
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T020115-00-Z 12 August 2001

Stochastic Sources Upper Limit Group E7 Report

Bruce Allen, Warren Anderson, Sukanta Bose, Nelson Christensen, Ed Daw,
Mario Diaz, Ronald Drever, Sam Finn, Peter Fritschel, Joe Giaime, Bill

Hamilton, Siong Heng, Warren Johnson, Robert Johnston, Erik Katsavounidis,
Sergei Klimenko, Michael Landry, Albert Lazzarini, Martin McHugh, Tom
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1 Introduction

From 28 Decemeber 2001 to 14 January 2002, the LIGO Hanford and LIGO Livingston Observatories
(LHO [1] and LLO [2]) took coincident engineering data (E7) [3]. Since that time, the inspiral [4], burst
[5], periodic [6], and stochastic [7] sources working groups of the LIGO Scientific Collaboration [8] (in
collaboration with the LIGO Lab [9]) have been developing code and analyzing that data to search for grav-
itational wave signals. This report describes the E7 analyses performed by the stochastic sources working
group, which have ultimately led to an upper limit ofΩgw(f)h2

100 ≤ 7.7× 104 on the strength of stochastic
gravitational wave signals in the frequency band40 Hz < f < 215 Hz.

2 Preliminaries

Here we briefly describe the standard optimally-filtered cross-correlation technique that was used to search
for a stochastic background of gravitational radiation. Readers interested in more details should consult the
original papers [10, 11, 12] or longer review articles (e.g., [13, 14, 15]) for a more indepth discussion.

2.1 Stochastic background spectrum

A stochastic background of gravitational radiation is arandomgravitational wave signal produced by a large
number of weak, independent, unresolved gravitational wave sources. Its spectral properties are described
by the dimensionless quantity

Ωgw(f) :=
1

ρcritical

dρgw

d ln f
, (1)

which is the ratio of the energy density in gravitational waves contained in a bandwidth∆f = f to the total
energy density required (today) to close the universe:

ρcritical =
3c2H2

0

8πG
. (2)

H0 is the Hubble expansion rate (today):

H0 = h100 · 100
km

sec ·Mpc
≈ 3.24× 10−18 h100

1
sec

, (3)

andh100 is a dimensionless factor, included to account for the different values ofH0 that are quoted in the
literature.1 Note thatΩgw(f) h2

100 is independentof the actual Hubble expansion rate, and for this reason
we will often focus attention on this quantity, rather thanΩgw(f) alone. In addition,Ωgw(f) is related to
the one-sided power spectral densitySgw(f) via2

Sgw(f) =
3H2

0

10π2
f−3Ωgw(f) . (4)

Thus, for a stochastic gravitational wave background withΩgw(f) = const, the power in gravitational
waves falls off like1/f3.

1h100 almost certainly lies within the range1/2 < h100 < 1.
2Sgw(f) is defined by1

T

∫ T
0
|h(t)|2 dt =

∫∞
0

Sgw(f) df , whereh(t) is the gravitational wave strain in a single detector due
to the stochastic background signal.
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2.2 Statistical assumptions

The spectrumΩgw(f) completely specifies the statistical properties of a stochastic background of gravi-
tational radiation provided we make enough additional assumptions. Here, we assume that the stochastic
background is: (i) isotropic, (ii) unpolarized, (iii) stationary, and (iv) Gaussian. Anisotropic or non-Gaussian
backgrounds (e.g., due to an incoherent superposition of gravitational waves from a large number of unre-
solved white dwarf binary star systems in our own galaxy, or a “pop-corn” stochastic signal produced by
gravitational waves from supernova explosions [16, 17, 18]) will require different data analysis techniques
than the one we present here. (See, e.g. [19, 20] for a detailed discussion of these different techniques.)

In addition, we will assume that the intrinsic detector noise is: (i) stationary, (ii) Gaussian, (iii) uncorrelated
between different detectors and with the stochastic gravitational wave signal, and (iv) much greater in power
than the stochastic gravitational wave background.

2.3 Cross-correlation statistic

The standard method of detecting a stochastic gravitational wave signal is tocross-correlatethe output of
two gravitational wave detectors [10, 11, 12, 13, 14, 15]:

YQ =
∫ T

0
dt1

∫ T

0
dt2 h1(t1)Q(t1 − t2)h2(t2) (5)

=
∫ ∞
−∞

df

∫ ∞
−∞

df ′ δT (f − f ′) h̃∗1(f)Q̃(f ′)h̃2(f ′) , (6)

whereT is the observation time andδT (f − f ′) is a finite-time approximation to the Dirac delta function
δ(f − f ′).3 Assuming that the detector noise is uncorrelated between the detectors, it follows that the
expected value ofYQ depends only on the cross-correlated stochastic signal:

