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Abstract

We evaluate the parametric phenomenon for the main optical mode coupled

to other resonant waves excited by acoustic interaction with the mirrors of a

Fabry-Perot. We apply this to the arm cavity of a gravitational wave antenna.

Under certain assumptions we �nd that the amplitude of these parasitic modes

is expressed by analytic solutions that are always damped. We analyze both the

zero detuning and the detuned case and solve the equations. The form of the

solution shows that for equally spaced and excited cavity modes the instability

is expressed by a threshold condition, which is well approximated for Ligo arm

resonator parameters.
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1 Introduction

Recently it has been proposed that coherent light stored in the Fabry-Perot arm cavi-
ties of gravitational wave interferometers may experience an instability with respect to
its ponderomotive interaction with acoustic modes of the cavity mirrors [1]. The basic
phenomenon is portrayed as quite universal. However the perhaps unique conditions
attained in such interferometers (high acoustic and optical mode Q's, very high CW op-
tical intensities and extraordinarily low free spectral range ' acoustic mode frequencies)
conspire to lower the instability threshold to within design parameters.

Here we demonstrate some restrictions to this phenomenon, which ameliorate poten-
tial seriousness. In particular we apply a more complete analysis to the one dimensional

model of a cavity (corresponding to sec. II in [1]) showing that no signi�cant instability
occurs. For the more general case where the interaction mixes transverse optical modes
(corresponding to sec. III of [1]) instabilities are indeed possible. For such possibili-
ties we argue that the typical interferometer design precludes any problematically large
number of \parametric resonances".

Finally we discuss the nature of instabilities from a di�erent (time domain) point of
view. This helps to clarify, from an overall cavity perspective, why some modes interact
to produce instability and others do not.

2 Condition of stability in the frequency domain for

the resonant case

Following the formalism and notations of [1] we write for the full parametric interaction
of the one-dimensional cavity model

Lint ' �
Z
xuz < H0 +H1 +H2 >

2

8�

�����
z=0

dr? = �2!0q0B
x

L
(!1q1 + !2q2) (1)

(neglecting terms � q1q2 assuming that they can be completely ignored) where a con-
tribution H2 for an anti-Stokes mode has not been previously taken into account. The
elastic oscillation mode x(t) couples the pump optical mode q0 with q1 and q2. The
frequency

!m = !2 � !0 = !0 � !1

corresponds to the mechanical mode described in [1]. Because the optical modes we are
considering are characterized by practically the same parameters, due to the very small
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free spectral range compared to c

�
(where � is the wavelength of the �eld and c the speed

of light) we assume
B1 = B2 � B Æ1 = Æ2 � Æ

being B a coupling constant and Æ the bandwidth of the optical modes.
The Lagrangian coordinates are qi(t) = Di(t)e�i!it + h:c:. The degree of freedom

representing the acoustic mode has a similar expression. Because of the spatial distri-
bution of these variables, the mirror excited mode must have the correct shape in order
to couple the optical modes. The eÆciency of such overlap is included in the constant
0 < B < 1 representing the spatial matching.

If there were no coupling qi and x would behave as free oscillators. When the term
(1) is considered the perturbation drives the dynamics. The fast variation is separated
from the slowly changing amplitudes Di and X.

The equations of motion

@tD1 + ÆD1 =
iB!0
L

X�D0e
�i�1t

@tD2 + ÆD2 =
iB!0
L

XD0e
�i�2t

@tX + ÆmX =
iB!0
ML!m

n
D0D

�

1!1e
�i�1t +D�

0D2!2e
i�2t

o

correspond to the equations (A1) and (A2) in [1]. We have introduced the two small
detuning frequencies

�1 = !0 � !1 � !m �2 = !0 � !2 + !m (2)

and this notation is shown in Fig.1. In order to obtain a condition of parametric in-
stability we seek solutions X = �e�i
t. If we assume �1 = �2 = 0 we can rewrite the
previous equations as follows

D1 =
iB!0

L(Æ + i
�)
��ei


�tD0

D2 =
iB!0

L(Æ � i
)
�e�i
tD0

and substitute them in

�(Æm � i
) =
R0

0�ÆÆm
!0(Æ � i
)

n
�!1e

�i
t � �!2e
�i
t

o
ei
t (3)
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where we have introduced

�R0
0 =

B2jD0j2!20
M!mL2

!0
ÆmÆ

(4)

using almost the same notations as in [1]. The only slight di�erence is

R0
0 =

!0
!1
R0

where R0 was de�ned in (4) of [1]. Solving for 
 gives


 =
�i(Æ + Æm)

2
� i

s
(Æ � Æm)2

4
+
(!1 � !2)

!0
R0

0�ÆÆm

that implies the solution

X = �e�i
t

= � exp

8<
:�t

2
4Æ + Æm

2
�

s
(Æ � Æm)2

4
+
(!1 � !2)

!0
R0�ÆÆm

3
5
9=
; (5)

for the slowly varying amplitude X. The stability condition is ful�lled for

R0
0�
!1 � !2
!0

< 1

that is always satis�ed since numerically (!1 � !2) < 0.
The contribution containing !2 is not taken into account in [1], where the condition

for instability, in this no detuning situation is given as

R0
0�
!1
!0

> 1 :

This is then exactly recovered by dropping the term in !2 leading to (5). Keeping the
contribution in !2 gives a solution that is always damped as we can verify by inspection
of the equation (5).

