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Summary

This document presents our conclusions and recommendations regarding the use of Mexican Hat (MH) mirrors and
beams (a specific variant of flat-topped beams) in Advanced LIGO interferometers. We conclude that:

1.

By switching from the baseline (BL) spherical mirrors and Gaussian beams to MH mirrors and beams with the
same cylindrical test-mass diameters and thicknesses and the same diffraction losses, one can reduce the power
spectral density of thermoelastic noise by a factor 0.34 and increase the event rate for compact-binary inspirals
by a factor 2.6. Larger improvements could be achieved by using conical test masses with enlarged inner faces.

. The sensitivity of the interferometer’s arm cavities to transverse displacements of the ETMs is nearly the same

for MH mirrors as for the BL spherical mirrors. For uncorrelated displacements of the ETM’s through distances
s, the fractions of the carrier power driven into (dipolar) parasitic modes inside the arm cavities, and driven
out the dark port, are about 100(s/1mm)? ppm and 200(s/1mm)? ppm, respectively, for MH mirrors; and
100(s/1.3mm)? ppm and 200(s/1.3mm)? ppm for BL spherical mirrors.

. The interferometer’s arm cavities are about four times more sensitive to mirror tilt when MH mirrors are

used than for the BL spherical mirrors. When all four ETM and ITM mirrors are tilted through angles 6
about uncorrelated axes, the fractions of the carrier power driven into (dipolar) parasitic modes inside the arm
cavities, and driven out the dark port, are about 0.001(6/0.01urad)? and 0.002(6/0.01urad)?, respectively for
MH mirrors; and 0.001(6/0.035urad)? and 0.002(6/0.035urad)? for BL mirrors.

. For MH Mirror figure errors with peak-to-valley height variations Az in the innermost 10 cm by radius: after the

control system has optimized the mirror tilts, the fractions of the carrier power driven into parasitic modes inside
the arm cavities, and driven out the dark port, are about 0.0008(Az/6nm)? and 0.0015(Az/6nm)?, respectively.

. The most serious constraints on mirror tilt and on mirror figure accuracy come not from the arm cavities

but rather from the signal recycling (SR) cavity. The SR cavity and power recycling (PR) cavity operate
approximately in the geometric optics regime and thus are nearly insensitive to whether one uses MH or spherical
mirrors. As a result, by switching from spherical to MH mirrors, one pays only a small penalty, in terms of
mirror tilt constraints and figure-error constraints.

. More specifically, the most severe constraints on tilt and figure error arise from the driving of signal power

into parasitic modes when the signal light passes through the SR cavity. To keep the resulting increase in
shot noise below one per cent in the standard wideband Advanced-LIGO interferometers, it is necessary to
constrain the magnitude 6 of the vectorial tilts of the input test masses (ITM’s) and signal recycling mirror
(SRM) to 05% < 0.024urad (for the baseline spherical mirrors) and O34 < 0.016purad (for MH mirrors). For
the third advanced interferometer, narrowbanded at f ~ 500 Hz or ~ 1000 Hz, the constraint must be tighter:
0%% < 0.011prad, and OME < 0.007urad. These are approximately the same as the well-known constraints on
LIGO-I tilt arising from the PR cavity, in the absence of an output mode cleaner. If there is no output mode
cleaner in Advanced LIGO, then the constraint on tilts in the PR cavity is about the same as that for wideband
interferometers in the SR cavity. The increase in shot noise scales as 62; and we estimate that our constraints
are inaccurate by a factor < 2 due to ignoring correlations in the overlaps of certain parasitic modes, and for
the narrowbanded interferometers, due to inaccuracy of the geometric optics approximation in the SR cavity.

. We characterize the analogous constraints on mirror figure error by the peak-to-valley fluctuations in the mirror

height in the central regions of the mirrors (regions enclosing 95 per cent of the light power; radius ~ 10 c¢cm
for MH mirrors and ~ 8 c¢m for baseline spherical mirrors), with the fluctuations averaged over ~ 3 c¢cm (an
averaging produced by breakdown of geometric optics in the SR cavity). Our estimated constraints for one per
cent increase of shot noise are Azwp < 2.0 nm for wideband Advanced-LIGO interferometers and Azyg < 1.0



nm for narrowband, independently of whether the mirrors are MH or BL spherical—though the region over
which they must be applied is different, 10 cm radius for MH and 8 cm for BL. The increase in shot noise
scales as Az2, and our estimated constraints might be inaccurate by as much as a factor ~ 3 due to exploring
only one representative shape for the figure errors, due to overlaps of certain parasitic modes, and for the
narrowbanded interferometer due to innacuracy of the geometric optics approximation in the SR cavity. These
are approximately the same constraints as arise (in our calculations) from the PR cavity in LIGO-I, in the
absence of an output mode cleaner. If there is no output mode cleaner in Advanced LIGO, then the constraint
on tilts in the PR cavity is about the same as that for wideband interferometers in the SR cavity. To avoid these
severe constraints, it may be desirable to shape the fronts of the ITM’s as lenses that bring the light (Gaussian
or MH) to a focus somewhere near the recycling mirrors; if this is done, the figures of the ITM fronts and/or
the recycling mirrors presumably must be different in the MH case from the BL spherical case.

. The thermoelastic benefits of MH mirrors are sufficiently great, and the tightening of constraints that they place
on marror figures and tilts are sufficiently modest, to motivate carrying MH mirrors forward as an option for

Advanced LIGO.

. As was discussed at the 6 September MIT meeting on flat-topped beams, a desirable next step is to determine

the reproducibility and accuracy with which MH mirrors can be manufactured.

I. INTRODUCTION

We have proposed the use of flat-topped beams in
LIGO-II to reduce thermelastic noise in the mirrors’ sap-
phire substrates [1-5]. Arm-cavity mirrors that support
these beams have faces (mirror figures) that resemble
mexican hats. The mirrors and beams are thus called
Mezican-Hat or MH mirrors and beams.

We gave detailed results of our modeling on MH mir-
rors and beams, as of early September 2002, in a prelim-
inary draft of a paper for Physical Review D [5], and in
a presentation at a meeting on this subject at MIT [4].
A number of practical issues were raised by the partici-
pants in the MIT meeting. We have investigated many of
those issues. This report summarizes the results of those
recent investigations (Sec. IV) and also, for completeness,
summarizes the most important of our earlier conclusions
(Secs. IT and I1T). Plans and recommendations for future
research are discussed in Sec. V.

II. REDUCTION OF THERMOELASTIC NOISE

Independent of whether MH mirrors are incorporated
into LIGO-II, we recommend that the mirror coatings
be extended out to the outer edge of the test-mass faces
rather than stopping 8 mm short of the edge, and that
the beams be enlarged accordingly, limited only by holding
the diffraction losses at their baseline level. (The quality
of the coating can be lower in the outer regions with-
out much penalty, because so little power resides there.)
This change will permit enlarging the baseline radius of
the Gaussian beam, at the mirrors, from 4.23 cm to 4.49
cm (Table 1 of [5]), resulting in a reduction of the power
spectral density of thermoelastic noise by a factor 0.856,
an increase in the range for the LIGO-II network to see
NS/NS binary inspirals from 300 Mpc to 315 Mpc (Ta-

ble V of [5]) and similarly for NS/BH and BH/BH, and
a corresponding increase in the event rate for inspirals of
(315/300)% = 1.16. In what follows, we shall assume this
revised baseline for LIGO-II with spherical mirrors and
Gaussian beams.