µ =
T

2

∫ ∞
−∞

df γ(|f |)Sgw(|f |) Q̃(f) , (7)

while the variance ofYQ is dominated by the noise in the individual detectors:

σ2 ≈ T

4

∫ ∞
−∞

df P1(|f |) |Q̃(f)|2 P2(|f |) . (8)

(P1(|f |) andP2(|f |) are again one-sided power spectral densities.) The integrand of Eq. (7) contains a
factorγ(f), called theoverlap reduction function[12], which characterizes the reduction in sensitivity to
detecting a stochastic background due to: (i) the separation time delay, and (ii) the relative orientation of
the two detectors. (For coincident and coaligned detectors,γ(f) = 1 for all frequencies.) Plots of the
overlap reduction function for correlations between LIGO Livingston and the other major interferometers
and ALLEGRO are shown in Fig. 1.

2.4 Optimal filter

Given Eqs. (7) and (8), it is relatively straightforward to show that the SNR (= µ/σ) is maximized when

Q̃(f) = λ
γ(|f |)Sgw(|f |)
P1(|f |)P2(|f |)

∝ γ(|f |)Ωgw(|f |)
|f |3P1(|f |)P2(|f |)

, (9)

3 δT (f) :=
∫ T/2
−T/2 dt e

−i2πft = sin(πfT )/πf .
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Figure 1: Overlap reduction function between LIGO Livingston and the other major interferometers plus
ALLEGRO (in an optimal alignment of72◦ East of North).

whereλ is a (real) overall normalization constant. Such aQ̃(f) is called theoptimal filter for the cross-
correlation statistic. For such ãQ(f), the expected SNR is

SNR ≈ 3H2
0

10π2

√
T

[∫ ∞
−∞

df
γ2(|f |)Ω2

gw(|f |)
f6P1(|f |)P2(|f |)

]1/2

, (10)

which grows like the square-root of the observation timeT .

2.5 Observational constraints

(i) The strongest observational constraint onΩgw(f) comes from the high degree of isotropy observed in
the CMBR. The one-year[21, 22], two-year[23], and four-year[24] data sets from the Cosmic Background
Explorer (COBE) satellite place very strong restrictions onΩgw(f) at very low frequencies:

Ωgw(f) h2
100 ≤ 7× 10−11

(
H0

f

)2

for H0 < f < 30H0 . (11)

SinceH0 ≈ 3.24× 10−18 h100 Hz, this limit applies only over a narrow band of frequencies(10−18 Hz <
f < 10−16 Hz), which is far below any frequency band accessible to investigation by either earth-based
(10 Hz . f . 103 Hz) or space-based (10−4 Hz . f . 10−1 Hz) detectors.

(ii) Another observational constraint comes from roughly a decade of monitoring the radio pulses arriving
from a number of stable millisecond pulsars[25]. These pulsars are remarkably stable clocks, and the reg-
ularity of their pulses places tight constraints onΩgw(f) at frequencies on the order of the inverse of the
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observation time of the pulsars (∼ 10−8 Hz):

Ωgw(f = 10−8 Hz) h2
100 ≤ 10−8 . (12)

Like the constraint on the stochastic gravitational wave background from the isotropy of the CMBR, the
millisecond pulsar timing constraint is irrelevant for earth-based and space-based detectors.

(iii) The third and final observational constraint onΩgw(f) comes from the standard model of big-bang
nucleosynthesis[26]. This model provides remarkably accurate fits to the observed abundances of the light
elements in the universe, tightly constraining a number of key cosmological parameters. One of the param-
eters constrained in this way is the expansion rate of the universe at the time of nucleosynthesis. This places
a constraint on the energy density of the universe at that time, which in turn constrains the energy density in
a cosmological background of gravitational radiation:∫

f>10−8 Hz
d ln f Ωgw(f) h2

100 ≤ 10−5 . (13)

This constraint corresponds to a 95% confidence upper bound onΩgw(f) of roughly10−7 in the frequency
band of earth-based interferometers.

2.6 Upper limits

In addition to the above observational constraints, there are a couple of (much weaker) upper limits on
Ωgw(f) that have been set directly using gravitational wave data: (i) An upper limit from a correlation
measurement between the Garching and Glasgow prototype interferometers[27]:

Ωgw(f)h2
100 ≤ 3× 105 for 100 < f < 1000 Hz , (14)

(ii) An upper limit from data taken by a single resonant bar detector[28]:

Ωgw(f = 907 Hz)h2
100 ≤ 100 . (15)

(iii) An upper limit from a correlation measurement between the EXPLORER and NAUTILUS resonant bar
detectors[29, 30]:

Ωgw(f = 907 Hz)h2
100 ≤ 60 . (16)

Note that these last two upper limits are forΩgw(f) evaluated at asingle frequency (f = 907 Hz), which is
near the resonant frequency of the bar detectors.

