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I. INTRODUCTION

During the LIGO engineering runs E3 - E6, Klimenko et al. studied the long-baseline

correlations in the power line mains between the two LIGO observatory sites. It was observed

that even for very long integration times the cross correlation persisted (see Fig. 1). At

first, it might seem surprising that power lines separated by two thirds of a continent should

exhibit any degree of phase correlation. The U.S. power grid is composed of two sectors that

are separated by the Mississipi river into Eastern and Western sections, and the two LIGO

interferometers, in Hanford (WA) and in Livingston (LA) belong respectively to the Western

and Eastern sections. Upon further consideration, however, they cannot be completely

independent because grid-wide constraints are imposed on the instantaneous and average

deviation of the frequency from the reference frequency: the power grid phase stability is

referenced to GPS. We have obtained information from the U.S. western grid authority that

provides some insight on how frequency stabilization is implemented. More recently we also

obtained data for the frequency corrections made at 1800s intervals over a one year period.

Below we discuss how the grid frequency control mechanism manifests itself in the 60 Hz

line shape and possibly in long-baseline cross correlations of mains signals.

II. U.S. POWER GRID FREQUENCY CONTROL STRATEGY

Let ν1,2 (t) be the instantaneous frequencies as seen at the two sites: they may be con-

sidered random variables, and analogously the phase at time t relative to epoch t0 is given

by

φ1,2 (t) ≡ 2π

∫ t

t0

ν1,2 (t′) dt′ + φ1,2 (t0) ; (1)

we don’t know in principle the distribution of ν and its consequent influence on φ, but we

know that two kinds of constraints are imposed on them:

Average frequency: the frequency averaged over a sufficiently long time interval T is not

allowed to differ more than a certain limit from the reference frequency νc (60 Hz in

the United States): ∣∣∣∣∫ t0+T

t0

νi (t) dt− νcT

∣∣∣∣ ≤ ∆φmax

2π
; (2)

which is equivalent to limiting the accumulaiton of phase errors to values smaller than

∆φmax. Our present understanding[1] is that the phase is allowed to drift freely until
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Figure 1: The spectral desnity of phase noise at 60 Hz as reported for the LIGO E3 engineering
run by Klimenko et al. Graph taken from their LSC internal report (not numbered)

the constraint is approached. At this point, the frequency is changed in order to

impose the constraint. Again, we currently understand that this manual regulation of

the frequency is not needed more than once or twice per hour, hence the value of T at

which the limit is reached is of order ≈ 1800sec. The value of ∆φmax is fixed so that

a clock using the line phase as a frquenct reference will never accumulate a time error

greater than ∆tmax: this limit appears to be different for the Eastern and Western

power grids[1]: in the West ∆tmax = 2s, while in the East ∆tmax = 8s and will be in

the future increased to 10s. Correspondingly, we have

∆φmax = (2π) ∆tmaxνc (3)

and we have ∆φmax ≈ 754 in the Western grid, ∆φmax = 3770 on the Eastern grid.

Instantaneous frequency deviation: the instantaneous value of νi (t) = dφi(t)
dt is con-
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strained within certain limits

|νi (t)− νc| ≤ ∆νmax (4)

with respect to the reference frequency νc. The current limit is[1] ∆νmax = 0.02Hz.

III. DATA FROM THE U.S. WESTERN GRID

The data available consist of one year worth of time error signals, acquired on the Eastern

power grid: they consist of the errors δt [t] that result from using the phase of the power

line as a clock, with respect to the reference phase

φc (t) = 2πνct (5)

where νc=60Hz is the reference frequency on the grid. If φ (t) is the phase of the voltage

actually delivered by the grid, then

δt (t) ≡ φ (t)− φc (t)

2πνc
; (6)

these data are available sampled every 1800s, every half hour, and were taken in the period

October 1st, 2000 – September 30, 2001.

We present in Fig. 2 a plot of the phase error

δφ (t) ≡ 2πνcδt (t) (7)

and of the corresponding one-sided spectrum Sφ (f), normalized so as to have

E
[
(δφ (t)− E [δφ (t)])2] =

∫ fNyquist

0

Sφ (f) df. (8)

The spectrum clearly shows peaks corresponding to 24 and 12 hours periodicity, as well as

harmonics of these . There are also peaks corresponding to weekly and monthly periodicities.

We can define a “frequency shoft” by setting

δν (t) ≡ 1

2π

δφ (t + ∆t)− δφ (t)

∆t
: (9)

the corresponding time series and spectrum are shown in Fig. 3 which displays also some

spikes corresponding to sudden frequency variations, due to holes in the data.

4



0 1e+07 2e+07 3e+07
t [sec]

� 1500

� 1000

� 500

0

500

1000

1500

ra
d

δφ(t)

10
� 7

10
� 6

10
� 5

10
� 4

f [Hz]

10
1

10
2

10
3

10
4

10
5

10
6

ra
d/

H
z�

1/
2

Sδφ(f)

Figure 2: Time series and spectrum of the deviation δφ (t) of the voltage phase from the reference.
There is a hint of seasonal dependence of the phase correction.
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Figure 3: Time series and spectrum of the deviation δν (t) of the voltage frequency from the
reference νc.

A. Behavior of the noise on short timescales

It is useful to have a look at the data on shorter segments of time, as in Fig. 4, which

displays 3.5 days worth of data. The trend of δφ suggests that the phase error grows roughly

linearly in time over intervals of the order of a few hours, separated by abrupt changes in
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Figure 4: A zoom of δφ and δν over a time range of approximately 3.5days.

direction. The slope changes from interval to interval, not just in sign but also in magnitude,

as it is evidenced by the upper plot with the frequency: although a large frequency variation

is evident also inside each interval, one can roughly divide the sample into segments of

approximate constant frequency, separated by sudden jumps. This behaviour is particularly

evident in the right side of the phase plot (and even more evident than in the frequency

plot), and would suggest a bimodal behaviour for the frequency: to check for it, we plot

in Fig. 5 several histograms of the data, obtained from 8 segments of 512 samples at the

beginning of the dataset.

