LIGO-T010100-00-R

Search for Gravitational Radiation from Known Periodic Sources
in October 1999 40-Meter Data

J Marsano!
and
K Riles

Department of Physics

University of Michigan

500 E University Ave
Ann Arbor, MI 48109-1120

As interferometric detectors become increasingly sensitive over the next few years, it is
likely that they may provide direct evidence of the periodic gravitational radiation believed to
be emitted by asymmetric spinning neutron stars. Such radiation is a likely candidate for early
detection for many reasons, including the relative simplicity of its form and the fact that it does
not originate from a single, isolated cosmic event. Additionally, the parameter space associated
with directed searches for periodic radiation from known pulsars is considerably smaller than
that for more general searches, making the former more accessible given present computing
power.

Despite the belief that detections are not yet possible, it is nonetheless desirable at the
present time to use available data to set appropriate upper limits. The present paper endeavors
to accomplish this by performing an analysis of data obtained from the 40 meter LIGO prototype
interferometer at the California Institute of Technology and subsequently performing a Monte
Carlo study to determine its effectiveness. The analysis presented here consists of two primary
stages, a preprocessing stage in which environmental correlations are estimated and removed
in order to increase the signal-to-noise ratio, and a search stage consisting of an algorithmic
procedure for detecting evidence of periodic gravitational wave signals due to fixed pulsars
within the Differential Mode Readout (DMRO) channel. The details of each stage are discussed
below in sections 1 and 2. It is hoped that, within the next few years, this analysis may be
applied to data taken from the larger LIGO interferometers, at which point the likelihood of
actual signal detection will be greater. For this reason, the software written to perform the
analysis presented here has been collected into a cohesive package and made publicly available

[3].

1 Increasing the Signal-to-Noise Ratio

Due to the high sensitivity required to detect gravitational wave signals, it is critical to make
every effort to reduce the signal-to-noise ratio within the DMRO channel. One method of doing
so, due to Allen, et al [1] attempts to use data contained within the environmental monitor
channels to estimate and remove environmental contaminations. A description of this method
is not repeated here, but the assumptions required for the method’s validity are stated for
clarity. There are two such assumptions, namely that all environmental contaminations are
linear in nature and that the linear transfer function connecting the environmental channels
to the DMRO channel are slowly varying over frequency bands of lengths on the order of 1
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Hz2. While these assumptions are not true in general, the first two are valid for smoothly
varying linear contaminations. By contrast, spurious correlations in narrow frequency bands
and nonlinear contaminations are not addressed.

With these assumptions, the frequency-space representation of the linear transfer functions
connecting environmental monitor channels and the DMRO channel are taken to be constant
on small frequency bands. The values of these transfer functions may then be estimated as
those values that minimize the power remaining in the DMRO channel following contamination
removal. In practice, this technique must be altered slightly in order to prevent the removal
of so-called “false correlations.” A thorough analysis of methods by which this may be accom-
plished is contained within the paper of Allen, et al [1], while the precise method utilized in
the present analysis is described in the user’s manual that accompanies the above-mentioned
software package [3].

Though the validity of the above procedure seems plausible, the degree to which the signal-
to-noise ratio is decreased, as well as the impact of the procedure upon the phase of an actual
signal, must be determined through a Monte Carlo analysis. Such an analysis, which studies the
effectiveness of this procedure coupled with the search algorithm described below, is described
in section 3.

2 An Algorithm for Periodic Source Searches

Despite the relatively simple form of a periodic gravitational wave in the source’s frame of
reference, it is well-known that the response of an interferometer to such a wave is complicated
by the relative motion of the earth and source. In particular, one must cope not only with the
familiar Doppler modulation of frequency, but also with modulation of the detector’s sensitivity
to the wave, and hence apparent amplitude of the detected signal, as its orientation with respect
to the source changes in time. One method of analysis, which takes both of these forms of
modulation into account, is presented here?.

