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Introduction 
 
We are interested in tracking temporal variation  in the statistical properties of the 
noise floor in a time series. The term noise floor is very loosely defined as that 
component of the power spectral density of a time series which would be left after 
removal of narrowband technical noise features (a.k.a., line noise). It is the 
component shown, for instance, in plots of interferometer design sensitivity. Further, 
we are interested in slow variations (drifts) of the noise floor. The drifts could be in 
both the shape as well as the level of the noise floor. We call the method that we have 
developed for this purpose MNFT (Median based Noise Floor Tracker). The 
definition of the noise floor is, of course, fuzzy when there are technical line features 
that are not confined to narrow bands. However, we leave the matter of more rigorous 
definitions in the background for the moment.  
 
There are two major problems in tracking the temporal behaviour of the noise floor: 

1. Current interferometer data is dominated by high power line features in the 
time domain. So any statistical descriptor (mean, variance, etc.) estimated in 
the time domain actually measures the properties of the dominant components 
of the data and not the noise floor. 

2. Besides line features, interferometer data also contains transients which can 
skew estimates made in the time domain. For example, transients coming at a 
high rate can temporarily masquerade as slow non-stationarity. 

So to get at the noise floor time series, we need to eliminate or suppress the line 
features. After line removal, a measure of statistical property must be used that is 
sensitive to slow variations but not significantly affected by the presence of transients.  
 
MNFT consists of the following steps: 

1. Bandpass and resample the given time series x(k), where k is the sample index. 
This is done in order to reduce the sampling rate and to restrict the analysis to 
the frequency band of interest. The resulting time series is called the 
resampled time series r(k). (In this report, x(k)  is also used to denote the kth 
sample with the context clarifying the sense in which x(k)  is being used.) 

2. Construct an FIR filter that whitens the noise floor. See Section0 for details. 
Whitening the data makes it convenient to compare with simulations. The 
output of the whitening filter is called the whitened time series w(k) . 



3. Remove lines using a notch filter. A notch filter implemented as an FIR filter 
is a computationally inexpensive and a reasonably effective method to 
eliminate lines present in the data. The resulting data is called the cleaned time 
series c(k) . 

4. Track variation in the second moment of c(k) using a running median13 . The 
running median output is a time dependent estimate of the second moment and 
we denote this latter time series by Σ(k). 

5. Obtain significance levels for the sampling distribution  of the second moment 
via Monte Carlo simulations and set thresholds for detection of non-
stationarity. 

Details of each of the steps above are provided in the subsequent sections. The 
method is illustrated using the LIGO S1 data.  
 
Data : lowpass and resample 
 
We used LIGO S1 data from  the Hanford 2k (H2) and the Livingston 4k (L1) 
interferometers to illustrate our method. The particular segments chosen here were 
also relevant to the externally triggered [5] search and indeed much of the motivation 
for this work derives from the particular needs of that analysis. The channel looked at 
for both the interferometers was L1 or H2:LSC-AS_Q (uncalibrated). 
The sampling frequency for this channel was 16384 Hz. Figure (1) shows the 
timeseries envelope and the power spectrum of the data recorded between GPS times 
715082714 and 715083088 s.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The timeseries of the raw data from the uncalibrated LSC-AS_Q channel of 
the L1 and H2 detectors. 
 
 
The data was then lowpassed with a cutoff frequency of  4096 Hz and resampled 
down.   

 

Whitening the data 
 



A quiet stretch (without large transients) is identified visually and the PSD is 
computed. A running median is used on the PSD to obtain an estimate of the noise 
floor (in a sense this can be taken to be a definition of the noise floor). Since line 
features are outliers in the frequency domain series, a running median with a 
sufficiently large block size is a robust estimate of the noise floor PSD [1,8,10]. 
Figure (2) illustrates this process. This method of noise floor estimation has found 
many applications, viz.  automated line detection [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. PSD of the lowpassed and resampled data from H2 and L1. The red curve 
shows the estimated spectral floor by the method of Running Median [1].  
 
From the noise floor estimate S(f), an FIR filter is constructed (using the least squares 
design technique ) with a frequency domain transfer function that is 1/√S(f). This time 
domain filter is then used to filter the entire data stretch. If the data noise floor was 
stationary, the filtered noise floor should be a flat PSD for not only the segment that 
was used to construct the filter but for all other segments. Figure (3) shows the PSD 
of data after application of the whitening filter.  
 

 



Figure 3. This figure shows the whitened and cleaned data from H2 and L1. The 
whitening is performed by constructing an FIR filter using the frequency domain 
transfer function based on the Running Median estimate of the spectral noise floor.  
 
 
Whitening of interferometric data using adaptive filters has been discussed 
extensively in [2,4]. The adaptive whitening filters in [3] were based on time series 
modeling of the data using AR and ARMA models but the model fits were of an 
extremely high order (∼1000) since line features were not removed. (It is also 
incorrect to include line features such as power lines into an AR or ARMA time series 
model since they may not meet the assumptions behind an AR/ARMA model.) In our 
case, we first directly get an estimate of the noise floor using the running median and 
then construct a time series model (the FIR filter design phase) that fits the noise 
floor. This yields a much simpler whitening filter. This way of obtaining the 
whitening filter can be easily made adaptive but we do not address it further here.  