2.7 Data analysis pipeline

In an actual search for a stochastic background signal, we work with discretely-sampled data broken up
into segmentsT = 90 sec in length. Integrations in the previous formulas are replaced by summations
and continuous Fourier transforms by discrete Fourier transforms. Within the LIGO data analysis system
(LDAS), we request the gravitational wave data (LSC-ASQ from LHO and LLO) in 15-minute chunks,
originally sampled at 16384 Hz. We then down-sample the data to 1024 Hz, and estimate power spectra
for each detector, which are used in the calculation of the optimal filter for a stochastic background signal
with Ωgw(f) = const := Ω0. (The normalization factorλ [cf. Eq. (9)] is chosen so that the expected mean
value isµ = Ω0 T .) The data are then split into 10 (90-second) segments, each of which is windowed in
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the time domain (e.g., with a Hann window; see Sec. 3.3), zero-padded to twice its length, and discrete
Fourier-transformed. A value of the optimally-filtered cross-correlation statistic is then calculated for each
T = 90-sec data stretch (YQI1, YQI2, · · ·YQI10), along with the theoretical varianceσ2

I [cf. Eq. (8)] of the
individual cross-correlation statistics, valid for the whole 15-minute chunk.4 (Here,I labels the different
15-minute chunksI = 1, 2, · · · ,M , whereM ∼ 200 for the 70 hours of clean, coincident H2-L1 E7 data.)
For each 15 minute chunk, we calculate the sample mean

ȲQI :=
1
10

10∑
J=1

YQIJ (17)

and sample standard deviation

sI :=

(
1
9

10∑
J=1

(YQIJ − ȲQI)2

)1/2

(18)

of the 10 cross-correlation statistic values. We then form a weighted average5

ȲQ :=
∑M

I=1 λI ȲQI∑M
J=1 λJ

, where λI = σ−2
I (19)

to obtain a point estimate of the stochastic background signal strength. ForΩgw(f) = Ω0 = const, the
point estimate ofΩ0 h

2
100 is given by

Ω̂0 h
2
100 := ȲQ/T (20)

with standard error

σ̂ :=
1√
10

(∑M
I=1 λ

2
Is

2
I

)1/2

∑M
J=1 λJ

. (21)

A schematic diagram of the data analysis pipeline is shown in Fig. 2.

2.8 Statistical approach

We use frequentist methods to convert our composite cross-correlation measurement into an upper limit on
Ω0 h

2
100. Ordinarily, the fact thatΩ0 h

2
100 must physically be positive, while the observed cross-correlation

could be positive or negative, could lead to unphysical formal bounds unless we applied a technique like that
described in [31]. However, as was illustrated by the analysis of the hardware-injected signals [cf. Sec. 3.6],
the instrument response function of each detector is only known up to an overall sign. This means thatȲQ/T
is a point estimate of the product ofΩ0 h

2
100 and an unknown signζ which represents our ignorance of the

overall sign of the product of the two instrument response functions. (I.e., if both signs are correct, or both
are incorrect,ζ = +1, while if one is correct and the other incorrect,ζ = −1.) This means that the quantity
related to the results of our measurement,ζΩ0 h

2
100, can be either positive or negative.

We could thus set a two-sided confidence limit onζΩ0 h
2
100, as illustrated in Fig. 3. Given a physical value

y = ζΩ0 h
2
100T/σ̂ of the unknown stochastic background strength in units of the standard errorσ̂, our

4We also calculate frequency series representing the integrand of the optimally-filtered cross-correlation statistic for eachT =
90-sec data stretch. These spectra provide detailed information about the frequency bins that contribute most to the cross-correlation
statistic values.

5The weighting factorλI = σ−2
I is chosen to maximize the signal-to-noise ratio for the overall average in the presence of

nonstationary noise, as described in [14].
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Detector #1 Detector #2

R1 R2

h2 P2 R2R1P1h1

Split the data into 10 90−s segments

Window, zero−pad, and FFT the data

Calculate optimal filter for Omega_gw=const

Calculate CC stat, CC spec, and variance

Theor_varCC_statCC_spec

Post Processing

to obtain a point estimate of Omega_gw
Combine CC stat values and variance

LSC−AS_Q1 LSC−AS_Q2

Resample AS_Q to 1024 Hz

Estimate PSDs for optimal filter

Data Conditioning

Stochastic Search Code

and standard error in estimate

Upper Limit on Omega_gw

Figure 2: Data analysis pipeline for the stochastic search. LSC-ASQ1,2 and R1,2 denote the raw gravita-
tional wave output and response functions (containing calibration information) for detectors 1 and 2, respec-
tively. h1,2 and P1,2 denote the resampled gravitational wave data and estimated power spectral densities
for the two detectors.
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Figure 3: 90% confidence belts for cross-correlation measurement, in terms of the actual value ofy =
ζΩ0 h

2
100T/σ̂ and the measured value ofx = ȲQ/σ̂. The solid lines indicate our chosen confidence intervals.