2.1 Accounting for Frequency Modulation

The most natural setting for an algorithm designed to search for periodic signals is Fourier space,
and hence the Discrete Fourier Transform, or DFT, plays a critical role in the following analysis.
If it is suitable to assume that both forms of modulation discussed above are sufficiently slow
that there exist time intervals over which the amplitude and frequency of a detected signal are
nearly constant, a time-frequency analysis is permitted. In particular, the period of time from
which data has been taken may be broken into intervals of the appropriate size and individually
DFT’ed. From this sequence of DFT’s, a time series may be constructed by taking a single
coefficient, corresponding to the bin in which the signal frequency is expected to be found (this
is hereafter referred to as the “signal bin”), from each DFT. Such a time series, referred to as the
“signal series,” would essentially demonstrate the time evolution of the signal and any spurious
noise contributions of similar frequencies. Similar time series’, termed “neighboring series’,”
may also be constructed by taking DFT coefficients whose bin indices differ from those of the
signal bins by a fixed amount. At this point, one method of approach would be to compare the
mean power of the signal series to the rms of the mean powers of neighboring series’. While this
would succeed in detecting a relatively strong frequency-modulated signal, this method fails to
account for amplitude modulation and, additionally, discards the phase information encoded
within the DFT. Thus, a few modifications need to be made.

2 Actually, the length of the frequency bands over which this assumption is made is a parameter of the method.
In the current paper, however, the assumption was made for bands of length ~ 1 Hz.

3In order to account for frequency and amplitude modulation, the algorithm of the present paper requires a
determination of their forms given a target pulsar in the sky. The Tempo timing code [4] was used to compute
the frequency modulation, while the method of Anderson, et al [2] was used to compute amplitude modulation.



The first modification considered is one which incorporates the DFT coefficient phases into
the previously-described method. Naively, an appropriate approach appears to be a computation
of the normalized vector sum of the DFT coeflicients within the signal and neighboring series’,
rather than a computation of the mean power. In this manner, non-alignment of the coefficients
gives rise to cancellation that decreases the noise level. In order to utilize such a method,
though, the DFT coefficients due to the signal must align exactly. Unfortunately, this does
not occur automatically, as coeflicients from successive DFT’s are phase shifted relative to one
another due to the fact that they are computed with respect to different reference, or “starting”,
times. These phase shifts may be computed, though, and compensated in order to assure signal
coefficient alignment. To do this, the DFT of an artifically constructed pure signal of unit
amplitude displaying the expected frequency modulation* is computed. ®. Within a given time
interval, the magnitude, R, of the articifical signal DFT and the phase shift, ¥, relative to
the first interval are determined. Once this is accomplished, the entire DMRO channel DFT
within the current interval is rescaled through multiplication by e~#¥ /R. The exponential factor
compensates the shift in phase of the signal bin coefficient so that the signal bin coefficients
align perfectly in the absence of noise. The 1/R factor is a rescaling of the DFT which accounts
for leakage from the signal bin into neighboring bins caused by the discrete nature of the DFT.
Inclusion of this factor ensures that, in the absence of noise, the signal bin magnitude reflects the
magnitude of the input signal. Since it is applied globally, it has no effect on the signal-to-noise
ratio within a given DFT.

Following this rescaling of the DFT, the vector sum procedure described above may be
applied. Components of DFT coefficients due to an astrophysical signal from a specified target
will add constructively while, in general, noise contributions will undergo some cancellations.
This will result in an overall increase of the signal-to-noise ratio, enabling the detection of
increasingly feeble signals.

Before closing this section, it is necessary to briefly discuss a subtle issue regarding the above
procedure. While the artifically generated pure signal used to determine phase shifts resembles
a real signal in many ways, the overrall phases of the two may not agree. This may cause a
problem since the phase of a DFT does not depend linearly on the phase of the original signal.
To see this explicitly, consider a signal of the form z,, = cos(2wfn + ¢) and break it up into
“left-moving” and “right-moving” components:

1 <ei(27rfn+¢) n e—i(27rfn+¢))
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The DFT, Zp, of a left-moving complex wave of the form e

Ip =

2mifn ig given by:

N-1
(1), = 3 @m0
n=0
Though this sum is easily computed, at present we simply write it in the form A,,e*(@m+9)
where A and « are both real.
Similarly, the DFT, Zg, of a right-moving complex wave of the form =274/ is given by:

N-1
(ZR),, = Z et2mn(m=1)) ,—i¢

n=0

4The expected frequency modulation is determined with the TEMPO timing code [4].