It is possible to see hints of bimodality in some of the histograms, but not very evident,

and the two gaussians (if real) appear to have a variance comparable with the separation of

their barycenters.

For a better understanding we attempted the following first-cut analysis: we divided the

frequency data in blocks separated by the change of sign, we substituted in each block the

value of the elements by the average value 〈δν〉 over the block, and then we recomputed a

histogram of the resulting sequence. We did the same computing the standard deviation

σ〈δν〉 on each block, and forming another sequence where each element on each block was

substituted by the σ〈δν〉 value pertinent to that block.

The results are shown in Fig. 6: in particular the plot at left of the averages shows clearly
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Figure 5: Histograms obtained from a few data segments of δν, each 512 data points long, taken
at the beginning of the dataset.
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Figure 6: Left: the histogram of the averages computed over each block of ν data having the same
sign, where each value of the averages contributes to the histogram a number of times equal to the
length of the block. Right: the same histogram for the standard deviations, computed on the same
data and the same blocks.

a clustering, while in the plot at right the histogram of the standard deviations displays a

rather wide distribution.

One may surmise that the variances on each block depend on the average value: to test

for this we plot in Fig. 7 the standard deviations σ〈δν〉 versus the averages 〈δν〉.
The plot clearly shows that there is a correlation, which looks vaguely linear: a simple

fit results in

σ〈δν〉 ∼ 0.46983(5) |〈δν〉| . (10)

Assuming that there is indeed a relation between 〈δν〉 and σ〈δν〉, and that the spread is
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Figure 7: The standard deviations σ〈δν〉 calculated on each block versus the averages 〈δν〉: a
correlation is apparent. Also shown is a 64-pt moving average of the σ〈δν〉 values: the cusp in zero
is an artefact of the averaging procedure.

statistical noise, we visually improve the estimation of σ〈δν〉by performing a 64-pt running

average over close values of 〈δν〉: the resulting curve is superimposed to the plot and is in

good agreement with the fit.

The whole analysis is clearly biased by the way we divide the δν data in blocks, simply

looking at sign changes: yet it seems to give a reasonable description of the process, and we

can argue that on each block we have a frequency noise of the form

δνi ∼ 〈δν〉 (1 + s ξi) (11)

where 〈δν〉 is a random number, constant on each block, with a bimodal distribution as in

the left of Fig. 6, while s ( 0.47 is the scale relating σ〈δν〉 and 〈δν〉 in Eq. 10; ξi is a gaussian

white noise with unit variance.

We want now to understand the statistics of the “frequency hop” events which lead to

jumps in 〈δν〉. are subject to a Poisson distribution, and to test for this we report in Fig. 8

the distribution of the lengths of the blocks, or in other words of the interval between jumps.

If the jumps are Poisson points, then the distribution of the intervals ∆t should be

p (∆t) = λ2∆t e−λ∆t; (12)

there is some hint of such a distribution if one disregards the first two bings of the histogram:
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Figure 8: The distribution of the intervals between sign changes of 〈δν〉. A Poisson distribution is
superimposed, obtained dropping the first two points of the histogram, pretending that they are
an artefact due to the way the data are separated in blocks.

fitting one obtains a value of λ ∼ 0.37, corresponding to an average interval

〈∆t〉 =
2

λ
× 1800 ( 9730sec (13)

between events. The reason for dropping the first two bins is that one can suspect that

the procedure used in separating the intervals (just by the sign of δν) is imperfect, and

that intervals having an average 〈δν〉 close to zero may have been artificially split in two,

artificially increasing the frequency of short intervals. Of course this adversely affects also

the frequency of long ones, and one may surmise that λ has been overstimated.

B. The deduced 60 Hz lineshape

The sampling rate of 1800 sec gives no direct access to the frequency range of the 60Hz

line and its harmonics: it is however possible to gain some insight on the lineshape, by

treating δφ as a Gaussian variable with the spectrum given in Fig. 2. For definitess let us

consider the time series

n (t) ≡ cos (2πνct + δφ (t)) : (14)
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we are interested in estimate its spectrum, which deviates from a δ function at νc because

of the noisy δφ. We first rewrite

n (t) =
1

2
(z (t) + z∗ (t)) (15)

where

z (t) ≡ ei2πνct+δφ(t) : (16)

the correlation matrix is

Rn (t + τ t) ≡ E [n (t + τ) n (t)]

=
1

2
* (Rzz (t + τ, t) + Rzz∗ (t + τ, t)) (17)

and

Rzz∗ (t + τ, t) = ei2πνcτE
[
ei(δφ(t+τ)−δφ(t))

]
= ei2πνcτ− 1

2E[(δφ(t+τ)−δφ(t))2]

= ei2πνcτ−Rδφ(0)+Rδφ(τ) (18)

while

Rzz (t + τ, t) = ei2πνc(2t+τ)E
[
ei(δφ(t+τ)+δφ(t))

]

= ei2πνc(2t+τ)−Rδφ(0)−Rδφ(τ), (19)

hence

Rn (t + τ, t) =
1

2
e−Rδφ(0)* [

ei2πνc(2t+τ)−Rδφ(τ) + ei2πνcτ+Rδφ(τ)
]

: (20)

averaging over t we can define

Rn (τ) =
1

T

∫ T

0

Rn (t + τ, t) dt

=
1

2
cos (2πνcτ) e−Rδφ(0)+Rδφ(τ) + O

(
T−1

)
. (21)

The one-sided noise spectrum follows:

Sn (ω) = 2

∫ +∞

−∞
Rn (|τ |) e−iωτdτ

=
1

2
e−Rδφ(0)

