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1 The Scope of This Note

This note is intended to explain the physics behind the lock-acquisition code
which is currently running at LHO and elsewhere. It is not intended to be
a general treatise on lock-acquisition nor is it intended to be a recipe for
calibration or operation of the code.

2 Control Matrix Theory

The job of the “automated control matrix” is to invert the optical gain ma-
trix, G, and produce a control matrix, M, which can be used to recover error
signals for each degree of freedom, D, from the outputs of the IFO, O.

O =GD (1)
D = MO (2)

There are two steps to this process. The first is determining G, which changes
as a function of the fields in the IFO. The second is to invert G. This step
is non-trivial only because G may be singular. When G is singular only a
subset of D can be produced from 0.

d=mo (3)

There are two fundamentally different types of singularities: “no signal” (NS)
and “degenerate signal” (DS) singularities. NS singularities arise when there
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is no comprehensible signal for some DOF (i.e. when a cavity is far from
resonant, there is no good length signal). By definition, the process of lock
acquisition begins with m of minimal dimension (usually 0 by 0), since none
of the cavities in the system are locked, and ends after the removal of all NS
singularities. DS singularities arise when two or more outputs of the IFO
become linearly dependent (i.e. two signals contain the same information).
This happens while the power in the IFO is building and renders one or more
DOFs uncontrollable.

The general process of “lock acquisition” can be described as the expan-
sion of m accomplished by the removal of NS singularities. In order for this
process to occur there must be a path from the uncontrolled state to the fully
controlled state along which G can be determined with sufficient accuracy
to maintain control.

3 Lock Acquisition Path for LIGO 1

To place this discussion on firmer ground, this section will describe the lock
acquisition path for the LIGO 1 IFO.

State 1 | None of the degrees of freedom (DOFSs) are controlled.
This is the starting point for lock acquisition.

State 2 | The recycling cavity DOFs (I_ and [, ) are controlled and
the (first-order resonant) sidebands are resonant in the
recycling cavity.

State 3 | State 2 holds and one of the two arm cavity lengths is
controlled. The carrier is resonant in the controlled arm
cavity.

State 4 | State 3 holds and the other arm cavity length is con-
trolled. The carrier is resonant in both arm cavities and
the recycling cavity. At the onset of this state all of the
DOFs are controlled and all of the NS singularities have
been removed from G. A DS singularity is, however,
encountered in the course of the power buildup.

State 5 | State 4 has endured long enough for the power level to
equilibrate. This is the ending point for lock acquisi-
tion, though one would hope that the controllers used to
achieve this state can hold it for some time.




The lock acquisition path for the LIGO 1 configuration was first described
by Lisa Sievers in [LIGO 1 LSC FDR]. I have added “State 5” to Lisa’s set
of 4 states so that I can distinguish between the point at which all DOFs are
controlled and the point at which stable lock has been achieved. The time
between acquisition of State 4 and acquisition of State 5 for the Hanford
2k TFO is a few tenths of a second. The duration of this transition state
corresponds to a frequency well within the bandwidth of the control loops
and thus offers plenty of time for disaster to strike.

4 The Optical Gain Matrix

Elements of the optical gain matrix (OGM) are typically given by

Gdi%oj- — goutput Z/Ysignal ALO Aresonant (4)

where Ajo is the amplitude of the local oscillator at the output port, A, csonant

is the amplitude of the resonant field which generates signal sidebands, gs;gna

is the optical gain of the signal sidebands from the point of generation to the

output port, and Geuspu: is the fixed optical/electronic gain of the sensing

hardware (i.e. pick-off reflectivities, photo-detector gain, filter gains, etc.).
The dominant elements of the OGM for the LIGO 1 IFO are!

Gl,—>Qref = JimRef (ACref + A2ref) ASrec Yprm (5)

G1_5Q,0 = Yimpob Acrec Asrec Yprm
GL_ 5Qusy = YLasy Asasy Act
GL+»QW = OJLasy ASasy Ac-

Gl sty = Gipref (Acres — Aores) Asrec Yprm
GrL_oI.; = 9iref Asrer Ac-
Gr 1,y = ires Asres Acy
Gl 1,0, = GipPob Acree Asrec Yprm

GL_ﬂIpob = JLpob Agrec Ac—

Tt will be assumed throughout this paper that rrrae = rrrare, trrare = trrar, and
rgs = tps = % I,sy seems to contain little unique information and, as a result, is not

used and will not be considered further.