How much reduction of thermoelastic noise can we
achieve by switching from this new Gaussian baseline
(ro = 4.49 cm; thin curve in bottom panel of Fig. 1)
to an MH beam with the same 10 ppm diffraction losses
on the same 15.7 cm x 13 cm test masses (MH radius
parameter D /b = 3.73 in the notation of [5]; thick curve
in bottom panel of Fig. 1)? Independent computations
by three of us (SS, SV and RO’S) have shown that this
switch to MH beams reduces the power spectral density
of thermoelastic noise by a further factor 0.34

TE, MH
S o
TE, Gaussian — ~°

Sh

(2.1)

(in [5] compare the second entry in Table I with the sixth
entry in Table II). If other thermal noises are negligible,
this increases the distance to which the LIGO network
can see NS/NS binary inspirals from 315 Mpc to 431 Mpc
(Table V of [5]), and similarly for NS/BH and BH/BH
binaries; and correspondingly it increases the event rate
for inspiraling binaries by about (431/315)3 ~ 2.6:

Inspiral Rate with MH beams
Inspiral Rate with Gaussian beams

~26. (22)

It is possible to achieve further substantial noise re-
ductions and sensitivity gains by giving the mirrors and
beams larger diameters or, at fixed mirror mass, by
switching to conically shaped mirrors [4, 5].
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FIG. 1: Bottom panel: the energy fluxes |uo|? (normalized to
unity, (uo,uo) = [ |uo|*dArea = 1) for the MH beam (thick
curve) and Gaussian beam (thin curve) that have 10 ppm
of diffraction losses on a mirror with coated radius 15.7 cm.
Top panel: the shapes of the MH and spherical mirrors that
support these beams. The MH mirror is significantly flatter
than the spherical mirror in the central 10 cm radius where
most of the light power is contained, but is much steeper
outside there.

III. PRACTICAL ISSUES: SUMMARY OF
RESULTS REPORTED AT THE MIT MEETING

A. Parameter Values for Comparing MH and BL
Configurations

When analyzing practical issues, we have carried out
most of our computations for fiducial MH mirrors that
have slightly larger coated radii, Ry; = 16cm, than the
baseline Advanced-LIGO mirrors (14.9 cm at present and
15.7 c¢m if our recommendation to coat the outer 8 mm
is followed), and we have used MH beams with modestly
larger diffraction loss, Lo = 18 ppm, than the current
baseline of about 10 ppm. In evaluating practical issues
in this report we will compare with baseline spherical
mirrors and Gaussian beams that have this same enlarged
coated radius Ry, = 16 cm and diffraction loss £y = 18
ppm.

Our mirror and beam parameters, then, are as follows:
For the baseline (BL) configuration, mirror radius Ry =

16 cm (vs 15.7 cm for the true current baseline) and
Gaussian beam radius r, = 4.70 cm (vs. 4.23 cm for
the true current baseline); and for the MH configuration,
mirror radius Ry; = 16 cm and beam radius parameter
D = 4b = 104 cm, where b = /AL/27 = 2.60 cm,
with A = 1.06pm and L = 4km the light wavelength
and arm length. (In Ref. [5] we used the true current
baseline r, = 4.23 cm in our comparisons, so the baseline
constraints on tilts quoted in this report differ from those
there by a factor of order 10 per cent.)

B. Driving an MH Interferometer with a Gaussian
Beam

One way to produce the MH beams is to drive the
interferometer with Gaussian-beam light and let the arm
cavities or a mode-cleaning cavity convert the light into
MH form. One of us, ED’A, has identified the Gaussian
beam that has the greatest overlap with the MH beam
of an arm cavity. If one were to drive the MH arm cavity
directly with a Gaussian beam, this would be the driving
beam one would want to use. It has a beam radius r,q =
6.92 cm, compared to our baseline cavity’s beam radius
at the I'TM of r, = 4.70 cm. This Gaussian driving beam
uq(r) has an overlap

2

72 = [{uolug)|* = ‘/uguddArea =0.940 (3.1)

with the cavity’s fundamental MH mode ug, which means
that 94.0 per cent of the Gaussian driving-beam light will
enter the cavity, and 6.0 per cent will get rejected. See
Ref. [6] and Sec. VB of [5].

C. Parasitic Modes in Arm Cavities

It is useful to think of the MH mirrors as having two
regions: a central region with radius ~ 10 cm, and an
outer region with radius ~ 6 cm. In its central region,
the MH mirror is much flatter than the baseline spher-
ical mirror; in its outer region, it is much more sharply
curved; see the top panel of Fig. 1. The flatness of the
central region has led to concerns about degeneracies of
modes and sensitivity to tilt and to figure errors.

One of us (RO’S) has solved the integral eigenequation
for the modes of a LIGO arm cavity with MH mirrors. He
found (slide 15 of [4] and Table VI of [5]), and SS and SV
have verified independently, that among modes that are
not strongly damped by diffraction losses, the one closest
in frequency to the fundamental TEMOO mode uqg is the
lowest TEMO01 mode (denoted u; below). Its frequency
separation from the fundamental is 0.0404 of the cavity’s
free spectral range, which is 2.5 times smaller than our
baseline Gaussian cavity’s 0.099 x (free spectral range).
Evidently, the sharp curvature of the MH mirrors’ outer
region compensates sufficiently for the flatness of their



central region, to prevent the parasitic modes’ frequencies
from becoming near degenerate with the fundamental.

D. Mirror Tilt in Arm Cavities

As we have reported before [4, 5], our modeling pre-
dicts that the mode mixing in the arm cavities of a MH
interferometer produced by tilt of the ETM’s or ITM’s
should be of no serious consequence, if the tilt angles are
kept below about 1078 rad. In the following subsections
we summarize the calculations that lead to this conclu-
sion.

1. Parasitic mode mixing in arm cavities

Two of us have computed the influence of a tilt of the
ETM on the fundamental mode of an arm cavity: ED’A
has done this using an FFT code, and RO’S has done
it by applying perturbation theory to the arm cavity’s
integral eigenequation. The two computations agree on
the following predictions:

When the ETM is tilted through an angle 6, the cav-
ity’s fundamental mode gets changed from ug(r) to

up(7) = (1 — ai/2)uo(r) + arus (F) + azua(F) . (3.2)
Here 7 is position in the transverse plane, u,, are unit-
norm superpositions of modes of the perfectly aligned
cavity ([ |un|?*dArea = 1), a,, are mode-mixing coeffi-
cients that scale as 8™, and our computations have been
carried out only up through quadratic order. The max-
imum tilt that can be allowed is of order 108 radian,
so we shall express our predictions for the a,, in units of
Os = 9/1078

For our baseline Gaussian-beam cavity, ug is the (0,0)
Hermite-Gaussian mode, u; is the (0,1) Hermite Gaus-
sian mode, ug is the (0,2) mode, and the dominant mixing
coefficient aq is

BL 1 QBL
= ——— | — ) = 0.00646
P i g i) 0o

(Eq. (5.24) of [5]). Here g = 0.952 is our BL arm cavity’s
g-factor and b = \/AL/27r = 2.60 cm is its transverse
diffraction scale. For the MH cavity, maps of ug, u1, and
ug are shown in Figs. 6 and 7 of [5] and slide 17 of [4];
and the mixing coefficients are

(3.3)

™ =0.022705 ,  oX™ = 0.0001862 (3.4)
(Egs. (5.22) and (5.23) of [5] and slide 18 of [4]). Com-
parison of Eqs. (3.3) and (3.4) shows that, to keep the
dominant, dipolar mode-mizing coefficient ay at the same
level in the MH cavity as in the baseline Gaussian-beam
cavity requires controlling the MH mirrors’ tilt angle 6

four times more tightly.