∫ +∞

−∞

[
ei(2πνc−ω)τ+Rδφ(|τ |) + e−i(2πνc+ω)τ+Rδφ(|τ |)] dτ

= e−Rδφ(0)*
∫ +∞

0

[
ei(2πνc−ω)τ+Rδφ(τ) + e−i(2πνc+ω)τ+Rδφ(τ)

]
dτ
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Figure 9: The lineshape due to fluctuations of the phase, as deduced from the data on δφ, plotted
as a function of the difference f − νc from the νc = 60Hz reference frequency; notice also the scale
of the abscissa in mHz.

which can be written in the form

Sn (ω) = Ln (ω − 2πνc) + Ln (ω + 2πνc) (22)

where we have introduced the lineshape

Ln (∆ω) ≡ *
∫ ∞

0

ei∆ωτeRδφ(τ)−Rδφ(0)dτ. (23)

This formula merely indicates that a knowledge of Rδφ (τ) for large τ , or equivalently of

Sδφ (∆ω) for small ∆ω, allows to determine the lineshape for small ∆ω: the result is shown

in Fig. 9

A sideband structure, due to the periodicities in the δφ data, is evident, along with a

continuum structure which reminds of the random walk performed by the frequency during

the “free fall” intervals between inversions.

All this is interesting but does not tell us much about possible wideband effects1of these

line fluctuations. In order to say more about them, we need to make an ansatz on the phase

(and frequency) fluctuations over shorter time scales.

1 Namely, outside the 0.25mHz band we are restricted to by the sampling frequency of the δφ data.
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IV. MODEL FOR THE PHASE NOISE

As a first step, a simple matlab model was built that implements the control laws outlined

in Section I. A schematic block diagram for the simulink model is shown in Fig. 10 and

the resultant cross-spectrum showing structure on the flanks fo the mains line is also shown

in the figure.

We consider the stochastic processes φ1,2

2π to be biased random walks, each of them with

the constraint that the average speed over time interval T

ν (t) ≡ φ (t + T )− φ (t)

2πT
∈ νc

[
1− ∆tmax

T
, 1 +

∆tmax

T

]
(24)

is limited to a range around νc, whose width is proportional to 2∆tmax
T ; and with the constraint

on the instantaneous speed

ν (t) ∈ νc

[
1− ∆νmax

νc
, 1 +

∆νmax

νc

]
(25)

to lie in the interval specified in Eq. (4).

It is advantageous to change variables in order to have zero-mean: let

ωc ≡ 2πνc (26)

and

ψ (t) ≡ φ (t)− ωct (27)

the constraints for ψi would correspondingly become

|ψ (t + T )− ψ (t)| ≤ ∆φmax ∀t, T (28a)∣∣∣∣dψ (t)

dt

∣∣∣∣ ≤ 2π∆νmax ∀t. (28b)

It is important to notice that the constraint on the phase, Eq. 28a can also be rewritten

as

|ψ (t1)− ψ (t2)| ≤ ∆φmax ∀t1, t2 (29)

which seems obvious but is illuminating, because it is equivalent to say, setting t2 = 0, that

|ψ (t)| ≤ ∆φmax

2
∀t. (30)
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Figure 10: Schematic of a Matlab model that implements the control laws used the the U.S. grid
authority which were discussed in Section I. The frequency correction can give rise to sideband
structure of the power main 60 Hz line.
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It should be clear that several different models for ψi can be compatible with the con-

straints in Eq. (28): the detailed form shall depend on the control strategy adopted by the

power plants. In particular, it appears that most control systems are implemented with a

“dead band”: no control strategy is applied until the limits are reached. This suggests that

the time evolution of the frequency is dominated indeed by a random walk, driven by the

stochastic variation of the load on the grid.

A. Simplified model for the power generation

A very simple model for the time evolution of the frequency ν (we shall drop the suffix

specifying the power grid) can be represented by a time varying viscosity, balanced in the

average by the power of the generators in order to keep the frequency at νc: the differential

equation for ν (t) is therefore

ν̇ (t) + βL (t) ν (t) = βG (t) νc (31)

where βL (t) represents the load on the grid, while βG (t) νc represents the “force” applied

by the generators: if βG (t) = βL (t) this equation has the solution ν (t) = νc.

The detailed dependence of βG on time depends on the control strategy: if the power

plants adopt a “dead band” control strategy, its value shall be constant until the constraints

are reached; in this case we can assume that during the “free fall” interval βG = E [βL (t)],

in other words that the power applied matches the average load.

In general we split

βL (t) = βG (t) + δβ (t) (32)

into a compoment βG (t)which exhibits only slow variations in time, as appropriate to a

control band resticted to the low frequency portion of the spectrum, and a stochastic process

δβ that displays also rapid variations, and whose spectrum is therefore uniform.

Correspondingly, we can assume that ν (t) = νc + δν (t); substituting into Eq. (31) and

dropping terms quadratic in the deviations from the average, we obtain

δν̇ (t) + βG (t) δν (t) + δβ (t) νc = 0 (33)

a equation which can be directly integrated. Referring to initial conditions at epoch t0 we

obtain

δν (t) = δν (t0)− νce
− ∫ t

t0
βG(τ)dτ

∫ t

t0

e
∫ τ

t0
βG(τ ′)dτ ′δγ (τ) dτ ; (34)
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without loss of generality we shall set from now on δν (t0) = 0. The spectral content of the

stochastic process δν depends on the detailed form of βG (t) and on the spectrum of the

process δγ. For the latter, we can assume that it is gaussian: therefore it can be expressed

as a Riemann-Stiltjes integral

δβ (t) =

∫ +∞

−∞
eiωt dβ̃ (ω)

2π
(35)

and the random increments dβ̃ (ω) are uncorrelated

E

[
dβ̃ (ω)

2π

dβ̃∗ (ω′)
2π

]
= δ (ω − ω′) Sβ (ω)

dω

2π
; (36)

the symbol E [. . .] denotes the operation of ensemble averaging and Sβ (ω) is two sided

spectrum of the process δβ.