GL+»1pob = 9Lpob Agrec Aoy (14)

where the C, S, and 2 subscripts indicate whether amplitude referred to is
that of the carrier, first-order sidebands, or second-order sidebands?

Ay = A+ 1A (15)

2The amplitudes of the upper and lower sidebands are assumed to be equal at each
port.
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Figure 1: Sensor and mirror labels for the LIGO 1 IFO. For the 4km IFOs,
the “t” (transmitted) arm is often referred to as the “x” or “right” arm, and
the “r” (reflected) arm as “y” or “left” arm. For the 2km IFO the labels are
reversed due to the presence of folding mirrors (not shown).



A= /YtAt - /YrAra (16)
1
1 — ripprerae®oten

Vitr} = (17)

T'Smich
Term =12 TRMT Smich (18)
Tmich 1S the reflectivity of the Michelson and arm cavities as a whole, A,..
is the amplitude of the recycling cavity field, A, is the amplitude of the
reflected field, A,,, is the amplitude of the anti-symmetric field, Ay, are
the amplitudes of the arm cavity fields, ¢, are the round trip phases in

the arm cavity fields, and g¢-¢» are constant gain coefficients.

5 Field Amplitude Estimators

The OGM is determined by seven field amplitudes (Acree, Acref, Acqrs
Agrec; Asref, Asasy), and three signal gains (v¢¢,y, Yprm). Each of these must
be inferred from measurement, the more directly the better.

Measurements of the power transmitted through the ETMs will suffice as
estimators of Acy .

Acqiry ~ \/ Termitry Pirfiry- (19)

The primary assumption here is that contributions to the transmitted power
from field components other than the carrier are negligible. This assumption
is valid along the acquisition path, but is violated elsewhere.

To the degree that the recycling cavity is close to equilibrium

Qcin trRM
ACin-

ACrec = (20)

L — rrMTCmich
where Ag;, is the amplitude of the carrier field incident on the recycling
mirror, and g, is the mode-matching coefficient of the incident carrier
into the recycling cavity. When neither arm cavity is resonant (state 2) the
recycling cavity is anti-resonant for the carrier. In this state romicn ~ —1,

which implies that

trM
Acree = ———— Acin. 21
c E—— (21)

When only one arm cavity is resonant (state 3) romien =~ 0 and

Acrec > 0cin trm Acin. (22)



When both arm cavities are resonant (states 4 and 5) rcmicn is close to, but
less than one by a small and variable amount. A robust estimator for Acye.
in these states can be derived from the arm cavity amplitudes. Since

ao{t,r} tirm
Acpim = Acrec, 23
cttr) V2 1—rirurerm Cree (23)
where acy - are mode-matching coefficients for the arm cavities,
1—
Acree = V2 TITMTETM o {Ac{m}] , (24)

trrm

assuming that at least one of ay; ;3 ~ 1.
The signal gain in the arm cavities, for signal frequencies less than the
cavity pole frequency, is essentially the same as the carrier gain. That is

V2 Acpry

2
AC’rec ( 5)

Yoftry =

Demodulation of the beam-splitter pick-off field at twice the modulation

frequency produces a signal which is proportional to the first-order sideband
power in the recycling cavity, Spop.

ASrec = \/ gSpob Spob (26)

This signal is a valid estimator only when |Acyee Aorec] < A%,... This con-

dition is satisfied at all points on the acquisition path after the acquisition
of state 2.

Since the Michelson asymmetry provides a fairly constant loss, Ag,s, can
be estimated directly from Ag,ce.

A
ASasy = ASrec sin |:27T mZCh:| ) (27)
mod
where Apen ~ 0.3m is the Michelson asymmetry and A,,,q >~ 10m is the
modulation wavelength.
Similarly, rsm:cn can be approximated as

Amic
2m h}

(28)

T Smich == COS
mod

in the estimation of ygp,p,.



The two reflected field amplitudes (Acyes, Asrer) are each estimated in
two parts, the mode-matched part and the non-mode-matched part. The
amplitude of the mode-matched reflected fields are

Avermrmr = TR QinAin — tRM T mich Arec (29)

and the amplitude of the non-mode-matched reflected fields are

ArefNM =V 1- a?nAm (30)

For the sidebands, the mode-matching coefficient can vary substantially.
This coefficient is computed from Ag,.. and Ag;, using

(1 - TRMTmich)Arec

trv Ain

With agi, in hand, Agrepprar and Agrepnar can be computed directly from
equations (29) and (30).