For reference, the dashed lines indicate 90%CL central confidence belts, the leftmost dotted line indicates
the confidence interval for a 90%CL upper limit, and the rightmost dotted line corresponds to a 90%CL
lower limit. (Both dotted lines are inifinite straight lines and include sections which are obscured by part of
the solid lines.)
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cross-correlation measurementx = ȲQ/σ̂ is a random Gaussian variable of meany and unit variance, so the
middle90% of the distribution ofx values for a giveny values lies between the dashed lines. The classical
confidence interval for the actual value ofy based on a measurement ofx is also between the dashed lines
(the range ofys between the intersections with the dashed lines of a vertical line at the observed value ofx).

Similarly, if we were seeking to set an upper limit ony, we would use confidence intervals defined by the
leftmost of the two dotted lines; for a giveny, 90% of the probability distribution of possiblexmeasurements
lies to the right of the leftmost dotted line. A lower limit ony would likewise be associated with the area to
the left of the rightmost dotted line.

However, since the aim of this work is to set an upper limit on the stochastic background strengthΩ0 h
2
100 =

|y|σ̂/T , we choose a different set of confidence belts. These correspond to an upper limit ony for y > 0 and
a lower limit ony for y < 0, and are illustrated by the solid lines in Fig. 3. For eachy 6= 0, these confidence
belts cover90% of the probability distribution ofx values. (The situation aty = 0 can be handled carefully
by making a continuous transition between the two regimes for|y| ≤ ε; we are basically looking at the limit
ε→ 0.) This means that our limits ony are set as follows

If x < −1.28 , then x− 1.28 < y < 0 ;
if − 1.28 < x < 1.28 , then x− 1.28 < y < x+ 1.28 ; (22)

if x > 1.28 , then 0 < y < x+ 1.28 .

3 E7 investigations

3.1 Playground data

Roughly two hours of E7 data were set aside for stochastic upper limit playground analyses. This data corre-
sponded to GPS times 693961597 to 693968475, and contained 5 900-seconds stretches of clean coincident
data between the Hanford-2km and 4-km and Livingston-4km interferometers. All investigations that could
have biased our upper limit on the stochastic background signal strength were initially performed on the
playground data. These included the effect of different choices of windows (Sec. 3.3), high pass filtering
(Sec. 3.4), and time-shifting (e.g., Sec. 3.6) the data streams. In addition, data analysis pipeline scripts and
ldas user commands were originally tested on the playground data.

3.2 Expected upper limit

Theexpected90% confidence level upper limit using 70 hours of clean, coincident data from the Hanford
2-km and Livingston 4-km interferometers is

Ωgw(f)h2
100 ≤ 1.4× 105 for 40 Hz < f < 215 Hz . (23)

This upper limit was calculated using Eq. 10, solving forΩgw(f) = const with SNR set to 1.28 (for 90%
confidence),40 Hz < f < 215 Hz, and typical E7 power spectra substituted forP1(f) andP2(f) (see
Fig. 4). It corresponds to the upper limit we would expect to set if the measured cross-correlation was zero.
Note that, due to variations in the noise floor over the course of the engineering run, the value quoted in
Eq. (23) could differ from the actual measured value by an order of magnitude in either direction. Thus,
1.4× 105 was simply an order of magnitudeestimateof the upper limit we had expected to set using the E7
coincident data,beforedoing the actual analysis (Secs. 3.7 and 3.8).
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Figure 4: Typical strain sensitivity plots for E7. The straight line indicates the signal which would be
generated in a single detector by a stochastic background withΩgw(f) = 1.4× 105. Note that this is more
than an order of magnitude (in amplitude) below the noise level of the quietest detector, illustrating the
additional sensitivity arising from the cross-correlation measurement in around 70 hours of operation.
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3.3 Windowing

Initial investigations of the amplitude and phase of the discrete Fourier-transformed data revealed spurious
correlations at high frequencies. Ultimately, this was due to the large dynamic range of the gravitational
wave data and the leakage of power introduced by rectangular windows, demonstrating the need to window
the individualT = 90 sec data segments in the time-domain before applying the optimal filter.

Careful consideration of the effects of discrete sampling and windowing on the cross-correlation statistic
[32] leads to modifications of the continuous-approximation expressions (Eqs. 7 and 8) for the expected
mean and variance of the statistic. Provided that the windowing is sufficient to prevent significant leakage of
power across the frequency range, the effect is to multiply the expected value ofµ byw1w2 and the expected
value ofσ by (w1w2)2, wherew1 andw2 are the windowing functions and the bar indicates an average over
the window. The effect is to multiply the signal-to-noise by a factor of

w1w2√
(w1w2)2

, (24)

which whenw1 andw2 are both Hann windows is approximately equal to
√

18/35 = 0.717.