For simplicity we shall however assume that Sβ (ω) is white and therefore the variables

δβ (t), which are the instantaneous variation of the grid load, are δ-correlated

E [δβ (t) δβ (t′)] = σ2
βδ (t− t′) (37)

while

E [δν (t) δν (t′)] = σ2
βν2

c

∫ min(t,t′)

t0

e−
∫ t

τ βG(τ ′)dτ ′−∫ t′
τ βG(τ ′)dτ ′dτ (38)

which in general may not depend only on the difference t− t′.

B. Constant average load case

We should now specify a form for the slow evolution of the load on the grid, βG: if we

can assume βG (t) = β̄G constant, then our problem reduces itself to the classical Orstein-

Uhlenbeck process[2, pag. 349] with the equation of motion

δν̇ (t) + β̄Gδν (t) = −δβ (t) νc (39)

and we have simply

δν (t) = −νc

∫ t

t0

e−β̄G(t−τ)δβ (τ) dτ ; (40)

consequently

E [δν (t) δν (t′)] =
σ2

βν2
c

2β̄G

(
e−β̄G|t−t′| − e−β̄G(t+t′−2t0)

)
(41)
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and choosing t0 - t, t′ we can neglect the second term: it results an exponential correlation

E [δν (t) δν (t′)] ≈ σ2
νe

− |t−t′|
τν , (42)

where we set σ2
ν ≡ σ2

βν2
c

2β̄G
, τν =

(
β̄G

)−1
; the correlation depends only on the difference of

times, hence δν is a wide-sense stationary process, and

Sν (ω) =
2σ2

ντν

1 + (ωτν)
2 (43)

is the expression of the two-sided spectrum of ν, which is lorenzian.

C. A more refined control model

The control model considered above reacts to the instantaneous deviations δν from the

reference frequency νc: a more realistic model would be one in which the control reacts on

the average variations of the frequency over a time scale TC . A simple modification of the

model in Eq. (33) which implements this control law is

δν̇ (t) +
β̄

Tc

∫ t

t−Tc

δν (τ) dτ + δβ (t) νc = 0 (44)

which leads to the relation

dν̃ (ω)

2π
=

νc

iω + 2β̄
ωTc

e−iωTc/2 sin
(

ωTc
2

) dβ̃ (ω)

2π
(45)

between the uncorrelated increments in the spectral representation of the random processes

δν, δβ. It follows the relation among the spectra

Sν (ω) =
ν2

c

ω2 + 4β̄
Tc

(
β̄

ω2Tc
− 1

) [
sin

(
ωTc
2

)]2
Sβ (ω) ; (46)

for small Tc one obtains

Sν (ω) ≈
 ν2

c

ω4T 2
c

(
Tcβ̄
12 + T 2

c β̄2

360

)
+ ω2

(
1− Tcβ̄ − T 2

c β̄2

12

)
+ β̄2

Sβ (ω) . (47)

Up to T 2
c order the form of the gain (the expression in square parentheses) is lorenzian as

in the previous case, leading to a exponential correlation with a modified time constant

τν =

√
1− Tcβ̄ − T 2

c β̄2

12

β̄
. (48)
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If we instead retain up to T 4
c order, the functional form of the gain changes, and for Tcβ̄ ≥ 1

it leads to a oscillating correlation function.

Given a expression for the spectrum

P (δν) ∝ exp

[
−1

2

∫ +∞

−∞

|δν̃ (ω)|2
Sν (ω)

dω

2π

]
(49)

is the explicit expression for the probability distribution of the process δν.

D. The phase as a non-stationary random process

The reduced phase ψ referred to epoch t0 is by definition given by

ψ (t) = 2π

∫ t

t0

δν (τ) dτ + ψ (t0) (50)

where also ψ (t0) is in general a random variable. The process ψ is random with stationary

increments[5, 6]: the statistical properties of this class of stochastic processes are completely

determined by the structure function2

cψ (t, u) ≡ E
[
(ψ (t)− ψ (u))2] ; (51)

for instance, if one is interested in the correlation of increments referred to the same origin

u, it is easily seen that

E [(ψ (t)− ψ (u)) (ψ (t′)− ψ (u))] =
1

2
[cψ (t, u) + cψ (t′, u)− cψ (t, t′)] (52)

a identity independent on the explicit expression of ψ. In our case, we know the statistics

of the process δν, and it is immediate to compute the structure function:

cψ (t, u) = (2π)2
∫ t

u

dτ

∫ t

u

dτ ′E [δν (τ) δν (τ ′)]

= (2π)2
∫ t−u

0

dτ

∫ t−u

0

dτ ′ρν (τ − τ ′)

= (2π)2
∫ t−u

−(t−u)

(t− u− |τ |) ρν (τ) dτ

2 In the specialized literature the structure functions are usually expressed with a D symbol, which we
prefer to reserve for the diffusion constant. Notice also that for complex processes ξ it is instead necessary
to consider the more general expression

cξ (t;u, v) ≡ E
[
(ξ (u)− ξ (t)) (ξ (v)− ξ (t))∗

]
which depends on three variables.
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which depends only on the difference t− u, and shall be called cψ (t− u) from now on. The

linear growth of the variance

E
[
(ψ (t)− ψ (t0))

2] = (2π)2 (t− t0)

∫ t−t0

−(t−t0)

(
1− |τ ′|

t− t0

)
ρν (τ ′) dτ ′ (53)

with the distance t− t0 from the origin exposes the non-stationarity of the ψ process, which

behaves like a diffusion. When in particular ρν is exponential we obtain

cψ (T ) = (2π)2 σ2
ν

∫ T

−T

(T − |τ |) σ2
νe

− |τ |
τν dτ

= αν

[
T

τν
−

(
1− e−

T
τν

)]
(54)

where we have introduced the adimensional constant

αν ≡ 2 (2π)2 σ2
ντ

2
ν . (55)

If T 0 τν we can neglect the exponential term, obtaining

cψ (T ) = E
[
(ψ (t + T )− ψ (t))2] ≈ αν

T

τν
≡ 2D2

ψT (56)

where we have introduced

Dψ = (2π) σν
√

τν (57)

for large T the process ψ behaves as a diffusion with diffusion constant Dψ: but T must be

very large, because we shall see immediately that τν is in our case not small.