50ne might think that since the apparent phase shift caused by a shift in starting times is easy to compute
(being simply wT'), proceeding with a more complicated procedure utilizing the DFT of an artifically constructed
pure signal is not necessary. However, if the pure signal is not used, it is possible that accumulated phase stem-
ming from the frequency modulation within a given interval becomes sufficiently large to destroy the effectiveness
of the subsequent analysis.



We write this sum as B,e’#m~%) with B and § real. With this notation, the DFT of the
signal becomes:

Fm = €0 A e + e 9B, e
From this expression, it is obvious that a shift in ¢ by an amount § does not, in general, shift

the complex phase of the DFT by 6. Rather, the shift in the DFT phase may be determined
to be:

A¢ = § + arctan ( — B’ sin (20) + AB (sin (29 + o — §) —sin (26 + a — f + 29)) )

A? + B2 cos (20) + AB (cos (2¢ + o — ) +cos (2¢ + o — B + 26))

In frequency bins such that m ~ f, A will be much larger than B in general. If we expand
the above result in B/A, we find that the leading behavior of the additional term is B/A, which
is negligible in our current analysis.

2.2 Accounting for Amplitude Modulation

If the interferometer response to an incident gravitational wave signal displayed no amplitude
modulation, then the above procedure could be applied without difficulty. The phase shifts
would ensure that the signal bin DFT coefficients corresponding to the target pulsar add con-
structively while destructive interference decreases the noise in neighboring bins. With the
rescaling, the average of the signal bin would yield a good estimate of the gravitational wave
strength, and the rms in the neighboring bins a good estimate of the associated uncertainty.
Unfortunately, the situation is not this simple, so the above method must be modified even
further. The first step, though, namely the multiplication by e~ /R, remains unchanged. Tt
is merely necessary to replace the process of adding DFT coeflicients from successive intervals
with something more sophisticated that takes amplitude modulation into account.

Consider the vector Z, whose ith component is the DFT coefficient of the signal bin within the
1th time interval. Now, let F+ and F* denote the N-dimensional vectors whose ith components
contain the true sensitivities of the interferometer to a unit plus-polarized gravitational wave
and a unit cross-polarized gravitational wave, respectively, at the median time of the ith time
interval”. Since the sensitivity is assumed to be relatively constant within any given time
interval, a gravitational wave of the form h;é™) + hyei®é™) where hy and hy are real and ¢
denotes the phase difference between the plus and cross polarization components, gives rise to
the DFT coefficient x; = h,JrFiJr + hx F¥e'? | within the ith time interval, following application of
the above procedure®. The reason for this is that the rescaling maintains the amplitudes h, and
hyx, while the phase shifting assures that there is no phase difference between DFT coefficients
from different time intervals, z; and z;. Equivalently, this rescaling and phase shifting assures
that the plus- and cross-polarized components of z; have the same amplitude and phase as the
respective components of ;. This only holds in the ideal case, though, in the absence of noise.
To treat the actual case, let § denote an N-dimensional complex vector whose ith component,
written as g; exp(iy);) with g; and ¢; both real, represents the DFT of the data channel less
that of a pure signal. It is assumed that the noise represented by §, and hence g; and 4;, is
random in nature. Including the effects of this noise, the vector # properly takes the following
form:

6The frequency almost never sits at a bin boundary so A and B are nonvanishing.

