Test Mass Material Considerations

Peter Saulson
Syracuse University/LLO

LIGO-T000141-00-D

Peter F.'s rubric, plus ...

- Current conceptual design
- Major technical challenges
- Fallbacks
- Testing and, in addition,
- advanced options
- biggest worries

Test Mass Material Conceptual Design

- Sapphire c-axis or other?
- Chosen for high Q, as well as desirable thermal properties
- Known from the start to be an "aggressive" design choice

Technical Challenges

(Thermal Noise considerations only)

- Is mat'l Q (structural damping) consistent at 2 to 3 x 10⁸?
- Additional loss mechanisms?
 - Fundamental
 - thermoelastic, e.g.
 - others?
 - "Dirty"
 - impurities

Technical Challenges II

- "Engineering" damping
 - attachments
 - actuators (even electrostatic)
 - recoil
 - COATINGS
- Optimizing in the presence of thermoelastic thermal noise
 - beam radius dependence

Fallbacks

Fused silica

- latest estimate of penalty?
- -Q may be better than 3 x 10^7
- if coatings are lossy enough, there may be no thermal noise advantage to sapphire

Testing Issues

- Measurement of thermal (or excess!) noise
 - TNI (or perhaps other test interferometers)
 - large interferometers (GEO600 or 1 LIGO ??)
- Measurement of Q or f(vs. f, ideally)
 - of materials, parts, and systems
 - domain of small labs
- Other properties
 - thermoelastic effect, e.g.

Advanced options

(Listed here as an antidote to despair)

- Real-time thermal noise monitor
- Cryogenics

My biggest worries

• Mild

- Do we understand thermoelastic damping?
 Probably.
- Manufacturability of low damping substrates

Medium

- Unknown damping mechanisms, noise sources
- Strong
 - COATINGS