 

Line removal 
 
Strong and steady line features in the PSD are tabulated in terms of their central 
frequencies and bandwidth at the noise floor level. A high order FIR notch filter is 
constructed using Matlab [6] with notches positioned at the central frequencies.  
Sometimes lines are very closely spaced and it would require an extremely large filter 
order to eliminate each one individually. Instead we eliminate the entire band 
containing such sets of closely spaced lines. Figure (5) shows the resulting PSD after 
notch filtering the whitened time series. 
 
Why don't we use an arbitrarily high order filter in order to make very narrow notches 
and thus avoid taking out wide bands? The constraint comes from the fact that the 
notch filter also broadens transients in its input. So, if the rate of transients is high 
and/or if they have large amplitudes, the filtered output may show non-stationarity 
simply due to a high rate of broadened transients (see section on effect of transient 
broadening) overlapping with each other. Thus, there is a trade off between the order 
of the notch filter used and the prevention of false slow non-stationarity due to strong 
and/or high rate transients. 
 

Tracking Non-Stationarity 
 
The time series c(k)  is an estimate of the whitened noise floor. For a stationary noise 
floor, the variance of c(k) would be a constant. For a non-stationary noise floor 
however the variance of c(k) would change in time. This variation could be caused by 
either a change in the shape of the noise floor or a change in its overall level or both. 
Thus, the simplest possible test for non-stationarity of the noise floor is then to 
estimate the variance of c(k) using a suitably defined estimator over a moving 
window in time. The resulting time dependent variance estimate can then be 
scrutinised for the presence of change points [7]. 
                                                                                                         



The standard estimator of variance is the MLE estimator [18]. However, the use of 
this estimator is not appropriate for the S1 data. This is because the cleaned time 
series still has transients present in it. S ince a running variance estimate using fixed 
length block averages is essentially an FIR filter acting on the square of the data it can 
be affected significantly by transients especially if they are grouped closely. 
 
In order to mitigate this problem we estimate the second moment of the cleaned time 
series by again using a running median on c2(k). Figure 4 illustrates the difference 
between running mean and running median estimation in the presence of transients. 
The running median is a more effective smoothing technique in this case because it 
eliminates the transients.  
 
 

 

Figure 4. This figure illustrates the difference in the performance of  Running Median 
as a smoothing technique as opposed to running mean. The specific example is drawn 
from a stretch of LIGO E7 data from the channel H2:LSC-AS_Q. The timeseries and 
the spectrogram on the left shows the presence of three very strong transients. The 
figure on the right shows that while the running mean retains much of the transient 
signature, the running median has smoothed it out. The offset seen in the figure is 
because the quantities are not normalized. 

 

Simulation 
 
We have used the running median estimate of the second moment in order to supress 
the effect of transients. However, the price paid for this is that the probability density 
for the resulting estimate cannot be computed in a simple way. This prevents us from 
easily computing the threshold for non-stationarity detection that corresponds to a 
given false alarm probability. We must, therefore, take recourse to Monte Carlo 
simulations in order to calculate detection thresholds. 
 



The running median of  c2(k) is an estimate of the second moment of the noise floor. 
If the original noise floor had zero mean then the second moment coincides with the 
variance of the noise floor. A "quiet" part (i.e., visually free of transients) of c(k) is 
used to obtain an estimate of the standard devitaion σ. A pseudo-random stationary 
white noise is generated with marginal density N(0,σ) (Gaussian with zero mean and 
variance σ2). The simulated noise is then processed using the same steps as the real 
data.  
 
Figure (5) shows the running median plots for the S1 data and for 50 realizations of 
the simulated noise.  
 
 

 
 
Figure 5. Running median discriminator with S1 data and simulated stationary white 
noise. The red curves gives an approximate estimate of the spread expected from 
stationary white noise with same variance. Points where the interferometric data 
exceeds this bound are indicative of departure from stationarity.  
 
 
“Block length” as a parameter 
 
The block length over which the Running Median is computed can be kept as a 
flexible parameter. This allows the investigator to chose the time scale over which 
(s)he wishes to study the presence of drifts. Figure 6 illustrates this point. The 
Running Median is shown against the spectrogram for H2. This particular data stretch 
is known to have non-stationarity (known as ‘breathing of the noise floor’ [5]) over a 
timescale of typically 0.5 sec. By suitably adjusting the block length, the Running 
Median picked up this behaviour.   
 
 
 



 

 

 

 

 

 

 

 

 

 

Figure 6. Left top : Spectrogram of the H2 data used in this example. The ‘breathing 
noise floor’ is zoomed in. Left bottom : The Running Median estimate of the second 
moment reflects the same variation. Right top and bottom : Same as the corresponding 
left figures on a longer time scale. The non-stationarity is very evident here. 