Non-overlapping Hann windows were subsequently agreed upon for the E7 upper limit analysis, despite the
reduction in signal-to-noise ratio.Spliced Hann windows, consisting of a Hann window split in half with a
constant section of all 1’s in the middle6 , were proposed as a way to combat this reduction in signal-to-noise
ratio—e.g., one could use a spliced Hann window that would allow one to analyze more than 99% of the
data—but it was not clear at the time of the E7 analysis if the leakage in power introduced by such a spliced
window was sufficiently small to justify its use in the presence of spectral line noise. (See Fig. 5.) However,
analysis of playground data with different spliced Hann windows (Fig. 6) seemed to indicate that as long
as the overall Hann section was longer than around 0.1 seconds, the leakage was small enough to avoid the
sorts of pathologies seen with rectangular windows.

There was also some discussion within our group regarding the use ofoverlappingHann windows to avoid
the reduction in signal-to-noise ratio, but the effect of overlapping windows on the statistics of the optimally-
filtered cross-correlation statistic was not worked out in time for E7. Both of these suggestions (i.e., spliced
Hann windows and overlapping Hann windows) are items of study for S1.

3.4 High-pass filtering

In order to reduce the effect of low frequency seismic noise on the variance of the optimally-filtered cross-
correlation statistic, we had originally thought that we would need to high-pass filter the data, with low-
frequency cutoff of∼ 25 Hz. However, subsequent investigations using a 7th-order Butterworth filter
showed that high-pass filtering was unnecessary if we limited the range of frequencies in the calculation of
the cross-correlation statistic to 40 to 215 Hz. (The high frequency cutoff was chosen so that∼ 90% of
the total signal-to-noise ratio come from this band.) The fractional difference in cross-correlation statistic
values with and without high-pass filtering was roughly1 part in103. It may still be necessary to high-pass
filter the data in the future, however, when the high-frequency sensitivity improves.

6Such a window has the appealing feature that the transition between the Hann and constant pieces at the top is just as smooth
as the transition between the implicit 0 values outside the window and the Hann beginning and end. In effect, using a spliced Hann
window is like using a Hann window which is shorter than the full length of the segment being windowed out, sacrificing some of
the “windowing power” of the Hann window in order to use more of the data with non-overlapping windows.
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Figure 5: Leakage function for various windows. The black curve represents a rectangular window, the
red curve a standard Hann window of width 90 seconds, and the green curve a “spliced Hann window”
consisting of a 1-second Hann window with a 89-second flat section spliced into the middle.

3.5 60 Hz mains correlations

Initial studies by Klimenko et al. revealed long-term correlations in site-site power lines. Lazzarini, Schofield,
and Viceŕe [33] subsequently explored whether these long-term correlations might arise from how the U.S.
power grids are frequency-stabilized at 60 Hz. They learned that there may be long-term coherent effects
because frequency and phase errors are constrained and corrected by the GPS time stamp. In particular, they
obtainedδ-frequency data from the U.S. East and West power grids (time series data with sample period of
1/2 hr) and noted 4 hr, 12 hr, and 24 hr periodicity in the coherence. (See Figs. 7 and 8.)

After subsequently analyzing all of the E7 power monitor data (PEM-LVEAV1), Klimenko and Castiglione
subsequently found that the 60 Hz line isnot coherent over a time scale of 180 hours [34]. The coherence
fall-off like 1/

√
T , whereT is the total observation time, consistent with uncorrelated data. (See Fig. 9.)

The same behavior was also observed for the 60 Hz line extracted from the gravitational wave data (LSC-
AS Q) using the DMT LineMonitor [35] . They thus concluded that such a correlation should not shift the
mean value of the cross-correlation statistic. However, the power line noise may significantly increase the
cross-correlation variance, increasing the value of the upper limit. In order to reduce the variance and hence
improve the upper limit, a suppression of the lines by a factor of∼ 100 is required. Using the optimal
filtering method described above, the lines are effectively suppressed by the optimal filter, which works as a
notch filter at the power line frequencies. This suppression should be adequate for the E7 data. However, an
accurate power line removal method is desirable for future runs (like S1), where better detector sensitivities
and/or larger data sets are expected.
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Figure 6: Effects of various spliced Hann windows on the cross-correlation statistic for two 15-minute
chunks of playground data. In each plot, the cross-correlation statistics (calculated over the range 40-1000Hz
for data downsampled to 2048Hz) for the ten segments, in units of the theoretical standard deviation for a
segment, are shown as a function of the length of the Hann portion of the window. Note that for windows
with a Hann portion shorter than around 0.1 seconds, the statistic values fluctuate wildly due to the spurious
high-frequency correlations arising from a nearly rectangular window. For windows with a Hann portion
longer than around 1 second (1.1% of the total segment), the statistics are well-behaved, but have different
values, because a different (smaller) set of data is being used in the calculation. For spliced windows in
between these two extremes, the cross-correlation statistic depends very little on the details of the window,
because the Hann portion is (apparently) long enough to prevent substantial leakage but short enough that
almost all of the data are contributing equally in each case.
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Figure 7: Scatter plot ofδ-frequency between the East and West power grids over a period of one year
measured at 1/2 hr intervals. The measured cross-correlation is roughly−1.4× 10−5.
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Figure 9: Coherence between power line monitors L0:PEM-LVEAV1 and H0:PEM-LVEAV1.