The reflected carrier amplitudes cannot be computed in the same way
since rcmicn 18 unknown. ag;j, is, however, a much more stable quantity and
much closer to unity than ag;, and as a result it can simply be assigned a
value (e.g., acin, = 1). Further complexity is added by the existence of the
reflected power measurement, P,.¢, which should satisfy

PTef = A%’refMM + A2CrefNM + A?G’refMM + A2SrefNM‘ (32)

Since P,y is typically dominated by Acyerara, it seems plausible that equa-
tion (32) can be used to produce a more robust measure of Acyeprra (up to a
sign ambiguity) than indirect computation via equation (29). This strategy
is, in fact, the one used at LHO. (The sign ambiguity is resolved by taking
the sign of Acreraramr given by solving (31) for 7, and using the result in
(29).)

We are still in need of an equation which relates A,y and Ayepyar to
A,cr. Unfortunately, the mode-matched and non-mode-matched components
of the reflected fields will both contribute to the signal and they will do so
in a way that depends on the geometry of the fields when they arrive on the
photo-detector. The degree to which the non-mode-matched fields contribute
is relegated to an input fudge-factor via

Aref - ArefMM + QsigN M ArefNM- (33)
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Measurement of o,nas remains a technical challenge.

CURRENT LHO SETUP
The amplitudes currently in use (shown with a bar) are re-
lated to the ones described above by:
T ACrec
A rec — 34
¢ traJoy (34
_ A
Acasy = = 35
T A (33)
1 ACref
Acrer = 36
Cref = 5 (36)
T I —rirmrerm
Aciiny = V2 max [Ac{t,r}} (37)
trrmtrm
T AC’rec
A rec — 38
¢ trv 1y (38)
B Ao
Acasy = Y 39
T A (39)
1 ACref
Acrer = 40
Cref = 7 (40)
This should be of no consequence to operators of the system.

6 Calibration of Power Signals

Three power measurements (Pt,n{ty,n} and P,.;) and one demodulated signal
(Spop) are used in the field amplitude estimators described above. Since S,
is difficult to calibrate directly, a power measurement at the same port, Py,
will be also be needed. Each of these must be calibrated to some fiducial
input power. The calibrated measurements are not in any particular units;
they are relative to the fiducial input. Furthermore, these calibrations are
chosen so as to eliminate many optical parameters from the gain calculations.

The reflected power and the pick-off power are calibrated with both I'TMs
misaligned and the RM aligned. In this configuration

Pref - T?{M (4]‘)



and

Ppob = t?%M' (42)

CURRENT LHO SETUP: P,y is actually P, so it should
be calibrated with the all mirrors except I'TMy misaligned.

In this configuration Py, = Ppyy = 1.

The transmitted arm power calibration Pt,«{t,,«} = Oz%m} is performed by
misaligning one ITM and the RM, then locking the aligned arm. If the
mean alignment is good Ptr{t,r} ~ 1 when the power is at its highest points
(i.e. Oz%tyr} ~ 1). QPD readout noise should be removed or ignored. This
calibration removes the properties of the I'TMs and ETMs from all gain
calculations and changes equation (24) to

AC’rec ~ try Max [\/ Ptr{t,r}:| . (43)

To calibrate S, the ETMs should be misaligned and the recycling cavity
locked (first-order sidebands resonant). In this state

P pob

Spob ~ 5

(44)

where the factor of 2 compensates for the presence of two first-order side-
bands.

CURRENT LHO SETUP: Sy & 57225

J1(v)
Use test output 10 for S,e calibration (i.e. make the test

output ~ 1 in state 2).

7 Implementation

This section discusses the implementation details of the automated control
matrix algorithm. The algorithm performs two types of actions: continuous
changes in the control matrix which compensate for continuous changes in
the OGM, and discontinuous changes which result from the addition or re-
moval of a singularity in the OGM. The discontinuous changes occur at the
state boundaries discussed in section §3 and near the DS singularity that
appears during state 4. Each of these discontinuous changes is marked in the
algorithm by a state bit and recognized via a trigger of some sort.