The fractional power in the dominant, dipolar parasitic
mode is af, which will be doubled to

PlBL arm total 2(aP)? ~ 0.001(05/3.5)? ,

when the ITM and ETM are both tilted but about un-
correlated axes. This suggests that, so far as the arm
cavities are concerned (i.e., ignoring issues of tilt in the
recycling cavities), the tilt of MH mirrors need not be
controlled much better than ~ 1078 rad. We have veri-
fied this by examining the effects of the mode mixing on
various cavity and interferometer parameters:

2. Diffraction Losses

One of us (ED’A), from her FFT simulations [6], has
estimated the influence of ETM tilt on diffraction losses
to be

LM = £MH(1 4 0.00462) . (3.6)

(This result been confirmed to a factor ~ 2 by RO’S by
combining the clipping approximation with perturbation
theory of the cavity’s eigenequation; Eq. (5.26) of [5] and
slide 19 of [4]).

The influence of ITM tilt should be about the same,
thus doubling the coefficient of 62. This tilt-induced in-
crease in losses is so small that it can be ignored for tilt
angles below ~ 1078 rad.

8. Arm Cavity Gain

We have computed (ED’A via the FFT code and RO’S
via perturbation theory) the following influence of ETM
tilt on the arm cavity gain

GMI — 740(1 — 0.0005762) .

cav

(3.7)

(Eq. (5.31) of [5]; slide 19 of [4]). This result assumes
the baseline values for the power transmissivities of the
ITM and ETM, which we approximate as |t7|?> = 0.005,
[tg|? = 0, and assumes for simplicity that the only losses
are diffraction losses. The factor 740 assumes the cavity
is driven by its best-fit Gaussian beam and thus is smaller
by about 43 = 0.940 than the gain in the (untilted) base-
line cavity. The tilt of the ITM should produce about the
same gain reduction as that of the ETM, thus doubling
the coefficient of #2 to ~ 0.001. This coefficient is small
enough that the tilt-induced decrease of MH arm-cavity
gain will be negligible if O is controlled to ~ 10~8 rad.

4. Dark Port Power

We have computed the influence of the tilt of one ETM
on the dark-port output light (ED’A using the FFT code



and RO’S using perturbation theory). We find for the
fraction of the interferometer’s input power that winds
up at the dark port in the fundamental mode ug and the
parasitic modes u; and us:

PMHEDP — 0.260% ppm ,

PIFDP 2302 4506 ppm

PMHDE — 1202 = 0.024603 ppm (3.8)
(Egs. (5.38)—(5.41) of [5] and slide 20 of [4]). With all

four cavity mirrors being tilted about uncorrelated axes,
the dark-port powers should be four times larger than
this,

P(}\/[H DP total ~ 109481 ppm ,

PlMH DP total ~ 20009525 ppm ,

PQNIH DP total (39)

~ ().1(9;51 ppm
Without an output mode cleaner, the dark-port power will
primarily be in the dipolar mode uy, and for § < 1078
rad it will constitute < 0.2 per cent of the input light.
An output mode cleaner will wipe out this uy power and
the power in mode us, leaving only the tiny fundamental-
mode power, which should be totally negligible for 8 below
108 rad.

For comparison, the dark-port powers with the baseline
Gaussian beams are

pMHDPtotal 1 ((gg/3.5)* ppm ,
PMHDP total ~ 9000(0g/3.5)% ppm ,  (3.10)
which shows once again that the BL arm cavities are ~ 4
times less sensitive to tilt than the MH arm cavities.

IV. PRACTICAL ISSUES: NEW RESULTS
SINCE THE MIT MEETING

A. Transverse Displacement of Arm Cavities’
Mirrors

When the ETM is displaced transversely through a
distance s, the cavity’s fundamental mode gets changed
from wug(r) to

up(7) = (1= GF/2)uo(r) + Cruwn (7) + Gua (), (4.1)
where the parasitic modes w,, like the u,’s, have unit
norm, (wy|w,) = [ |w,|*dArea = 1, and have phase ad-
justed so the coupling coefficients (,, are real, and where
Cp ox s™.

R’OS has computed the coupling coeffients (,, for the
BL spherical mirrors and for MH mirrors by applying per-
turbation theory to the cavity’s eigenequation. In both
cases (o is negligible compared to ¢; when the displace-
ment is s € b = y/AL/271 = 2.60 cm, so we shall ignore
(5. R’OS finds that the MH and BL mirrors are roughly

equally sensitive to transverse displacements; their cou-
pling coeflicients are

BL (1- 9)1/4 ) S
= | ——— ] - =0.0085mm ,
! <\@(1 +9)3/4) b °

MH — 0.01080m - (4.2)
Here g = 0.952 is the BL arm cavity’s g-factor, and sy,
is the ETM’s transverse displacement in millimeters.
The corresponding fraction of the arm-cavity carrier
power driven into the (dipolar) parasitic field w; is

100(s/1.3mm)?*ppm BL,

parm total _ 2~
! 17 1 100(s/1.0mm)2ppm MH.

(4.3)

The fraction of the input carrier power driven out the
dark port when the ETMs of both arm cavities are dis-
placed through a distance s but in uncorrelated directions
is about twice the above:

PDP total _ 2,}/2(2 ~ 190(8/13mm)2ppm BL7

! 0>t 190(s/1.0mm)?ppm MH.
(4.4)
These coupling coefficients and parasitic-mode pow-
ers are sufficiently small that we presume transverse dis-
placements are not a serious issue, and so shall ignore
them in the rest of this report. In any event, the low
sensitivity to a change from BL spherical to MH mirrors
makes displacement a non-issue in the decision about MH

mirrors.

B. Errors in the Arm Cavities’ Mirror Figures
1. Billingsley’s Worst-Case Figure Error

Garilynn Billingsley has provided us with a map of a
worst-case figure error, dzywe(z,y) [height error as func-
tion of Cartesian coordinates in the transverse plane],
produced by current technologies. Her map is based on
the measured deviation of a LIGO-I beam-splitter sub-
strate from flatness. The measured substrate had di-
ameter 25 cm; she stretched its deviation from flatness
(its “figure map”) to the baseline mirror diameter of
35.4 cm, fit Zernike polynomials to the stretched map,
and smoothed the map by keeping only the lowest 36
Zernikes.

We show a contour diagram of the resulting figure map
(figure “error”) in Fig. 2. In the central region (innermost
10 cm in radius), the peak to valley error Az is about 30
nm, while in the outer region (10 cm to 16 c¢m in radius),
it is about 110 nm. Billingsley thinks it likely that in
the central region (which dominates our considerations),
peak-to-valley errors of Az ~ 5 nm may be achievable
— about 1/5 as large as in Fig. 2; and we have found
that Az = 0.2 x 30 = 6 nm is small enough that the
influences of the figure error scale, for 6z < 6 nm, as Az
or Az? with higher-order terms producing < 10 per cent



FIG. 2: Contour diagram of Billingsley’s worst-case figure
error [height dzwc in nanometers as a function of transverse
Cartesian coordinates (z,y) in centimeters]. The hash at the
outer edge of the mirror is an artifact of our numerical ma-
nipulation of Billingsley’s map.

corrections. Accordingly, in the analyses described below
we shall use Billingsley’s map, scaled down in height by
a factor e:

0z = edzwe(,y) , (4.5)
and we shall use ¢ = 0.2 and Az = 6 nm as our fiducial
values for € and Az. Jean Marie Mackowski believes that
Az ~ 2 nm errors may be achievable if the mirror figure
is produced by coating; this corresponds to ¢ ~ 0.07.