3.6 Analysis of hardware injected signals

Simulated stochastic background signals withΩgw(f) = const were injected into two 512-second stretches
of E7 data (GPS start times 694311500 and 694318750) in the Hanford-4km and Livingston-4km inter-
ferometers.7 Values of the optimally-filtered cross-correlation statistic calculated for these two injections
are shown in Fig. 10. For these analyses, we split the data into 10 (45-second) segments, starting at GPS
694311515 and 694318765, respectively, which corresponds to waiting 15 seconds after the injection started
before analyzing the data. The measured signal-to-noise ratios for the two injections were -8.93 and -19.3,
corresponding to point estimates ofζΩ0 h

2
100 given by−4.23 × 107 and−5.94 × 109, respectively. Note

that both point estimates arenegativeindicating that the hardware injections and/or calibrations were such
thatζ = −1 for the injections.

Results of time shifting the two data stretches relative to one another are shown in Fig. 11. As expected, the
point estimates ofζΩ0 h

2
100 are much smaller for all time-shifts greater than the light travel time (∼ 10 msec)

between the Hanford and Livingston detectors.

We also plan to hardware-inject simulated stochastic background signals during S1. The injections will have
durations of 1024 second with logarithmically varying amplitudes—e.g., corresponding to signal-to-noise
ratios of 0.5, 1, 2, 4, 8, and 16.

3.7 Upper limit for E7 data (Hann windowing)

Based on analysis of 205 15-minute chunks of E7 data, each broken into 10 (90-second) segments, we find,
as described in Sec. 2.7, a value ofȲQ = −1.6685× 106 sec corresponding to a point estimateζΩ̂0 h

2
100 =

−1.8539 × 104. The standard error iŝσ = 4.0853 × 106 sec = 4.5392 × 104 T . Applying the methods of
7Note that the stochastic signal was injected into the 4km interferometer at Hanford (H1), while our overall upper limit mea-

surement was done using the Hanford-2km (H2), which turned out to be more sensitive.
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Figure 10: Optimally-filtered cross-correlation statistic values{YQIJ} for the 1st and 2nd hardware injec-
tions (GPS start times 694311515 and 694318765). The normalization has been chosen so that the vertical
axis represents a point estimate ofζΩ0 h

2
100 for each segment.
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Figure 11: Time-shift analysis for the 1st and 2nd hardware injections (GPS start times 694311515 and
694318765). Plotted are point estimates ofζΩ0 h

2
100 (circles) with 90% confidence level error bars for

time-shifts between−1 and1 second in steps of0.1 second.
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Figure 12: The cross-correlation statistic values{YQIJ} for the 2050 (90-second) Hann-windowed data seg-
ments, as a function of segment time. The normalization has been chosen so that the vertical axis represents
a point estimate ofζΩ0 h

2
100 for each segment.

Sec. 2.8, we obtain the following 90% confidence level limit:

− 7.6712× 104 < ζΩ0 h
2
100 < 3.9633× 104 (25)

this corresponds, given the unknown sign ofζ, to an upper limit ofΩ0 h
2
100 < 7.7× 104.

The 2050 statistic values{YQIJ} are shown in Fig. 12. Figure 13 shows the 205 15-minutes averages
{ȲQI}, with 1-sigma errorbars given by the measured standard deviationsI for the 10 jobs in each chunk.
Figure 14 provides a measure of the accuracy of the theoreticalσI used in weighting the contributions from
the different data chunks, by comparing it to the actual measured standard deviationsI . Note the lack of
apparent systematic bias: the ratio is above unity about as often as it is below, which among other things
forms an confirmation of the theoretical adjustments to the expected standard deviation which we have made
to compensate for the windowing of the data. Figure 15 shows the weighting factors{λI = σ−2

I }, which
also act as a measure of the sensitivity of the experiment over the course of the run. Finally, Fig. 16 provides
a measure of the Gaussianity of the underlying data. The quantities

xIJ =
YQIJ − ȲQ

σI
(26)

should, according to our model, be realizations of a Gaussian random variable with zero mean and unit
variance. Using all 2050 data segments, we calculate the mean ofxIJ as -0.005 and the standard deviation
as 1.22. However, the standard deviation in particular is heavily influenced by outlying values coming from
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Figure 13: The averages{ȲQI} of the statistic values for the 10 Hann-windowed segments in each of the
205 900-second data chunks, as a function of chunk time. The normalization has been chosen so that the
vertical axis represents a point estimate ofζΩ0 h