Another interesting quantity is the variance of the process ψ (t) itself

σ2
ψ (t) ≡ E

[
(ψ (t))2] (58)

and we expect it to be a growing function of time. We are interested in computing the

difference σ2
ψ (t)− σ2

ψ (t0): notice the identity

E
[
(ψ (t))2] = E

[
((ψ (t)− ψ (t0)) + ψ (t0))

2]
= cψ (t− t0) + 2E [(ψ (t)− ψ (t0) ψ (t0))] + E

[
(ψ (t0))

2] (59)

and we observe also that

2E [(ψ (t)− ψ (t0)) ψ (t0)] = 2E [(ψ (t)− ψ (t0)) (ψ (t0)− ψ (t0 − T ) + ψ (t0 − T ))]

= − [cψ (t− t0) + cψ (T )− cψ (t− t0 + T )]

+2E

[(∫ t

t0

δν (τ) dτ

)
ψ (t0 − T )

]
; (60)
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if the process δν (t) has a finite memory (in our case, O (τν)) we can assume that the last

term is zero for T large enough. Hence we have

σ2
ψ (t)− σ2

ψ (t0) = lim
T→∞

[cψ (t− t0 + T )− cψ (T )]

= αν
t− t0

τν
(61)

which exposes perhaps more clearly that the process behaves as a diffusion.

E. Imposing the constraints of the grid on the model

We are now in position to impose the constraints on the instantaneous and average

frequency, at least approximately. We recall that in Eqs. (28) we had set limits on |δν (t)|
and on 1

T |ψ (t + T )− ψ (t)|; we trade these hard limits with soft limits on the variance,

corrected by appropriate factors to partially account for substituting averages over a interval

with Gaussian averages

E
[
(δν (t))2] = σ2

ν ≤
1

3
×∆ν2

max = 133.3× 10−6 Hz2 (62a)

E

[(
ψ

(
t +

1

2
T1d

)
− ψ (t)

)2
]

= (2π)2 2σ2
ντν

(
1

2
86400− τν − e−

86400
2τν

)
≤ 1

3
×∆φ2

max Hz2(62b)

where we have assumed the phase average is taken over half a day; taking the inequalities

as equalities we obtain

σν ≈ 11.5× 10−3Hz (63a)

τν ≈ (420, 17500) sec . (63b)

where the two values for τν refer respectively to the Western and Eastern grid. Consequently

the estimate of the diffusion constant for the process ψis

Dψ ≈ (1.5, 9.6)
√

Hz; (64)

however T must be much larger then τν in order for the approximation in Eq. (56) to be

valid, particularly for the Eastern grid where τν is rather large. The conditions that we have

imposed should be interpreted as characteristics of the random processes which ensure that

the frequency error does not exceed significantly the 20mHz limit in Eq. (28b), and that the

120 cycles constraint on the phase in Eq. (28a) is exceeded twice a day.
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The conditions in Eqs. (62) are sufficient to specify the characteristics of the diffusion

process, but do not implement the control strategy which is known to operate twice a day

in order to constrain the phase error ψ (t).

It is useful to introduce the transition probability P (ψ, t|ψ0, t0) of observing a value ψ

at time t, given that it was ψ0 at time t0: we know that ψ − ψ0 is a Gaussian variable, and

from the results of the previous sections we deduce that

P (ψ, t|ψ0, t0) =
1√

(2π) cψ (t− t0)
e
− 1

2
(ψ−ψ0)2

cψ(t−t0) (65)

where the variance is expressed by the structure function cψ (τ). It is immediate to show

that the process ψ is not Markovian, because

P (ψ, t|ψ0, t0) 2=
∫ +∞

−∞
P (ψ t|ψ1, t1) P (ψ1, t|ψ0, t0)

as a consequence of

cψ (t− t0) 2= cψ (t− t1) + cψ (t1 − t0) . (66)

The transition probability is the solution of the Fokker-Planck diffusion equation

∂P

∂t
− 1

2
c′ψ (t− t0)

∂2P

∂ψ2
= 0 (67)

with the boundary condition P (ψ, t|ψ0, t) = δ (ψ − ψ0). We implement the con-

trol strategy by imposing that no probability current flows outside of the interval

[ψ0 −∆φmax, ψ0 + ∆φmax]: we ask therefore that

∂P (ψ t|ψ0, t0)

∂ψ
|ψ=ψ0±∆φmax = 0 (68)

and we solve the equation expanding in Fourier series

P (ψ, t|ψ0, t0) =
∞∑

k=0

P̃k (t− t0) cos

(
πk (ψ − ψ0)

∆φmax

)
(69)

obtaining
∂P̃k

∂t
+

1

2
c′ψ (t− t0)

(
πk

∆φmax

)2

P̃k = 0, (70)

hence the solution normalized on the [ψ0 −∆φmax, ψ0 + ∆φmax] interval is

P (ψ, t|ψ0, t0) =
1

2∆φmax

∞∑
k=−∞

e−
1
2 cψ(t−t0)( πk

∆φmax )
2
+iπk

(ψ−ψ0)
∆φmax ; (71)
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Figure 11: The comparison between the exact form of the structure function E
[
(ψ (t)− ψ (t0)2

]
for the process ψ and the approximation cψ (t− t0) . The plot at left is obtained with the values
appropriate for the Western grid, while the plot at right is appropriate for the Eastern grid

it should be clear that for cψ (t− t0) - ∆φmax the sum can be replaced by a integral and

converges to the expression in Eq. 65.