2. Mode Mizing by Figure Errors Without Compensating
Tilt

We have computed the mode mixing in an MH cavity
when Billingsley’s worst-case figure error reduced by ¢ <
0.2 is placed on the ETM. As in our tilt studies, the
computation was done independently by ED’A using the
FFT code and by RO’S using arm-cavity perturbation
theory.

By analogy with Eq. (3.2), the fundamental mode with
deformed ETM has the following form

up = (1= B7/2)ug + Bro1 (4.6)

where the parasitic mode vy, like the u,,’s, has unit norm
(vi|v1) = [|v1|*dArea = 1, and has a phase adjusted so
that 81 o« /0.2 is real. By contrast with the tilt-induced
mode mixing, where u; is dipolar (angular dependence

5 10 15 20 25 30
X, cm

FIG. 3: The power distribution |uf — uo|?> = |S1v1]* (in units
1/m?) of the deformation-induced parasitic mode when the
deformation edzwc(x,y) with e = 0.2 is applied to the ETM
of an MH arm cavity. This map was computed by ED’A using
the FFT code; the map computed by RO’S using perturba-
tion theory is in reasonable agreement with this one (e.g., the
heights of the two peaks are {0.111,0.080} in the FFT map,
and {0.110,0.088} in the perturbation map. The parasitic
power |B1v1]? scales as (£/0.2)2.

cos ), the deformation parasite v; has a complicated
shape that depends on the details of the deformation and
that therefore contains a number of multipoles. A map
of the power distribution |3;v;|? of the admixed mode is
shown in Fig. 3.

The fraction of the arm cavity power in the parasitic
mode is

pMH arm _ 32 0012(c/0.2)2 (4.7)

and the fraction of the interferometer’s input power that
goes out the dark port (if the interferometer is driven by
the best-fit Gaussian mode u4 and if only one of the arm
mirrors — one ETM — is deformed) is given by

PMEDP _ 2252 _ () 0011(2/0.2)2 (4.8)

At the leading, €2, order in the deformation (the or-
der to which we have computed), this dark-port power
is entirely in the parasitic mode v;. Our FFT and
perturbation-theory calculations agree on the parasitic
powers (4.7) and (4.8) to within about five per cent.

The dark-port power (4.8) and parasitic arm-cavity
power (4.7) are influenced primarily by the figure error
in the central (10 cm radius) region of the ETM, because
about 96 per cent of the MH-mode power is contained
in that central region, and only about 4 per cent in the
outer region — and of the outer 4 per cent, 3/4 (3 per
cent) is in the annulus between 10 and 11 cm. The insen-
sitivity to outer region deformations is fortunate, because
Billingsley tells us that it will be much easier to keep the
figure errors small in the central region than in the outer
region.



[RO’S has verified the insensitivity to the outer-region
deformations by evaluating (via perturbation theory) the
dark-port power for a mirror deformation

02 = ec0zg™™ 4 £, 200" . (4.9)

Here §2577al s equal to 2y at 7 < 9.6 cm and is zero at
r > 12.2 cm, and between 9.6 and 12.2 cm, §z504al /52
falls linearly from 1 to zero; and similarly 62235 is equal
to dzwe at r > 12.2 cm and is zero at r < 9.6 cm, and
between 9.6 and 12.2 cm 02525" /§ 2 grows linearly from
0 to 1. RO’S finds, as a function of the central-region and

outer-region weightings,

pMHDP _ 252 _ 4 0010(e./0.2)2+1.5% 1075 (€,/0.2)%;

(4.10)
so that, for example, if Billingsley’s worst-case perturba-
tions are reduced by e, = 0.2 in the central region (to
Az = 6 nm), but are kept at their full original strength
€0 = 1.0 in the outer region (so Az = 110 nm there), the
outer region will contribute 40 per cent as much power
to the dark port as the inner region.]

When all four arm-cavity mirrors are subjected to un-
correlated deformations, the arm-cavity parasitic power
(4.7) will be increased by a factor 2 and the dark-port
power (4.8) by a factor 4, to

0.0025(Az/6nm)? ,
pMHDPtotal - 005(Az/6nm)?

where Az is the peak-to-valley mirror deformation in the

central region. This suggests that, so far as arm-cavity

mode mixing is concerned, peak-to-valley figure errors of
order 6 nm in the inner 10 ¢cm are acceptable.

PMH arm total
1

12

(4.11)

8. Mode Mizing by Figure Errors With Compensating Tilt

The parasitic mode v; (Fig. 3) contains a significant
amount of dipolar field, as one sees from the asymme-
try of the map. The LIGO-II tilt control system, based
on a quadrant-diode readout of asymmetry in the power
distribution w, will tilt the mirror so as to remove the
overlap between the deformed parasitic field v; and the
dipolar-tilt parasitic field u;. ED’A and R’OS have in-
dependently computed that the optimal tilt is about
Ocompensate = 1.3 X 10~8(£/0.2) radians about a line ro-
tated 55 degrees from the x axis, and have computed
the resulting field uj = ug + S1v1 + ayu; with minimum
parasitic-mode power. Figure 4 shows the mirror defor-
mation after tilt, and Fig. 5 shows the parasitic power
distribution |B1v1 + aqus|? for € = 0.2. Notice that the
tilt has largely but not completely removed the dipolar
asymmetry. Some residual dipolar field remains — that
portion which cannot be compensated by a tilt.

We denote by vy, the tilt-compensated parasitic mode
and by (1. its (real) amplitude, so B1.v1. = B1v1 + @qu;.
Then the cavity’s eigenmode, with tilt compensation (in-
cluding the second-order loss of power from ug) is

’LL6 = (1 - ﬁ%c/2)u0 + /Blcvlc ’ (412)

FIG. 4: Billingsley’s worst-case figure error reduced by a
factor ¢ = 0.2, when the mirror is tilted to optimally re-
duce the MH beam’s odd-parity power: dz = 0.20zwc +
Ocompensate Sin(p — 55°)]. The numbers on the contours are
height in nanometers.

and optimization of the tilt compensation gives for the
fraction of the power in the parasitic mode

pMiam _ 32 ' ().00040(£/0.2)? = 0.00040(Az/6nm)? .

(4.13)
The fraction of the interferometer’s input power that goes
out the dark port (all in the parasitic modes), after this
tilt compensation, is

PMEDP — 1232 — (. 00038(c/0.2)2 . (4.14)

Comparing with Eq. (4.8), we see that the figure-error-
induced power out the dark port is reduced by a factor 3
by the compensating tilt of the deformed mirror.

The dark-port power (4.14) is for an interferometer
with one deformed MH arm mirror. When all four mir-
rors are deformed in uncorrelated ways, the arm-cavity
parasitic power will be doubled and the dark-port power
will be quadrupled:

PlMH arm total ~ 00008(AZ/6HH1)2 R

pMHDPtotal 0 0015(Az/6nm)? . (4.15)

This suggests that, so far as arm-cavity mode mixing is
concerned, we could live with central region deformations
as large as 10 nm. Recycling-cavity issues, discussed be-
low, will place much tighter constraints on the mirror
figures.

