Optical absorption measurements in sapphire

Alexei Alexandrovski

Martin Fejer

Eric Gustafson

Roger Route

Ginzton Laboratory, Stanford University LIGO-T000143-00-D

Optical absorption measurements in sapphire

OUTLINE

- Background
- Photothermal technique
- As-grown sapphire
- > Annealed sapphire
- ➢ How to go below 40 ppm/cm
- > Prospects

Space resolution

Space resolution: surface-to-surface scan

Photothermal Common-path Interferometer (PCI)

- ac-component of probe distortion is detected by photodiode + lock-in
- absorption coefficient of 10⁻⁷ cm⁻¹ can be detected with a 5 W pump
- crossed beams help to avoid false signals from optics and surfaces of the sample

Data on sapphire crystals (1999)

Crystal	α (pp	m/cm)	Scattering	Fluorescence
	514nm	1064nm		
CS 'White', H ₂ - annealed	605	53	No	≈ 2 x 10 ⁻⁴ F
CS 'White', O ₂ - annealed	600 (bulk, anomaly near the surface)	47 (bulk, anomaly near the surface)	Large near the surface	≈ 2 x 10 ⁻⁴ F (bulk)
Substrate (TRW)	-	66	No	-
'Window' 3mm- thick	1400*	81	No	2 x 10 ⁻³ F, Ti ³⁺
0.1% Ti-doped (reference #2)	0.68/cm (total) 0.145/cm (thermal part)	6400	Yes, macro- defects	F, Ti ³⁺

Relative fluorescence brightness estimated with calibrated neutral filters, Ti-doped reference #2 brightness denoted as F

20 mm-long, H₂-annealed sample

• Reference sample: Ti-doped sapphire with the absorption of 6400 ppm/cm at 1064 nm

20 mm-long, H₂-annealed sample

Absorption at 514 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 1064 nm, scan from surface to surface

Annealed sapphire data

20 mm-long, O₂-annealed sample

Absorption at 1064 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 514 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 514 nm, scan from surface to surface

Model

O₂-annealed sample

Data on CSI sapphire crystals (2000)

Absorption in sapphire cubes for both polarizations, ordinary (o) and extraordinary (e).

Crystal	IR		Green		Fluorescence brightness	
	absorption		absorption,		relative to sapphire window*	
	, ppm/cm		ppm/cm			
	Ο	е	Ο	е	0	е
1T	110-	130-	1500-	9800-	1/10	1/2
	190	230	3000	26000		
1M	95	199	2260	7900	1/40	1/5
1B	93	220	2100	4700	1/80	1/20
2T	67	75	1360	1900	1/5	1
2M	77	92	1150	2200	1/2	2
2B	101	140	1530	2670	1	5
3Т	60	80	820	1300-	1/20	1/5
				1700		
3M	90	150-	1200-	1200- 2500	1/40	1/10
		200	1400	2500	1/40	
3B	60-	130-	900	1500	1/40	1/10
	80	160				
4T	60	70-	900	1800	2	1/2
		90				
4M	130	170-	1600-	1600- 1950 2600	1	1/5
		230	1950			
4B	70-	75-	900-	1800-	1/20	1/2
	120	140	1200	2500	1/20	1/2

*Sapphie window showed brightness of 2 x 10^{-3} relative to 0.1%-doped Ti-sapphire crvstal

Transmission of CSI sapphire in UV-VIS

Fluorescence vs 255 nm absorption band in CSI sapphire

Open circle: hydrogen-annealed cylinder Squares: crystal #1

Fluorescence vs absorption at 1064 nm in CSI sapphire

Correlation of absorption at 255 and 1064 nm

Correlation of absorption at 255 nm and 514 nm

Conclusions

- The best as-grown sapphire shows 40 ppm/cm of absorption at 1064 nm
- O₂-annealed sapphire shows a complex response to oxidation with local decrease of both IR and green absorption
- ✤ Defects responsible for current IR and green absorption levels are yet to be identified. Ti seems now to be an unlikely source of residual IR absorption
- Proper annealing in oxygen may offer means to reach the 10-15 ppm/cm level.
 Further decreases will depend on the ability to identify and eliminate specific defects