 

Effect of transient spreading 
 
Since the S1 data is infested with a very high rate of transients, it is important to test 
the impulse repsonse of the high order filters used in the data preprocessing to ensure 
that the impulses do not spread beyond the block length used for the running median 
computation.  
A timeseries was generated with an impulse of same amplitude as the highest 
transient in the S1 data. The impulse response of the same series of filters is shown in 
figure (7). The percentage spread (computed by taking the ratio of the number of 
samples of the post-processed impulse to the block length of the Running Median) of 
the impulse for the highest transients is about 4.8.  



 
 
Figure 7. Impulse response of the set of filters used in the pre-processing of the data. 
 
 
In the next set of simulations, equally spaced transients of the same magnitude were 
imposed on S1 data to see if the running median differed from the one when there was 
no transient. The result is illustrated in figures (8) and (9). The graphs show no 
apparent difference between the two cases mentioned above.  The implication is that 
the transients do not introduce any artificial non-stationarity in the data and hence do 
not affect the Running Median estimator as a discriminator of non-stationarity.  
 
 
 
 
 



Figure 8. This figure shows Gaussian pulses added to the S1 data from H2. The figue 
on the left shows the time series, while the one on the right shows how these added 
transients appear in the spectrogram.  

 

 
 
 
 

 

 

 

 

Figure 9. The top shows the Running Median for H2 data with transients added, while 
the bottom shows the same before the addition of transients. 

 

Validation I : MNFT on simulated stationary white 
noise  
 
In order to validate the performance of MNFT, we have simulated stationary white 
noise and processed it exactly the same way as have been done with the real data. The 
frequencies corresponding to the line frequencies in the real data were subtracted from 
the simulated data as well so that the simulation is also subjected to same filters as we 
have used in the real data. Figure 10 illustrates the results. It is clear from the figures 
that the test data does not venture out of  the bound set by the stationary white noise 
spread, thus validating the method.  
 
 
 
 
 
 



 
 
 

 
 
 
Figure  10. The blue curve shows the stationary test data imposed on 50 realizations 
of simulated stationary white noise. As should be expected, the test data does not 
exceed the stationary white noise spread.  
 
 
Validation II : MNFT on simulated non-stationary data 
 
Simulated nonstationary data was produced by a time varying IIR filter operating on a 
white Gaussian random process with unit variance. The filter coefficients are 
independent stochastic processes with specified means. Figure 11 shows a section of 
the non-stationary noise generated by the above method. Figure 12 shows the 
Running Median curve obtained by MNFT on this data. Contrary to what is seen in 
figure 10, here one can see the expected departure from the level of stationarity 
(depicted by the red curves). This confirms the efficiency of MNFT as a detector of 
non-stationary behaviour in the data stream.   



 
Figure 11. A section of the simulated non-stationary timeseries (top) and the 
corresponding spectrogram (bottom). The spectrogram is zoomed in to show the 
presence of non-stationarity clearly. 
 
 

 



Figure 12. The Running Median of the simulated non-stationarity data. As expected, 
the departure from stationary noise level is clear. This validates the method as an 
efficient one to detect non-stationarity present in a timeseries. 

 

 

Open Issues 

1. Use of other line removal methods to suppress line features before notch filtering  : 
Using a suitable line removal method [11-14] as a pre-filter will be useful to reduce 
the order of the notch filter. Most of these methods are geared towards removal of 
technical noise of a particular kind e.g. violin modes, power lines etc. and works with 
assumed models. Median based line tracker (MBLT) [1] is a useful tool which 
removes all lines without having to assume any specific model and has the advantage 
of being immune to transients. The methods mentioned above typically suppress the 
high dB lines by more than 30 dB. Some work has been done along these lines, but is 
subjected to further testing. MBLT is computationally expensive on a single machine. 
Work is underway to include MNFT under the Detector Characterization Robot 
(DCR) [7,8] in a cluster environment. This is expected to speed up the process greatly 
and is estimated to be able to track the slow drift online.  
 

2. Setting thresholds using a single simulated stationary timeseries :  
Since the simulation process consists of generating stationary white noise with a given 
variance, it would be more natural to simulate a single timeseries typically ~50 times 
the length of the given data (equivalent to 50 different realizations), histogram it and 
get an estimate of its variance that can serve as a measure of threshold. The exact 
threshold to be determined is of course based on the requirements of the specific 
analysis one is looking at.  Work is in progress. 
 
 
 
Comments and future direction 
 
The study yields interesting results  and can find many applications wherever a 
suitable indicator of non-stationarity in the data is required in detector 
characterization [15] and data chracterization [16] for setting upper limits for different 
astrophysical sources. For example, this method could lead to construction of an 
epoch veto, a monitor [17] or a warning system that clicks whenever the data exceeds 
the threshold.  
 
One of the important questions relates to obtaining the tolerance of astrophysical 
searches to non-stationarity. This clearly depends on the search that is being 
performed. The degree of tolerance can be calculated by assuming an appropriate 
model for the type of non-stationarity noticed in the data and plugging in the modeled 
noise to a search algorithm to obtain the necessary sensitivity and tolerance to the 



level of departure from an ideal stationary noise. Work along these lines is in 
progress. 
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