C. Influence of Mirror Tilt and Figure Errors on
Thermoelastic Noise

When one MH mirror of an arm cavity is given the
deformation edzyc, the resulting deformation of the arm-



FIG. 5: The power distribution |uf —uo|? = |B1cv1c|® (in units
1/m?) of the deformation-induced parasitic mode when the
tilt-adjusted deformation dz = 0.202we + Ocompensate SIn(p —
55°)] is applied to the ETM of an MH arm cavity. This map
was computed by RO’S by applying perturbation theory to
the cavity’s eigenmode. The map computed by ED’A using
the FFT code agrees reasonably well.

cavity power distribution, §|uj|? = |uj|? — |ug|? increases
the thermoelastic noise. The following argument (due to
R’0S) shows that, at leading (linear) order in £/0.2, only
the circularly symmetric portion of the parasitic mode
Biv1 = uy — ug contributes to the thermoelastic noise
increase: The fractional noise increase is equal to the
fractional increase in the thermoelastic noise integral I =
[(VO)2dvol (Eq. (4.2) of [5]; slide 6 of [4]):
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grEvH [ & /(69) - (V§O)dvol .
h

(4.16)
Here © is not a tilt angle but rather is the expansion
(fractional increase of volume) of the substrate mate-
rial when a static pressure P oc |uf|? is applied to the
mirror face. Since the unperturbed MH beam is circu-
larly symmetric, so will be the unperturbed expansion
O, which means that only the circularly symmetric por-
tion of the expansion perturbation 6O, and thence the
circularly symmetric portion of the pressure perturba-
tion 6P oc §|up|? will contribute to the noise increase. At
leading (linear) order in the mirror deformation £/0.2, the
circularly symmetric portion of &|uj|? arises solely from
the circularly symmetric portion of duj = (1v1; thus, as
claimed, only the circularly symmetric portion of v
can increase the thermoelastic noise.

This same argument shows that the MH mode defor-
mation produced by mirror tilt cannot influence the ther-
moelastic noise at first order in the tilt angle; and there-
fore, we need not be concerned about the influence of tilt

on the thermoelastic noise — whether the tilt is unin-
tended, or is being used in a controlled way to compensate
the errors in the mirror figures.

RO’S has evaluated and SS has confirmed the frac-
tional increase in the thermoelastic noise integral at lin-
ear order in £/0.2. The result, multiplied by four to ac-
count for four arm-cavity mirrors, is

6STE, MH total
’:s*hTEW =0.14(¢/0.2) ~ 0.14(Az/6nm) . (4.17)

This 14 per cent increase of Sy, when all four mirrors
are subjected to 6 nm figure errors in their central re-
gions, is to be compared with the factor 1/0.35 = 285 per
cent decrease in thermoelastic noise achieved by switch-
ing from spherical mirrors to MH mirrors. There may
also be a small increase in thermoelastic noise when
a spherical mirror is deformed. Assuming, conserva-
tively, no deformation-induced noise increase for spher-
ical mirrors, switching from spherical to 6nm-deformed
MH mirrors will reduce the thermoelastic noise by a fac-
tor 0.34 x 1.14 = 0.39, which in turn will increase the
distance for NS/NS binaries from 315 Mpc to about 425
Mpc and increase the event rate by about a factor 2.45
(Fig. 5 of [5]).

D. MH vs. Gaussian Beams in Recycling Cavities

The greatest worries raised at the MIT meeting on
flat-topped (MH) beams were those related to the power
recycling and signal recycling cavities. In the baseline
design, (which has no lenses in the recycling cavities),
these cavities are already so nearly degenerate that major
problems are anticipated from mode mixing due to mirror
deformations (both static deformations and inadequately
compensated deformations by thermal lensing). There
was great worry that for MH mirrors, with their greater
central-region flatness, this already severe mode mixing
might be made substantially worse.

We have examined this question and conclude that
for the two wideband Advanced-LIGO interferometers,
there is mot much difference between the baseline Gaus-
sian beams and the proposed MH beams, with regard to
their susceptibility to mode mixing in the recycling cavi-
ties. The only significant difference arises from the fact
that the MH beams are larger and therefore sample, with
significant power, larger-radii regions of the mirrors (the
regions between, say, 8 cm radius and 10 cm radius),
where the deformations may be worse.

The reason that the mode mixing is only marginally
sensitive to the beam shape is quite simple: Once
RF modulated sideband light gets into the power recy-
cling cavity, it makes roughly Npr ~ %(cavity finesse
Fpr) =~ (7/2)/(1 — Rpr) ~ 25 round trips before los-
ing 95 per cent of its power out the beam splitter’s
dark port. (Here Rpr =~ 0.94 is the power reflectivity
of the power recycling mirror). And once signal light



gets into the signal recycling cavity, it makes roughly
Nsg ~ 17/(1 = pV/R) ~ 40 round trips before losing 95
per cent of its power out the dark port or back into the
arm cavities. (Here R = 0.995 is the ETM power reflec-
tivity and p = +/0.93 is the amplitude reflectivity of the
SR mirror, in the notation of Buonanno and Chen [7].)
The Fresnel length (transverse diffraction scale) for light
that makes A/ round trips in either recycling cavity with
cavity length ¢ ~ 10 m is

TE =V Ao2lN = 3cmy/N /40 ,

where A\, = lum is the light’s wavelength. This Fresnel
length is ~ 1/2 of the ~ 5 cm scales on which the ideal
mirror shapes and the central-region worst-case mirror
errors vary, and it is small compared to the ~ 15 to
20 cm diameter beams themselves. There thus is only
modest diffractive coupling between light rays, and the
light bouncing back and forth in each recycling cavity is
describable, to moderately good accuracy, by geometric
optics. Moreover, because the mirrors (whether MH or
spherical) are nearly flat and nearly identical, the light’s
rays, to rather good accuracy, are all parallel to the optic
axis and to each other and are thus decoupled from each
other. If the mirrors and beam splitter were perfect and
ideal in shape, the extreme length of their radii of curva-
ture, 2 50 km, compared to the optical pathlength in the
recycling cavities, 2" < 1 km, would guarantee that the
MH beam would resonate equally well in the ideal MH-
mirrored cavity or in the ideal spherical-mirrored cavity,
or in a precisely flat-mirrored cavity; and the baseline
Gaussian beam would also resonate, equally well, in all
these cavities.

If the third interferometer is operated in narrow-band
mode, then the number of round trips the signal light
makes in the SR cavity will be much larger than 40,
and the geometric optics approximation will begin to
fail significantly. More specifically, for ETM reflectiv-
ity R = 0.995 and optimized narrow banding at {500 Hz,
1000 Hz}, the SR mirror’s amplitude reflectivities are
p = {0.994,0.9985} [see discussion following Eq. (4.25)
below], corresponding to a number of round trips in
the SR cavity Nsg ~ {180, 400} and Fresnel lengths
rp ~ {6cm, 9cm}. These Fresnel lengths (the transverse
scale for diffractive light spreading) are about 1/3 to 1/2
the 95-percent-power diameter of the beam, 16 cm (BL)
and 20 cm (MH). As we shall see below, this means that
geometric optics can be used to get a rough upper limit
on the fractional increase in shot noise due to tilt and ir-
regularities of the SR cavity’s mirrors, but not a reliable
estimate of the shot-noise increase.