"The sensitivities are computed via the method of Anderson, et al [2]

8 Actually, this expression is correct only up to an arbitrary phase, determined by the starting time of the
first interval, which is fixed for all subsequent intervals. Since this constant phase simply multiplies the entire
response vector, it may be ignored.



zj = hy Fb + he Fe' + gje'¥i

To estimate hy given &, ﬁ+, and ﬁ", first look at the weighted sum, .'L'jF;-Jr, where values of
x; originating in time intervals of relatively high sensitivity to plus polarized gravitational waves
are given greater emphasis. The result of this weighted sum is the following, where summation
over repeated indices is implied:

2 Ff = hy (FfF}Y) + he (FYF}T) €' 4 gje™i F}F

The norm of F() is much greater than its projection onto F&) so, provided hy F't is larger
than g;, which is required for a signal detection, z; is dominated by the hy (F;" F}") term. For
this reason, the estimated value of h,, termed hi, is taken to be the magnitude of the complex
number z;F+/|F+|2. In terms of the actual values, this implies that the estimate, (hi)z, is
given by:

. (FxFi 2 g; FF 2 FxE+
(hi)2 = hi-l-hi( i J+)2 (1932 (Fi;+) hyhy cos ¢
Fitg; cos; (FxF})
J 9 J i"i + _
+2 (FI:_FI:_) + (FI:_FI:_)ZFT grcos((f) ¢r)hx

Since ¢; is a random phase and FjJr is a smoothly varying function of time, one might
expect the fluctuations of cos; and cos (¢ — ;) to cause ngj costp; and F.F g, cos (¢ — 1)
to become negligibly small if sufficiently many intervals are considered. One must be careful,
though, because these terms are only first order in the noise factors, g,, while the only other
noise-dependent term is of second order in the g,.. For this reason, all terms are kept to yield a
conservative estimate of the error.

The above expression may be rewritten as follows, where (,) is the standard Euclidean inner
product:

(rL)" = B2+ (g’ﬁ+)2 + h (ﬁx’ﬁ+)2 +2(ﬁx’ﬁ+)h By cos ¢
+ + (ﬁ+’ﬁ+)2 x<ﬁ+’ﬁ+)2 (-o+’}_71.+) +bx
+2@h+ cosyh; +2 (qu’l?)d(ﬁ:’g’ hx cos (¢ — 1;)
(7. 7) (r. )

Thus, in the limit in which many time intervals are considered, the estimated value of (hi)2

differs from the actual A3 by an amount & [(h1)2] , given by the following:

LoN2 oL N\2 Lo
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The terms involving the overlap of F+ and F~ would be zero if the sensitivity functions due
to the two independent polarizations were orthogonal, but this is not the case in general. This
is a manifestation of the fact that while the two independent polarization states are orthogonal
to one another, the components which are detected by the interferometer, which acts as a
polarization filter, generally are not.

It is possible to determine £+ and F* with the algorithm of Anderson, et al [2], while an
estimation of the noise is obtained by performing the same procedure as that applied to the
signal bin, namely phase shifting, rescaling, projecting onto F +, and dividing by the norm
squared of F, on the neighboring frequency bins. Very near the signal bin, the neighboring
bins will contain signal leakage, but if a sufficiently large neighborhood is used, then the rms

N2 e LoN2
value of (;E’, F+) / (F+, F+) within that neighborhood will provide a good estimate for the

gr appearing in & [(h1)2] Unfortunately, the true values of hy and hy, as well as the phase
difference, ¢, between the plus and cross polarized components, are generally unknown. Thus,
the following procedure is used for determining the error in (hi)z. Presumably the hi estimate
will be largely due to the existence of a plus polarized gravitational wave, but in addition it
will be artifically increased by the presence of a cross polarized wave. Similarly, the h2 estimate
will be inflated if a plus polarized component exists. Because of this, the estimated values of

h% and h2 are used in the expression for & [(h1)2] since, being larger than the actual values,

they will produce an overestimate, rather than an underestimate, of the error. In addition, the
trigonometric factors are all set to one to obtain a conservative estimate. Once the expression

for & [(hl)Q] is obtained, standard error propagation techniques are used to estimate dh’,. The

preceding algorithm may also be applied for hx. The resulting expressions for both Ay and hy
are summarized below for clarity:

(7+.4)
ﬁhq_ COS’ij +2 - -
(F+,F+) (F+,F+)




3 Monte Carlo Analysis
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