3 Condition of stability in the frequency domain

with detuning

We seek a solution in the case �1 = ��2 = �. Using the same notation of [1], the
de�nition (4) and �i as prescribed in (2), we look for solutions of the following form:

D1(t) = D1 exp[i(

� �

�

2
)t] = D1e

��t X�(t) = �� exp[i(
� +
�

2
)t] = ��e�+t
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D2(t) = D2 exp[�i(
�
�

2
)t] = D2e

��
�
t X(t) = � exp[�i(
 +

�

2
)t] = �e�

�

+
t

where no assumption on the reality of � = i
� has been made. If we substitute the
previous expressions in the equation for D1(t) and D2(t) we �nd

D1 =
iB!0

L(Æ + i(
� � �
2
))
��ei(


��
�
2
)tD0

D2 =
iB!0

L(Æ � i(
� �
2
)
�e�i(
�

�
2
)tD0

implying a solution

�(Æm � i(
+
�

2
)) = (6)

R0
0�ÆÆm

!0(Æ � i(
� �
2
))

n
�!1e

�i(
��
2
)te�i�t � �!2e

�i(
��
2
)te�i�t

o
ei(
+

�
2
)t

that corresponds to (3) for � 6= 0. Solving (6) for the unknown variable 
 gives two
solutions. Using the formal expression


 =
�i(Æ + Æm)

2
� i

s
(
Æ � Æm

2
�
i�

2
)2 +

(!1 � !2)

!0
R0

0�ÆÆm

we �nd a condition for stable solutions � e�i
t. The condition for stability is

�
R0

0�ÆÆm
!0

(!1 � !2) + ÆÆm[1 +
�2

(Æ + Æm)2
] > 0 (7)

that is always ful�lled.
Formula (7) has been obtained with no approximation. If !2 is dropped and > is

inverted we recover the condition (A5) in [1] for the instability threshold.

4 Interpretation in the time-domain

Stability is evidently preserved when symmetric scattering to optical modes resonating at
!0�!m is possible. Therefore we anticipate that instability may occur with the inclusion
of scattering from the pump mode to di�erent higher transverse modes (HTMs). In this
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situation if !1 = !0� !m holds for some HTM, then the symmetry is broken in that no
resonant mode exists at !1 = !0 � !m. Then the two modes analysis of [1] pertains.

The mechanisms at work here can be, perhaps more clearly, viewed in time domain.
For net work to be done on the acoustic mode the ponderomotive force and hence
intensity of light impinging upon it must acquire an acoustic component.

It is well known that intra-cavity phase modulation (as in Fig.2 the physical e�ect of
one dimensional mirror dithering) induces just such amplitude modulation [2]. Limiting
to the exact parametric resonant scattering case, the �elds generated upon reection by
an incipient acoustically (amplitude X = � cos !mt) mirror are:

 0e
i!0t pump

!  0e
i!0t

scatter

& �i� 1 cos!mt e
i!0t � =

4�

�
�

with � << 2!0�=c. That is, to �rst order, the pump is una�ected and a pair of scattering
sidebands is generated. Generally only one sideband will be resonant in the cavity, say
at !0 � !m. In this case the Poynting vector into the acoustic surface is

Pem / j 0j
2 � � 1 0 sin!mt

at �rst order in �. This beat amplitude modulation then is just correct (phase and
transverse form) to do positive work on the acoustic mode. If the upper (!0 + !m)
sideband were resonant then work would be extracted from the acoustic mode since

Pem / j 0j
2 + � 1 0 sin!mt :

The pure one dimensional situation ( 1 =  0) is special, in that both !0�!m resonate.
Then no amplitude modulation is developed at !m. A full higher order analysis shows
that only even harmonic (2n!m) amplitude modulation develops, which does no work
on the acoustic mode. 1

5 Quantitative limitations

Quantitative estimates of those instabilities exciting HTMs depend strongly on the over-
all interferometer con�guration [3]. The very circumstances (high pump mode Q, low

1This symmetry is subject strictly to the approximate assumption that jXj=L << 1 (that is, an exact
analysis where terms O(jXj=L)2 are neglected). This is an excellent approximation for the gravitational
wave interferometers case of interest:jXj=L � 10�12.
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free spectral range or long cavity length, . . . ) conducive to the instability also severely
limit the potentially accessible HTMs.

Practical GW interferometers have pump mode transverse size designed to just �ll
the test mass mirrors' apertures. HTMs then have larger transverse size, and hence
larger �nite aperture di�raction losses (higher Æ1). For example the LIGO I cavity
round trip di�ractive loss for modes TEMmn with m + n � 4 is already enough to
increase the R0 instability threshold by a factor of � 100 over the basic estimate of [1].

A detailed description of the higher transverse mode eigenfrequencies must include
interaction with the full interferometer. Although generated in the high F inesse Fabry-
Perot arm cavities, optical resonance of these HTMs will sensitively depend on the
complex coupling of the Fabry-Perot cavity to the rest of the interferometer. Both !1
and Æ1 will be a�ected. The necessity of a full interferometer analysis is implicit in the
use of the pump level E0 ' 3�108 ergs in [1] corresponding to full recycled interferometer

optical resonance. We note consistently, for instance, that Æ1 >> Æ0 by two orders of
magnitude when HTMs are excited as in Fig.2, since the scattered SB is generally not
resonant in the full interferometer.
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Figure 1: The detuning is symmetric because the modes are equally spaced in the frequency

domain
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Figure 2: The misalignment is a typical source of excitation of HTMs and the frequency of

the scattered �eld is a�ected by the frequency of the tilt motion of the mirror

8