(4.18)

E. Increase in Shot Noise Due to Mirror Tilts

1. Foundations

The mirror tilts produce a mismatch between various
modes of the light, thereby increasing the shot noise. We

shall focus on the shot noise increase at the minimum
of the signal light’s optical resonance in the arm cavity.
This optical resonance is the one that is used to produce
a noise minimum for a narrow-banded Advanced LIGO
interferometer, and it is the right-hand minimum of the
optical noise for the standard wide-band Advanced LIGO
interferometer, and approximately the minimum of the
wide-band interferometer’s total noise.

The (unit-norm) modes whose mismatch increases the
shot noise are the following:

1. ug, the eigenmode of perfect arm cavities.

2. ug), the carrier’s eigenmode in an arm cavity with
tilted ITM and ETM.

3. u/, the signal field’s eigenmode in an arm cavity, at
the center of its optical resonance, with tilted I'TM,
ETM, and SRM (signal recycling mirror).

4. v}, the field produced when wug is transmitted
through the signal recycling cavity with tilted ITM
and SRM.

5. u!., the reference-light field that is beat against the
signal light to produce the input to the photodetec-
tor. We focus on the case of RF readout, so u.. is
the side-band light transmitted through the power
recycling cavity to the photodetector, and its dis-
tortions are produced by the tilt of the ITM and
PRM (power recycling mirror).

For each primed field u), we denote by d, the fraction
of its light power that is in parasitic modes and thus has
been lost from the fundamental mode ug due to mirror
tilt:

(ug,up)> =16 . (4.19)

The signal amplitude entering the photodetector is
proportional to

S oc (up, Tl ) (ul, ug ) (ugp, uq) - (4.20)

The sequence of terms, from right to left, have the fol-
lowing meanings, and we approximate them as follows:

1. (ug,uq) describes the influence of tilts on the driv-
ing of the arm cavity’s eigenmode by the Gaussian
driving field. For simplicity, we neglect the tiny
coupling of the driving field to the second-order
parasitic mode uy contained in wug and therefore
approximate this coupling amplitude by (uf, uq) =
Yo(up, uo) = y0(1 —afp/2—af;/2) = y0(1—00/2).
Here the subscripts I and E denote the contribu-
tions from the tilts of the ITM and ETM.

2. (ul,uy) describes the influence of tilts on the driv-
ing of the arm cavity’s signal field by its car-
rier field (via the gravitational-wave-induced mo-
tion of the mirrors). For simplicity we neglect the
(nonzero) overlap between the parasitic modes con-
tained in u) and wy, thereby obtaining (ul,u() =

(1 6,/2— 60/2).



3. (uh.,7'u.) describes the influence of tilts on (i) the
passage of the signal u}, through the SR cavity
(with cavity transmissivity 7/ in the notation of
Buonanno and Chen [7]), and on (ii) the over-
lap of the transmitted signal light with the refer-
ence light to produce the photodetector current.
Again we neglect correlations between the para-
sitic components of the fields and therefore ap-
proximate the influence of the tilts by (u]., 7'u}) «
(1—6,/2—05/2—0,/2). The d; terms represent the
loss of overlap due to the parasitic-mode fields (as-
sumed uncorrelated) contained in u.. (the ¢, term),
contained in u) (the 5 term), and generated by
the passage of the signal light through the SR cav-
ity, whose mirror tilts deform the transmissivity 7/,
(the J; term).

If there is no mode cleaner on the interferometer out-
put, then the rms amplitude of the shot noise is N

(ul,ul) = 1; i.e. the parasiticcmode components of
u). contribute to the rms noise amplitude along with
the fundamental-mode component. However, a mode
cleaner will remove the parasitic components, so that
N x (ug,u,) =1—46,/2.

Combining the above approximations to the various
terms, we find for the ratio of noise power to signal power
(which is proportional to the spectral density of shot
noise S5P°t at the minimum of the optical resonance):

2

. N
Syhot o 52 x 1+2§0+255+6t+{

0, , no mode cleaner
0 with mode cleaner.
(4.21)
(Note that we have ignored the increase in shot noise due
to carrier-light parasitic fields going out the dark port,
Egs. (3.9) and (4.15), under the assumption that it is
negligible, either because of an output mode cleaner or
because the arm-cavity-mirror figures and tilts are ade-
quately controlled.)
We shall now examine the various contributions to the
shot noise one by one.

2. Carrier Light in Arm Cavity

The fraction of the arm-cavity carrier light that is
driven into parasitic modes by tilts of the ETM and ITM
is 6o = a2 + a2;. The loss of this carrier light to para-
sites increases the shot noise by

MH 2
555hot ) 0
( SZhOt carrier 60 “ 0 2% 1078

(4.22)
Here we have assumed that both mirrors are tilted
through the same angle # but about uncorrelated axes,
we have assumed MH beams, and we have used Eq. (3.4)
for ar1. The baseline Gaussian beams are four times less
sensitive to tilt, so to keep this contribution to the spec-
tral density of shot noise below one per cent, we must
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control the ITM and ETM tilts to an accuracy

O =2x107%, 07 =8x107%. (4.23)

These are modest constraints on tilt.

8. Signal Light in Arm Cavity

The signal recycling (SR) cavity presents a complex
amplitude reflectivity o/ = e~</Fe*F to the arm cav-
ity’s signal light (Egs. (5) and (13) of Buonanno and
Chen [7]). Here F' = ¢/2L is the interferometer’s free
spectral range, € = €(R, p, ¢) and A = A(R, p, ¢) are real
functions of the ITM power reflectivity R, the SRM am-
plitude reflectivity p and the SR cavity’s tuning phase
¢ = (k)modar, with £ the length of the cavity; and our
notation is that of Buonanno and Chen [7]. Tilts of the
ITM and SRM produce a spatially variable reflectivity
7. The spatial variations of the modulus e~¢/F of j’ pre-
sumably will have much less influence on the arm cav-
ity’s signal eigenmode u/, than the spatial variations of
the phase. (This claim deserves to be checked.) Assum-
ing this is so, then the dominant influence of an ITM
or SRM tilt 6 is to produce a spatially variable mirror
displacement

0z = frsingp (4.24)
(where ¢ is azimuthal angle and r is radius), which
in turn (in the SR cavity’s geometric optics limit) pro-
duces a spatially variable phase of the cavity reflectivity,
arg(p’) = ON/F = (d\/d¢)(k/F)dz. If the cavity were
replaced by a single mirror that is displaced through a
distance 0zeg, then this phase change would be 2kdzef.
Correspondingly, the tilt of the ITM or SRM produces
an effective mirror displacement dz.g¢ = Adz, where the
amplification factor A is given by

Ozt dN/dp

A=—-=—p —(1-Fp

20+ (1 + p?)cos2¢
(14 p2)+2pcos2¢ ’
(4.25)

see Eq. (18) of Buonanno and Chen [7].