2
100 for each chunk. The error bars represent the measured

standard deviationsI (±1σ) of the tenYQIJ values for eachI.
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Figure 14: The ratio of the measured standard deviationsI to its theoretical valueσI for each of the 205
900-second data chunks, as a function of chunk time. Note that with the exception of the last chunk, for
which the actual standard deviation is around 9 times its theoretical value, the ratio is between 0.5 and 2 and
shows no systematic trend above or below unity.
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Figure 15: The weighting factorλI = σ−2
I corresponding to each of the 205 900-second data chunks, as a

function of chunk time. This is also a measure of the sensitivity of the measurement, as a function of time.
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the last data chunk, for which the actual standard deviation was much larger than the theoretical one. In
general, we might expect the noisier stretches of data to be less well-behaved. Those stretches contribute
little to the weighted averages we used to obtain the upper upper limit, while every data segment contributes
equally in the statistics ofxIJ . It is therefore instructive to restrict attention to the 1290 data segments
corresponding to the 129 most heavily-weighted chunks, which make up90% of the weighted average. The
xIJ values for those have a mean of -0.003 and a standard deviation of 1.02. The higher moments of each
distribution are shown graphically in the normal probability plots in Fig. 16.

3.8 Spliced Hann window analysis

We repeated the analysis on the same 205 15-minute chunks of data, this time dividing each into 10 segments
using spliced Hann windows as described in Sec. 3.3 (one-second Hann windows with an 89-second-long
constant stretch “spliced” into the middle of each). We found a value ofȲQ = −7.3633 × 105 sec corre-
sponding to a point estimateζΩ̂0 h

2
100 = −8.7285 × 102. The standard error iŝσ = 2.8371 × 106 sec =

3.1524 × 104 T . Applying the methods of Sec. 2.8, this could be converted into the following 90% confi-
dence level upper limit:

− 4.8580× 104 < ζΩ0 h
2
100 < 3.2218× 104 (27)

this would correspond, given the unknown sign ofζ, to an upper limit ofΩ0 h
2
100 < 4.9× 104.

So, using spliced Hann windows would have improved our upper limit onΩ0 h
2
100 by a factor of1.57, which

is comparable to the theoretical factor of
√

35/17 ≈ 1.43 arising from the longer effective observing time.
In fact, most of the discrepancy arises from the difference in the point estimates; the ratio of the standard
errors in the two analyses is 1.44, which is very close to the theoretical value. (It’s worth noting that the
theoretical standard deviations{σI} were used only to obtain the relative weightings of the different chunks
in the overall averages; the standard error is based on the standard deviations{sI} calculated from the
individual segment measurements within each chunk.)

4 Future plans

4.1 Line removal

Although there is general agreement that line removal (in particular, for power lines) will reduce the vari-
ance of the optimally-filtered cross-correlation statistic, and thus improve the upper limit, we were not able
to sufficiently characterize the line removal method currently implemented in the data conditioning API to
include it as part of our data analysis pipeline for the E7 upper limit analysis. This method, whichregresses
the gravitational wave channel against selected physical and environmental monitors (PEMs), has excellent
suppression for high signal-to-noise ratio lines[36], but more systematic investigations, quantifying the ef-
fect of line removal on the values of the cross-correlation statistic, have yet to be performed. In particular,
we need to know the level of spurious broad-band cross-correlations (if any) introduced by this method.
These investigations are scheduled for S1.

4.2 Monte Carlo simulations

Although code exists within LAL and LALWrapper for simulating stochastic background signals, this func-
tionality was not sufficiently tested within LDAS to be used for the E7 analysis. It is planned for S1.

page 22 of 29



LIGO-T020115-00

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

Figure 16: Normal probability plots for(YQIJ − ȲQ)/σI , which should on theoretical grounds be drawn
from a Gaussian distribution of zero mean and unit variance. The red line indicates the Gaussian which best
fits the data, and curvature away from that is a sign of non-Gaussianity. The upper plot was made using the
full set of 2050 data segments, for which the mean is -0.005 and the standard deviation 1.22. (Two points
with values of -25 and -19 do not appear on the plot, but contribute to the statistics.) The lower plot was
made using only the 129 “quietest” data chunks out of 205, which make up 90% of the contribution to the
weighted average, and has a mean of -0.003 and a standard deviation of 1.02.
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Figure 17: Normalized sign cross-correlation coefficient for gravitational wave data as a function of lag
time. Red and blue curves show the cross-correlation coefficient when the power lines are removed.