For arbitrary times one has that the variance is

E
[
(ψ (t)− ψ0 (t0))

2] =

∫ +∆φmax

−∆φmax

(ψ)2 P (ψ, t− t0)dψ (72)

=
∆φ2

max

3

[
1 +

12

π2

∞∑
k=1

(−1)k

k2
e−

1
2 cψ(t−t0)( πk

∆φmax )
2

]
;

for t = t0 one has cψ (0) = 0 and the variance is zero as expected. For large t − t0 instead

cψ →∞, and the series goes to zero, hence

lim
t−t0→∞E

[
(ψ (t)− ψ (t0))

2] =
∆φ2

3
(73)

while for small t− t0 converges to cψ (t− t0).

We were unable to find a closed form for the variance (the structure function)

E [(ψ (t)− ψ (t0)2] for intermediate values of t − t0, and we display in Fig. 11 the com-

parison of the exact result and the approximation cψ (t− t0): beyond a certain value of

t− t0 the exact solution starts to deviate from the approximation cψ and approaches asymp-

totically the value ∆φ2
max
3 . The approximation is rather accurate up to t − t0 ∼ 2 ÷ 3 × 104

respectively for the Western and the Eastern grid.

F. Exponentials of the phase

Let us consider now the quantity

x (t) ≡ cos (φ (t)) = cos (ωct + ψ (t)) (74)
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which represent a model of the phase noise contribution to detector noise. It is convenient

to rewrite x as

x (t) =
1

2
[z (t) + z∗ (t)] (75)

in terms of the complex process

z (t) ≡ ei[ωct+ψ(t)]. (76)

We recall the useful identity

E
[
eαξ

]
= eαE[ξ]+ 1

2α2E[(ξ−E[ξ])2] (77)

valid for a gaussian variable ξ: applying to the case at hand, we obtain that

E [z (t)] = eiωct− 1
2σ2

ψ(t) (78)

and therefore

E [x (t)] = cos (ωct) e−
1
2σ2

ψ(t); (79)

the process x (t) is not stationary, although we can expect that the exponential is small for

t large with respect to some epoch when the process has started. We are then interested in

the covariance

Cxx (t + τ, t) ≡ E [(x (t)− E [x (t)]) (x (t + τ)− E [x (t + τ)])] ; (80)

it can be rewritten[2, pag. 369] in terms of the covariances of the variables z, z∗ as follows

Cxx (t + τ, t) =
1

2
* (Czz∗ (t + τ, t) + Czz (t + τ, t)) . (81)

We obtain

Czz∗ (t + τ, t) = E [z (t + τ) z∗ (t)]− E [z (t + τ)] E [z∗ (t)]

= eiωcτ
{

E
[
ei[ψ(t+τ)−ψ(t)]

]− e−
1
2E[ψ2(t+τ)+ψ2(t)]

}
= eiωcτ

{
e−

1
2 cψ(τ) − e−

1
2 [σ2

ψ(t+τ)+σ2
ψ(t)]

}
(82)

and

Czz (t + τ, t) = E [z (t + τ) z (t)]− E [z (t + τ)] E [z (t)]

= eiωc(2t+τ)
{

E
[
ei[ψ(t+τ)+ψ(t)]

]− e−
1
2E[ψ2(t+τ)+ψ2(t)]

}
= eiωc(2t+τ)− 1

2 [σ2
ψ(t+τ)+σ2

ψ(t)] {e−E[ψ(t+τ)ψ(t)] − 1
}

(83)

= eiωc(2t+τ)− 1
2 [σ2

ψ(t+τ)+σ2
ψ(t)]

{
e
−σ2

ψ(t)−(2π)2σ2
ντ2

ν

(
1−e

− τ
τν

)
− 1

}
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the result for Cxx is complicated, unless we can assume that σ2
ψ (t) , σ2

ψ (t + τ) are large. In

that case we have simply

Cxx (t + τ t) ≈ 1

2
cos (ωcτ) e−

1
2 cψ(τ) (84)

and the process can be considered stationary. In this limit there is no difference between

covariance and correlation (the expectation values E [x (t)] are zero in the large σ2
ψ limit)

and we can simply write

Rxx (τ) =
1

2
cos [2πνcτ ] e

−(2π)2σ2
ντν |τ |

[
1− τν

|τ |

(
1−e

− |τ |
τν

)]
.

Given the correlation function, it is possible to compute the spectrum

Sxx (ω) =

∫ +∞

−∞
Rxx (τ) e−iωτdτ

= 2

∫ +∞

0

Rxx (τ) cos (ωτ) dτ (85)

in closed form, obtaining

Sx (ω) =
τν

2
eαν* [

α−i(ω−ωc)τν−αν
ν γ (αν + i (ω − ωc) τν , αν)

]
+ ωc → (−ωc) (86)

where γ is one of the two incomplete gamma functions [4, Eq. 8.350.1], defined as

γ (a, x) =

∫ x

0

e−tta−1dt (87a)

Γ (a, x) =

∫ ∞

x

e−tta−1dt . (87b)

Substituting the values for σν and τν estimated in IV E, Eqs. 63, we obtain rather large

values

αν ≈
(
920, 1.6× 106

)
(88)

respectively for the Western and Eastern grid, because of the quadratic dependence on τν

which in turn is quadratic in ∆φmax.

We display in Fig. 12 the spectrum for values ω ∼ ωc, obtained with the parameters

αν , τνpertinent to the two electrical grids, and we draw the attention of the reader on the

long tails, almost lorenzian-like. This estimate is expected to be inaccurate for small values

of ω − ωc, corresponding to large values of τ , when the approximate form cψ (τ) for the

structure function is known to deviate from the correct one. We estimate from Fig. 11 that
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Figure 12: The line-shape at ω ∼ ωc computed with the values of αν and τν corresponding to the
Western and Eastern grids. Corrections are expected for ω − ωc ≤ 1

τν∆φmax
= (x, y)

the deviations occur at values τ ≥ 2÷3×104 respectively for the Western and Eastern grid,

and correspondingly we surmise that the line-shape is not accurate for (ν − νc) ≤ 50÷33 µHz.