We shall focus on three configurations for the SR cav-
ity: (i) The standard wideband Advanced-LIGO configu-
ration (denoted “WB”), for which R = 0.995, p = +/0.93,
and ¢ = 7/2—0.06. (ii) An interferometer narrowbanded
at a frequency f = A/2m ~ 500 Hz with bandwidth
Af = €/2r ~ 50 Hz, which has a noise minimum of
~ 1 x 10724/y/Hz; this configuration (which we shall
denote “5007) is produced by R = 0.995, p = 0.994,
and ¢ = 1.541. (iii) An interferometer narrowbanded at
f = A/2m ~ 1000 Hz with bandwidth Af = /27 ~ 50
Hz (and so denoted “1000”), which has a noise mini-
mum of ~ 1 x 10~2*/v/Hz and parameters R = 0.995,
p = 0.9985, ¢ = 1.556. For these three configurations
the amplification factor is

Aws =027, Aspo =14, Ao =57. (4.26)



We have chosen to compute the shot noise increase at
the optical resonance so the signal field «} in the arm
cavity will be on resonance, just as the carrier field is.
This allows us to translate our carrier-field results over
to the signal field with only one change: the influence of
the tilts of the SRM and I'TM must be multiplied by the
amplification factor A. Therefore, the fraction d, of the
signal field’s power that is in the tilt-induced parasitic
modes is §; = o2 + A%(a?; + algp). The influence o,
of the ETM is the same as in the case of the carrier, which
we have already dealt with, so we shall ignore it here and
focus on the two mirrors that make up the SR cavity: the
ITM and the SRM. If they both have the same tilt angles
6 (but about uncorrelated axes) so ai; = alqp = af,
then these tilts produce a fractional increase in shot noise
given by

shot
<§Sh > =20, = 4A%a% . (4.27)
signal

shot
Sh

This is greater by the factor A2 than the noise (4.22)
due to loss of carrier light into parasitic modes, and cor-
respondingly to keep this fractional increase of shot noise
below one per cent requires controlling the I'TM and SRM
tilts to an accuracy 1/.A of that in Eq. (4.23):

ONEWE = 7x107%, o VB=30x10"%,
01 0 > 14x107%, 0750 >6x107°,
Oy 00 > 04 x 1078, P10 > 1.4 %1078 .

(4.28)

For the narrow-banded interferometers these limits are
only lower bounds on 6y because of the failure of the
geometric optics limit. As we have seen, the Fresnel
length for light trapped in the SR cavity is about 1/2
to 1/3 of the 95-percent-power beam diameter, so trans-
verse spreading of the light will reduce somewhat the SR
cavity’s amplification factor A and thence the influence
of tilt on the beam asymmetry. We guess that this reduc-
tion might increase 9%9/000 by a factor of order 2 over the
geometric-optics limit, (4.28); but since A is only about
1 for 0197°, we guess that there is little increase in 650
SO

oY ~ 1.4 %1078,

PMH1000 ~ .8 x 107F

07r %0 ~ 6 x 1078,
01 1% ~ 3 x 1078 .
(4.29)

4. Transmission of Signal Light Through SR Cavity

When the ITM or SRM is tilted through an angle
#, producing a spatially dependent mirror displacement
0z = Orsin g, it alters the SR cavity’s transmissivity by
a spatially dependent amount 67/ = (d7’/d¢)kdz, in the
geometric optics limit. When an undistorted signal beam
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uo passes through this spatially variable transmissivity,
a fraction

(o, |57 /7 Pug) = %B2k2<r2>92 L (4.30)

gets transferred to parasitic modes. Here k = 27/, is

the wave number, (r?) = (ug,r%ug) is the beam’s mean

square radius, which has the values
(r¥) = (6.95cm)?  for MH beam
(r¥) = r2 = (4.70cm)?

(4.31)

for BL Gaussian beam,

and

a7 /d

!

4Rp?
1+ Rp? +2VRpcos2¢p

Here we have used Eq. (11) of Buonanno and Chen [7]
for 7/, with the factor e?*(™ in the numerator removed,
S0 as to obtain the transmissivity that carries the field
from an input transverse plane to an output transverse
plane in the presence of the mirror tilt (which gives ¢
its dependence on transverse position 7). For our three
interferometer configurations, the values of B are

Bws =15, Bsoo =33, Bigoo = 66 . (4.33)

When both ITM and SRM are tilted through the same
angle 6 about uncorrelated axes, the total power trans-
ferred into parasitic modes is twice as large as Eq. (4.30)
[i.e., 0y is twice (4.30)], and correspondingly the fractional
increase in shot noise is

5SZh0t
S}slhot

2

B? = ‘ (4.32)

,’71

=0, = B2 (r?)6* . (4.34)

) transmission

Inserting the above values for B and (r?) and insisting
that the shot noise not increase by more than one per
cent, we obtain the following constraints on the I'TM and
SRM tilt angles:

VB = 1.6x107%, op VB =24x10"%,
OMH00 > 07 x 1078, 9RE50 > 1.1 x 1078
9%/([%}1 1000 z 0.4 x 1078 : 0?{7]; 1000 z 0.6 % 1078 )

(4.35)

For the narrow-banded interferometers, the failure of
the geometric optics limit dictates that these estimates
of 014, are lower limits; hence the “>”. As in the case of
signal light in an arm cavity reflecting off the SR cavity,
so also here, we guess that these estimates are fairly good
for narrow banding at 500 Hz and are roughly a factor 2
too severe at 1000 Hz, so

OMH 500 ~ 0.7 x 1078,

9%70}1 1000~ 07 x 1078

0570 ~ 1.1 x 1078

OBz 1900 ~ 1.1 % 1078 .
(4.36)

Equations (4.35) for wideband interferometers and

(4.36) for narrowband are the most severe of all our tilt
constraints.



5. Transmission of RF reference light through power
recycling cavity

Suppose that the PRM or ITM is tilted through an
angle 6 and is thereby given the space-dependent dis-
placement 6z = Orsing. Then, in the geometric op-
tics limit, the RF reference light acquires, when passing
through the PR cavity, a space-dependent phase shift
(F/m)kdz, where F is the cavity finesse. The reference
light emerging from the cavity therefore has the form
u!. = upe!P/™Hk= for which the fraction of light power
in parasitic modes is

<u0, (f)Qk%z? uo> = % <J:I<:)2 (r¥)6* .  (4.37)

When both the PRM and the ITM are tilted through the
same angle 6 but around uncorrelated axes, the parasitic
mode power is twice as large [so §, is twice (4.37)], and
the fractional increase in shot noise due to the loss of this
reference-light power is then

§.gshot F 2
() o =0 = () 00

For the LIGO-I interferometers F is rather large, F ~
125, which produces a strong sensitivity to mirror tilt;
but for Advanced LIGO F is smaller, F ~ 50, which (as
we shall see) compensates for the larger beam, thereby
producing about the same sensitivity to tilt as for LIGO-
L.

Inserting the LIGO-I finesse F ~ 125 and mean square
beam radius (r?) = b? = (2.6cm)?, and constraining the
shot noise increase to less than one per cent, we obtain
the following constraint on the ITM and PRM tilts:

(4.38)

1o 0T~ 1.6 x 1078 (4.39)

This is in remarkably good agreement with a much more

careful computation by Fritschel et. al. [8], which gave!
LIGO-T _ -8

0o = 1.4 x 107°.

Inserting the LIGO-II finesse F ~ 50 and mean-square
beam radius (r?) = (6.95cm)? (MH) and (4.70cm)? (BL),
and constraining the increase in shot noise to no more
than one per cent, we obtain

Ot ~ 1.5 x 1078, 0Py ~2.5x 1078,
As we have seen, an output mode cleaner will remove
this shot noise increase, making these (rather modest)
constraints no longer needed.

L Their result (end of Sec. 2.A) is # < 1.0 x 1078 for the tilts
in pitch and in yaw, corresponding to a constraint § < /2 x
1078 ~ 1.4 x 10~8 on the magnitude of the vectorial tilt, for
an 0.005 fractional decrease in amplitude signal to noise, which
corresponds to our one per cent increase in Sy,
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F. Increase in Shot Noise Due to Mirror Figure
Errors

The increase in spectral density of shot noise due
to mirror figure errors is given by the same equation
Syhot o 14280 +265 +0;+{J, or 0} as for mirror tilt [Eq.
(4.21)], but now Jd; is the fraction of power in the para-
sitic components of mode uj, due to figure errors rather
than tilt.