7.1 Discontinuous Changes: Triggers and Bits

The state progression begins with the departure from state 1. As the recy-
cling cavity becomes resonant, S, increases and it remains at an elevated
level all along the acquisition path. Note that this is a demodulated signal
and, as a result, the carrier field beating with the second-order sidebands
produces a negative output. This fact makes S, a particularly good indi-
cator of state 2 since spurious carrier resonances in the recycling cavity are
easily rejected. For these reasons, the trigger which recognizes the transition
from state 1 to state 2 and beyond is based on the value of Sy,,. This trigger
has distinct on and off levels to prevent noise from toggling the state. These
levels are called “recOn” and “recOff” and the associated bit is “Engaged.”
To be painfully clear, the Engaged bit is set anytime S,o > Trecon and is
reset anytime Spop < Trecofs-

State 3 is entered when one of the two arms becomes resonant for the
carrier. The power buildup in the cavity, as measured by the transmit-
ted power signal, Ptr{t,,«}, is used to recognized the approach of resonance
(Ptr{t,r} > Turmon) and the passage of resonance (Ptr{t,r} < Tyrmoyy). The
corresponding state bits are labeled “ArmTOn” and “ArmROn.” When one
of these bits is set, along with the Engaged bit, the IFO is in state 3.

Entry into state 4 is indicated when both arm bits and the Engaged bit are
set. The passage of the DS singularity in state 4 is marked by the “InvBad”
bit. This bit is set anytime the absolute value of the normalized determinant
of the OGM is less than the threshold value “detNormMin.” Also in the
course of state 4 the [_ degree of freedom must transition from Q¢ to Qpep to
avoid a zero in the reflected signal. This transition is accomplished by simply
switching signals at a predetermined arm power level dubbed “ImPO.”

7.2 Continuous Changes: The Control Matrix in Each
State

7.2.1 State 1: Not Engaged

In this state the OGM is essentially unknown so there is little to be done but
wait for state 2 to happen by chance. At LHO some excitation is necessary
and is provided by setting

eref%l_;,_ = Cpush/glpRef (45)
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and
MQTEf%l_ - Cpush/glmRef (46)

where ¢4, is an adjustable parameter.

7.2.2 State 2: Engaged

In state 2 [ and [, are controlled. [_, being rather separate in the OGM is
dealt with separately. Until state 4 the error signal for [_ is produced entirely
from Q,.r via

MQref_)lf = ]'/Glf_)Qref' (47)

This leaves a 1x1 control matrix for [, . In this state its error signal comes
from I,.; via

eref*)l-F = 1/Gl+*>17‘ef' (48)

7.2.3 State 3: Engaged and one Arm Locked

Here the 1x1 control matrix containing [, expands as one NS singularity is
removed from the OGM. The resulting 2x2 matrix produces error signals for
ly and Ly (L_ = +L, depending on which arm is producing the signal).

-1
l+ — Gl.:,.%lmf GL.;_%ITEf [ref (49)
Ly 0 GLi—Qusy asy |

7.2.4 States 4 and 5: Engaged and both Arms Locked

As state 4 is entered and the last NS singularity is removed from the OGM
the control matrix expands again to become 3x3.

-1

l-l— Gl+—>Iref GL+—)Ir8f GLf—)Iref Iref
L+ = Gl+_)1pob GL+_>Ipob GLf_>Ipob IpOb . (50)
Li 0 GL+*>Qasy GL—%Qasy Qasy

As the determinant of the 3x3 OGM shown above becomes small the sig-
nals for [, and L, become inseparable. This DS singularity forces a choice
between controlling L, or ly. Since L, dominates in both I,.; and Iy,
and since it is by far the more sensitive degree of freedom, the error signal
equation is reduced to

—1
L+ — GL+_>Iref GL*_)Iref [ref (51)
L— GLJ,_*)Qasy GL—HQasy asy ,
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and [ is left uncontrolled until the DS singularity passes. As the determi-
nant once again becomes significantly different from zero the control matrix
returns to its 3x3 form.
When Ptr{t,r} increases beyond T}, po, [— is switched to @, by setting
MQref—ﬂ— =0 and
M1 = 1/Gi5q,u- (52)

8 Gain Coefficient Measurement

All of the sensing gain constants, g7, can be measured in either state 2 or
state 3. The L, and L_ control loops should have similar filters and identical
DC gains. As state 4 progresses the pole in the L optical transfer function
will move from the one-arm-cavity pole to the coupled-cavity pole. Either
the loop shape should be changed or the loop should be made stable with
either pole.

12