We notice for completeness that if it were αν - 1, one might exploit the continued

fraction expansion [7]

γ (a, x) =
e−xxa

a− ax

a+x+1− (a+1)x

a+x+2− (a+2)x
a+x+3−...

(89)

obtaining at second order

Sx (ω) ≈ αντν

2

[
(1 + αν) (1 + 2αν)(

(ω − ωc)
2 τ 2

ν + α2
ν

) (
(ω − ωc)

2 τ 2
ν + (αν + 1)2) + (ωc → −ωc)

]
; (90)

this approximation is reasonably good for values of αν up to ∼ 1, but cannot be adopted for

the large values appropriate in our case. At first order one would obtain a lorenzian curve.

G. Cross correlation among detectors

We are now interested in the cross-correlation of variables x1, x2

xl (t) = cos (φl (t)) = cos (ωct + ψl (t)) (91)

where the random phases φ1, φ2 are driven by frequencies ν1, ν2

νl (t) = νc + δνl (t) . (92)
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both fluctuating around νc, and without loss of generality we have assumed that for both

processes

E [φl (t)] = ωct; (93)

one might want to introduce a constant phase difference, but it would only complicate the

treatment. We assume to be able to measure the auto-correlations

ρll (τ) = E [δνl (t + τ) δνl (t)] (94)

and the cross-correlation

ρ12 ≡ E [δν1 (t + τ) δν2 (t)] . (95)

The distribution of the random variables δν1, δν2 shall be assumed Gaussian, hence in

analogy with Eq. (43) we obtain

P (δν1, δν2) ∝ exp

−1

2

∫ +∞

−∞
(δν̃1 (ω) , δν̃2 (ω))∗ [S (ω)]−1

 δν̃1 (ω)

δν̃2 (ω)

 dω

2π

 (96a)

S (ω) ≡
 Sν1ν1 (ω) Sν1ν2 (ω)

S∗
ν1ν2

(ω) Sν2ν2 (ω)

 (96b)

where the relations

Sνkνl
(ω) =

∫ +∞

−∞
ρkl (τ) e−iωτdτ (97)

hold.

We can assume again an exponential form for the autocorrelations

ρll (τ) = σ2
νl
e
− |τ |

τll (98)

but we have no model for the cross correlation ρ12(τ), which might also be identically zero

if the two power grids are totally unrelated. From the identity

ρ11 (0) + ρ22 (0)− 2ρ12 (τ) = E
[
(δν1 (t + τ)− δν2 (t))2] (99)

one can deduce the inequality

ρ12 (τ) ≤ 1

2
(ρ11 (0) + ρ22 (0)) (100)

which is not very stringent. We are interested in both the cross-correlation

Rx1x2 (t + τ, t) ≡ E [x1 (t + τ) x2 (t)] (101)
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and the cross-covariance

Cx1x2 (t + τ, t) ≡ E [(x1 (t + τ)− E [x1 (t + τ)]) (x2 (t)− E [x2 (t)])]

= E [x1 (t + τ) x2 (t)]− E [x1 (t + τ)] E [x2 (t)] . (102)

Again we introduce the complex quantities

zk (t) = eiωcteiψk(t) (103)

which enable us to write the cross correlation as

Cx1x2 (t + τ, t) =
1

2
* [

Cz1z∗2 (t + τ, t) + Cz1z2 (t + τ, t)
]
. (104)

Following the discussion made in the single detector case we might be tempted to neglect

the expectation values

E [zk (t)] = eiωcte−
1
2σ2

ψk
(t) (105)

and surmise that Cx1x2 ∼ Rx1x2 : let us resist, proceeding to calculate each of the terms. We

have that

Cz1z∗2 (t + τ, t) = Rz1z∗2 (t + τ, t)− eiωcτe−
1
2 [σ2

ψ1
(t+τ)+σ2

ψ2
(t)] (106)

and in turn

Rz1z∗2 (t, t + τ) ≡ E [z1 (t + τ) z∗2 (t)]

= eiωcτE
[
ei(ψ1(t+τ)−ψ2(t))

]
(107)

= eiωcτe−
1
2E[(ψ1(t+τ)−ψ2(t))2]

hence

Cz1z∗2 (t + τ, t) = eiωcτe−
1
2 [σ2

ψ1
(t+τ)+σ2

ψ2
(t)] {eE[ψ1(t+τ)ψ2(t)] − 1

}
(108)

and analogously

Cz1z2 (t + τ, t) = eiωc(2t+τ)e−
1
2 [σ2

ψ1
(t+τ)+σ2

ψ2
(t)] {e−E[ψ1(t+τ)ψ2(t)] − 1

}
. (109)

The above expressions show that we cannot let σ2
ψl
→ 0, because we would cancel any effect.

We notice that if E [ψ1 (t + τ) ψ2 (t)] = 0, that is if the processes ψ1,2are uncorrelated, the

cross-covariance Cx1x2 results identically zero, while the cross-correlation is

Rx1x2 (t + τ, t) = cos (ωc (t + τ)) cos (ωct) e−
1
2 [σ2

ψ1
(t+τ)+σ2

ψ2
(t)]. (110)

26



At the other extremum, if the two processes were perfectly correlated or anti-correlated, for

instance

ψ1 (t) = ψ2 (t) or ψ1 (t) = −ψ2 (t) , (111)

one would have a not zero result, exactly equal to the one considered in the single detector

case, dominated respectively by Cz1z∗2 or Cz1z2 .