1. Carrier light in arm cavity

Deformations of the ITM and ETM, with optimized
tilt compensation, drive a fraction &y = (7.5 + %.; into
parasitic modes [Eqs. (4.12) and (4.13)]. Assuming the
same peak-to-valley deformations Az in the two mirrors’
central regions, we obtain for the fractional increase in
shot noise

shot \ MH A 2
(5‘2} ) :250:4ﬁ§cz0.01( z) . (4.40)

h 15nm

Correspondingly, to keep the shot noise increase below
one per cent, we must constrain the ITM and ETM de-
formations to

Azi\/[ly? ~ 15nm (4.41)
We have not carried out an analysis of the influence of
the ITM and SRM mirror deformations on the baseline
Gaussian arm cavity modes, and so cannot say what the
analogous constraint is in the baseline case.

2. Signal light in arm cavity

As for tilt, so also for figure errors, the SR cavity am-
plifies the influence of the errors Az by a factor A [Eq.
(4.25)], so the ITM and SRM deformations move a frac-
tion &, = A%(B%.; + B2, gr) of the arm cavity’s signal
light into parasitic modes. When the two figure errors
have the same magnitude and we wish to keep the re-
sulting shot noise increase below one per cent, this gives
rise to constraints on the ITM and SRM figure errors that
are 1/A more severe than (4.41). Using the values (4.26)
of A for our three interferometers (wide-band, narrow-
banded at 500 Hz and narrow-banded at 1000 Hz), and
increasing the limit for the 1000-Hz narrow-banded case
by a factor 2 due to failure of the geometric-optics limit
[cf. Eq. (4.29) and associated discussion], we obtain the
constraints

AZ%IA)H WB ~ 55nm ,
Azi\%H 500> 10nm , with a guess of ~ 10nm
Aziv[%H 1000 > 9 6nm , with a guess of ~ 5nm .

(4.42)



8. Transmission of signal light through SR cavity

By the same analysis as for mirror tilt (Sec. IVE4),
deformations 0z(x,y) of the ITM and SRM by the same
peak-to-valley amounts Az produce an increase in shot
noise given by

shot
( 555! )
shot
Sh transmission

[cf. Eq. (4.34) with ((62)%) = ((0rsing)?) = 1(r?)6?].
Here ((62)?) is the mean square deviation of ITM or
SRM height from the desired figure, and we have ap-
proximated this by half the squared amplitude of mirror
height fluctuations, which is 1/8 the square of the peak
to valley height fluctuations, (Az)?/8. Inserting the val-
ues of B for our three interferometers [Eq. (4.33)] and
requiring that the shot noise increase by no more than
one per cent, we obtain the following constraints on the
ITM and SRM peak to valley deformations:

5, = 2Bk ((62)2)6>

= iBQkQ(Az)Q (4.43)

Azll\%H WB — Azf’(}; WB ~ onm,
Azll\f%H 500 Az%}; %00 < 1nm, with a guess ~ Inm ,
Azt 1090 = AZRE 109 < 0.5nm, with a guess ~ Inm .

(4.44)

Here as in Eqs. (4.42), (4.36) and (4.29), the breakdown
of the geometric optics limit in the SR cavity has dic-
tated a lower limit and a guess for the narrowbanded
interferometers.

These are the most serious of our constraints on the
mirror figures of advanced interferometers, and they are
the same for MH and baseline Gaussian beams, because
transmission through the SR cavity is governed (at least
roughly) by geometric optics. The one small difference
is that the central region over which the peak-to-valley
deformations are constrained (the region containing ~ 95
per cent of the light power) is larger for MH mirrors (cen-
tral radius about 10 cm) than for the baseline Gaussian
mirrors (central radius about 8 cm).

The mirror figure constraint (4.44) is sufficiently se-
vere, at least in the case of narrow-banded interferome-
ters, that it might be worth considering reducing the de-
generacy of the SR cavity by making the entrance faces
of the ITM’s into lenses that bring the signal light (and
inevitably also the carrier light) to a focus somewhere
near the SRM (and PRM). Since the constraint (4.44) is
the same, whether the mirrors are MH or spherical, this
recommendation is not dependent on whether MH beams
are implemented.

4. Transmission of RF reference light through power
recycling cavity

By the same argument as for mirror tilt (Sec. IVE5),
in the absence of a mode cleaner, deformations dz(z,y)
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of the ITM and PRM produce a net shot noise increase

given by
g Syhot FN o
< SZhOt )reference (ﬂ-k> <(6Z) >
2
- 1(%) (Az)?
4\ 7

[cf. Eq. (4.38) with ((62)%) = ((0rsing)?) = 1(r?)6?.
Inserting the finesses of LIGO-I (F ~ 125) and Advanced
LIGO (F ~ 50) and insisting that the shot noise not
be increased by more than one per cent, we obtain the
following constraints on the central-region peak-to-valley
deformations of the PRM and SRM:

5, =

(4.45)

Az{i%GO*I = 0.8nm ,
Azt = Azpy =2nm, (4.46)

The LIGO-I constraint is rather severe, but can be re-
moved by using an output mode cleaning cavity. The
Advanced LIGO constraint is less severe, and can also be
relaxed by an output mode cleaner.

V. RECOMMENDED RESEARCH RESEARCH
BY THE LSC

The thermoelastic benefits of MH mirrors are suffi-
ciently great, and the tightened constraints that they
place on mirror figures and tilts are sufficiently modest,
that we recommend MH mirrors be adopted by the LSC
as an option for Advanced LIGO, and be incorporated
into future modeling along with spherical mirrors.

Among the issues that the LSC may wish to examine
are these:

1. As we have discussed in Sec. IV D, the constraints
on mirror figure in the recycling cavities are very
worrisome. Detailed studies of this seem needed.
As one aspect of these studies, it would be worth-
while to check our geometric-optics-based claims
that the MH recycling cavities are not much more
sensitive to mirror figure errors than the baseline
Gaussian-beam cavities. If the constraints on mir-
ror figure are found to be as serious as our esti-
mates suggest, then it seems worthwhile to carry
out studies of the option of converting the input
faces of the ITM’s into lenses that make the re-
cycling cavities much less degenerate. Such studies
are needed (and presumably are under way), in any
event, for LIGO-I, where our estimated PR-cavity
constraints are even more severe than in Advanced
LIGO [Egs. (4.46)].

2. Bill Kells (at the MIT meeting on flat topped
beams) suggested the possibility of operating the
Advanced LIGO interferometers with spherical
mirrors and Gaussian beams, and later switching



to MH beams by altering only the ETM’s. It seems
to us that this option is worth detailed study. If the
ITM input faces are turned into lenses that reduce
the near degeneracy of the recycling cavities, then
it might be possible to keep the lenses weak enough
that the figures of the recycling mirrors can be the
same for Gaussian and MH beams, while still relax-
ing the mirror figure constraints to an acceptable
level. This needs study.

3. Braginsky, in a private conversation, has pointed
out that the substrate shapes can change, due to
stress-induced readjustment of their internal struc-
tures, by amounts of order 0.1 to 0.01 microradians
on times of weeks. This, like thermal lensing, may
necessitate monitoring and maintaining the desired
mirror figures using, e.g., heating via COq lasers.
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