅS then we
may wish to regard the bound onṅS as suspect.
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