The general case lies in between: recall that we have proven in Eq. (61) that the variances

σ2
ψl

(t) are not-decreasing functions of t: this means that proceeding backwards in time there

exist a time t0 at which the variance of one of the processes was zero. We shall therefore

make the ansatz that a epoch t0 exists at which both the variances can be assumed zero and

that ψ1 (t0) , ψ2 (t0) can be assumed to be zero. We shall discuss later what is the dependence

of the results on the value of t0, whose statistics is not known to us: for simplicity we shall

set t0 = 0, but keeping in mind that we have assumed a special role for that epoch: in

particular this choice means that

σ2
ψi

(t) = αi

(
t

τi

)
(112)

where

αi ≡ 2 (2πσνiτνi)
2 . (113)

Averaging the cross correlation of the ψ1, ψ2 processes over the frequency noise, we obtain

Eδν [ψ1 (t + τ) ψ2 (t)] = E [(ψ1 (t + τ)− ψ1 (0)) (ψ2 (t)− ψ2 (0))]

= (2π)2
∫ t+τ

0

dτ1

∫ t

0

dτ2Eδν [δν1 (t + τ) δν2 (t)]

= (2π)2
∫ t+τ

0

dτ1

∫ t

0

ρν1ν2 (τ) (114)

= (2π)2
∫ +∞

−∞

dω

2π

1

ω2

[
1 + eiωτ − e−iωt − e−iω(t+τ)

]
Sν1ν2 (ω) ;

next we assume that ρν1ν2 is even in τ , and therefore Sν1ν2 is real, hence

Eδν [ψ1 (t + τ) ψ2 (t)] = (2π)2
∫ +∞

−∞

dω

2π

2

ω2

[
sin2

(
ωt

2

)
+ sin2

(
ω (t + τ)

2

)
− sin2

(ωτ

2

)]
Sν1ν2 (ω) .

(115)

Finally if we assume an exponential correlation

ρ12 (τ) = σ2
12e

− |τ |
τ12 (116)
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where σ2
12 can be negative. We obtain the lorenzian cross-spectrum

Sν1ν2 (ω) =
2σ2

12τ12

1 + (ωτ12)
2 (117)

and

E [ψ1 (t + τ) ψ2 (t)] =
1

2
α12

[
|t + τ |+ |t|− 2 |τ |

τ12

+
(
e−

|t+τ |
τ12 + e−

|t|
τ12 − e−

|τ |
τ12 − 1

)]
. (118)

where

α12 ≡ 2 (2π)2 σ2
12τ

2
12. (119)

Assembling the results we have

Rx1x2 (t + τ t) =
1

2
cos (ωc (2t + τ)) e

− 1
2

(
α1

t+τ
τ1

+α2
t

τ2

)
−E[ψ1(t+τ)ψ2(t)]

+
1

2
cos (ωct) e

− 1
2

(
α1

t+τ
τ1

+α2
t

τ2

)
+E[ψ1(t+τ)ψ2(t)]

(120)

where we understand that the expression is valid only for both t + τ > 0 and t > 0, because

of the special meaning of the t = 0 epoch. The explicit dependence on t means that it

is strictly speaking not possible to define the spectrum. We can define a time-dependent

approximate cross-spectrum

S12 (ω, t) =

∫ +T

−T

Rx1x2 (t + τ, t) dτ (121)

where we should limit T ≤ t.

V. SUMMARY

The observed long-term correlations in the mains are consistent with what we have learned

on how frequency stabilization is imposed on the U.S. power grid by the authorities of the

two regions. The common use of GPS guarantees that some level of coherence will be present.

The single-sided power spectral density will exhibit sideband structure up to a scale of m̃Hz.

The data we obtained are for the Western U.S. region only and so at this point it is not

possible to determine the cross-correlation function ρ12(τ). This is a work in progress and

as more information becomes available, this document will be updated.
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Appendix A: REFERENCE FORMULAS

We list here our conventions for the Fourier transforms and some other useful identities

1. Fourier transform conventions

We follow the conventions adopted in [2, 3]. If x ↔ x̃ are a Fourier transform pair, and

i is the imaginary unit, we have

x (t) =

∫ +∞

−∞
eiωtx̃ (ω)

dω

2π
(A1a)

x̃ (ω) =

∫ +∞

−∞
e−iωτx (τ) dτ (A1b)

which correspond, in the discrete time, discrete frequency case, to

x [l] =
1

dtN

N−1∑
k=0

ei2πkl/N x̃ [k] (A2a)

x̃ (ω) = dt
N−1∑
l=0

e−i2πkl/Nx [l] (A2b)

where dt is the sampling interval (1/ (2 dt) is the Nyquist frequency) and N is the number

of samples, corresponding to a observation time T = N dt.

2. Useful identities

Recall that if the distribution of x is

P (x) = N e−
1
2

∫ ∫ dx̃(ω)
2π

2πδ(ω−ω′)
Sx(ω)

dx̃∗(ω′)
2π (A3)

the functional integral ∫
D (dx̃) P (x) eip

∫
eiωtdx̃(ω) (A4)

is a usual Gaussian integral and we obtain

E
[
eipx(t)

]
= e−

1
2p2

∫
Sx(ω) dω

2π (A5)

which is just a particular case of the general expression

E
[
ei

∫ +∞
−∞ x(τ)s(τ)dτ

]
= e−

1
2

∫ |s̃(ω)|2Sx(ω) dω
2π ; (A6)
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for the generating function of the correlations of the x (t) variables, in terms of the source

s. The last relation is very handy: for instance, setting s (τ) = p δ (τ − t)− p′δ (τ − t′) one

easily obtains

E
[
ei(px(t)−qx(t′))

]
= e

− 1
2

∫ [
(p−q)2+4pq

(
sin

(
ω(t−t′)

2

))2
]
Sx(ω) dω

2π

= e−
1
2 [(p2+q2)Rx(0)−2pqRx(t−t′)] (A7)

in terms of the correlation function Rx (τ) ≡ ∫
Sx (ω) eiωτ dω

2π .
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