4.3 Sign correlation test

Klimenko et al. have implemented a complementary method to search for stochastic gravitational wave
signals [37]. It is arobust cross-correlation technique in thewavelet domain, which uses only the sign of
the wavelet coefficients. The probability distribution of the correlation coefficients is known for the sign
statistic, which allows for a robust calculation of the cross-correlation significance for non-Gaussian data. If
the detector noise is Gaussian, the sign correlation method is roughly a factor of twoless efficientthan the
optimally-filtered cross-correlation method with the spliced Hannwindow. However, it allows for a useful
and independent cross-check when the detector noise is non-Gaussian, which we observed in the E7 data.

Wavelets and the sign transform are implemented in the data conditioning API, and have already been used
to analyze the E7 playground data. Figure 17 is a plot of the sign correlation coefficient (normalized by the
measured standard deviation) for gravitational wave data with and without power lines removed. Figure 18
is another plot of the normalized sign correlation coefficient, this time for the 2nd hardware injection. In
both cases, the normalized cross-correlation coefficients are plotted versus lag time, which is an important
signature of the correlation process.

Note that Fig. 17 also shows that the sign correlation method cannot be used without accurate line removal.
Although for long observation times the line noise should not shift the mean value of the cross-correlation, it
can significantly increase (∼ 100 times) the variance of the cross-correlation (see Sec. 4.4). We plan to use
the sign correlation method on E7 and S1 data as soon as the line removal algorithm is fully implemented
and characterized.
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Figure 18: Normalized sign cross-correlation coefficient for hardware injected stochastic signal as a function
of lag time.

4.4 Cross-correlated noise study

In addition to the power mains, there could be other sources of correlated noise coming from seismic events,
lightning strikes, etc. Unlike power lines, these sources may introduce abroad-bandcorrelated noise, which
may not be removed or suppressed by the optimal filter. A more general study and estimation of correlated
environmental noise is thus needed, and should be implemented for S1.

One way to do it is to use the sign correlation test described in Sec. 4.3. If correlated noise is present in the
data, the autocorrelation function of the product of the sign statistics (for each wavelet layer) will differ from
a delta function, and have a non-trivial (i.e.,6= 1) variance ratioν(T ) as a function of the integration timeT
[37]. For large integration times,ν(T ) is proportional to the correlation time of the process,Tc = ν(T )∆t/2,
where∆t is the sampling period.

Figure 19 shows how this method works on data contaminated with correlated noise from power lines.
The figure showsν(T ) for three different E7 data segments. Lower curves showν(T ) when the lines are
removed. They are close to unity, as expected for uncorrelated data.

4.5 ALLEGRO-LLO correlation

As described in [38], the ALLEGRO [39] resonant bar detector took data in three different orientations
during E7: (i) It operated for approximately two days in an orientation of48◦ West of North, which was
close to the default orientation used to align ALLEGRO with the other bars in the IGEC collaboration. (ii)
It operated for approximately two days in an orientation parallel to the Y arm of LIGO Livingston,18◦ West
of North. (iii) It operated for approximately two days in an orientation halfway between the X and Y arms
of LLO (63◦ West of North). The overlap reduction functions for these three alignments, along with a fourth
alignment parallel to the LLO X arm, are shown in figure 20. As described in [40], combining data from
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Figure 19: Variance ratioν(T ) as a function of integration timeT for three data segments with correlated
noise from power lines (3 upper curves) and with power lines removed (3 lower curves).

Figure 20: Overlap reduction function between LIGO Livingston and ALLEGRO in four alignments.
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the “aligned” and “anti-aligned” configurations, which respond to gravitational waves in the opposite way,
would allow one to cancel out the effects of orientation-independent correlated noise in obtaining an estimate
of the stochastic background strength. Additionally, operating in the null or “misaligned” configuration
allows one to effectively point the ALLEGRO-LLO detector pair “off-source”, obtaining an estimate of
cross-correlated environmental noise component in a configuration insensitive to stochastic gravitational
waves.

Since ALLEGRO is not scheduled to take data during S1, we will be using LDAS to analyze the coincident
ALLEGRO-LLO data from E7. This will produce an upper limit onΩgw(f) in a different frequency range
from the LLO-LHO analysis (around 900Hz as opposed to 40-215 Hz) and will test the mechanics of the
analysis in anticipation of more sophisticated investigations during S2 and beyond.

4.6 GEO-LIGO correlation

The GEO-600 [41] interferometer operated in coincidence with LIGO during E7, but no correlation mea-
surements were performed. Richard Ingley (at Ph.D. student at Birmingham) has been building a data
analysis pipeline within GEO for stochastic searches, which should to be ready in time to analyze S1 data.
Although a GEO-LIGO correlation will not improve the upper limit by much due to the small overlap be-
tween the GEO and LIGO interferometers, it should provide insight about inter-continental cross-correlated
environmental noise.
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