Amplitude Modulation Response of Gravitational Wave Interferometers

David Chin (U. Mich.) dwchin@umich.edu Keith Riles (U. Mich.) kriles@umich.edu

2000-07-28

Abstract

We describe an algorithm for computing AM response of interferometers. This algorithm is based on previous work by Livas (Liv) and [1] Schutz and Tinto (ST) [2]. Comparisons with work by ST, and Anderson, Brady, and Creighton (ABC) [3] is made.

Goals

- compute the Amplitude Modulation response of any given interferometer to polarized sources of gravitational radiation
- implement for the LAL

Strategy

- follow Livas [1] and Schutz \& Tinto [2].
- express the metric perturbation tensor, $h_{\mu \nu}$, in the basis of the Detector frame, and compute the sensitivities
- ignore orbital parallax, nutation of the Earth's rotation, and most other irregularities
- don't ignore the tilt of the plane of the IFO, which will be equivalent to an effective location different from the location of the IFO vertex
- \therefore the coordinate transformations reduce to a series of (Euler) rotations.
- sensitivities are given by Schutz \& Tinto [2]:

$$
\begin{aligned}
& F_{+}=-\sin 2 \beta\left[A_{X}^{x} A_{X}^{y}-A_{Y}^{x} A_{Y}^{y}\right] \\
& F_{\times}=\sin 2 \beta\left[A_{X}^{x} A_{Y}^{y}+A_{Y}^{x} A_{X}^{y}\right] \\
& \delta l / l_{0}=F_{+} h_{+}+\exp (i \delta) F_{\times} h_{\times} \\
& \text {where }
\end{aligned}
$$

$$
A=\text { the transformation matrix }
$$

$$
\beta=\text { half the angle between the arms }
$$

$$
\delta=\text { phase difference between the }+
$$ and the \times polarizations

$\delta l=$ difference between the values of $\delta l_{n}, n=1,2$ for the two arms

Coordinate Conventions

- define conventions for the coordinate axes of the reference frames of the source, and the interferometer
- Source reference frame has Z-axis pointing from the source to the observer; orientations measured relative to meridians (lines of constant RA), i.e. w.r.t. equatorial coordinates
- view from the IFO location to the source would look like:

Figure 1: Source Frame

- Source position is given in RA-dec, orientation is measured w.r.t. meridian
- Detector reference frame has Z-axis pointing to its zenith, i.e. perpendicular to the plane of the detector
- the plan view of the Detector frame would be:

Figure 2: Detector Frame

- NB: orientation angle is measured East of South (counter-clockwise) to the bisector of the arms, as per convention in Schutz \& Tinto [2].
- tilt of detector is taken into account by making two additional rotations using LIGO survey data [4]

Coordinate Conventions: Schutz \& Tinto

- in Section 2 of Schutz and Tinto's paper [2], they compute the single-detector response function
- their convention for the Source orientation is made relative to the vertical circle of the IFO, i.e. w.r.t. horizon coordinates
- vertical circle is the circle that passes through the IFO's zenith and the Source: it is not necessarily a meridian
- position of Source is given as altitude-azimuth, and orientation is measured w.r.t. vertical circle
- this is already implicitly in the Detector frame

Coord. Conventions: Anderson, et al.

- Source frame has Z-axis pointing from Source to Earth.
- Source position is given as RA-dec; orientation is measured w.r.t. Line of Nodes (see Fig. 1)
- IFO frame and orientation are derived by differential geometry using Earth model ellipsoid WGS-84, and LIGO survey data [4]

Euler Rotations

- make Euler rotations about the Z - and Y-axes.
- form of these rotation matrices:

$$
\begin{aligned}
& R_{z}(\theta)=\left(\begin{array}{clc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
& R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)
\end{aligned}
$$

- total transformation is a product of rotations:

$$
\begin{aligned}
R= & R_{z}(\psi) R_{y}\left(\frac{\pi}{2}-l a t\right) R_{z}(L M S T) \\
& R_{z}(\pi-R A) R_{y}\left(-\left(\frac{\pi}{2}+d e c\right)\right) R_{z}(-\Omega)
\end{aligned}
$$

where

$$
\begin{aligned}
\psi & =\text { orientation angle of IFO } \\
\text { lat } & =\text { latitude of IFO } \\
L M S T & =\text { Local Mean Sidereal Time } \\
d e c & =\text { declination of Source } \\
\Omega & =\text { orientation of Source }
\end{aligned}
$$

Plots of Response (Dec. vs. RA; Detector © North Pole)

Comparison Tests: Single Point

- compare results from the three different algorithms for special source location and orientation, and sidereal time

$\begin{aligned} & \text { stIFO, Sour } \\ & (0.5,0) \end{aligned}$

D.Chin, K.Riles
Comparison Tests: Testifo, Source © N hor., expect

$$
(-.5,0)
$$

Typeset by FoilTEX -
2000-08-04

arb. loc.
© LHO, Source

Circular

Plus

| | Plus | | Cross |
| :--- | :---: | :---: | :---: | Circular

Circ. Pol. Abs. Diff. Plots: Liv vs. ST [Dec vs. RA]

- grid: $82 \times 64=5248$ points
- rows $=$ Right Ascension; cols $=$ Declination
- plot abs. difference between abs. values

IFO: Test IFO
Date: 1994-05-17 08:20:47 UTC Sun
GMST: 0.255940 secs

$$
\begin{aligned}
& \text { RMS (Liv }- \text { ST) }=2.43446984541640 e-16 \\
& \text { Max|Liv }-S T \mid=1.47104550762833 e-15
\end{aligned}
$$

IFO: Test IFO
Date: 1994-05-12 05:20:47 UTC Sun
GMST: 74387.909680 secs

$$
\begin{aligned}
& \text { RMS (Liv }- \text { ST) }=3.68038732374855 \mathrm{e}-16 \\
& \text { Max|Liv }-S T \mid=1.60982338570648 \mathrm{e}-15
\end{aligned}
$$

IFO: LHO
Date: 1994-05-17 08:20:47 UTC Sun
GMST: 0.255940 secs

$$
\begin{aligned}
& \text { RMS (Liv }- \text { ST) }=1.05548758578373 \mathrm{e}-10 \\
& \text { Max|Liv }-S T \mid=9.55784895673162 \mathrm{e}-10
\end{aligned}
$$

IFO: LHO
Date: 1990-08-01 13:57:09 UTC
GMST: 38444.883737 secs

$$
\begin{aligned}
& \text { RMS (Liv }- \text { ST) }=1.05548762808303 \mathrm{e}-10 \\
& \text { Max|Liv }-S T \mid=9.55784895673162 e-10
\end{aligned}
$$

Circ. Pol. Abs. Diff. Plots: Liv vs. ABC [Dec. vs RA]

IFO: Test IFO
Date: 1994-05-17 08:20:47 UTC Sun
GMST: $\quad 0.255940 \mathrm{secs}$

```
RMS(Liv - ABC) = 5.83166475061072e-16
Max|Liv - ABC| = 2.33146835171283e-15
```


IFO: Test IFO
Date: 1994-05-12 05:20:47 UTC Sun
GMST: 74387.909680 secs

$$
\begin{aligned}
& \text { RMS (Liv - ABC) }=6.02907949384043 \mathrm{e}-16 \\
& \text { Max } \mid \text { Liv }-\mathrm{ABC} \mid=2.33146835171283 \mathrm{e}-15
\end{aligned}
$$

IFO: LHO
Date: 1994-05-17 08:20:47 UTC Sun
GMST: 0.255940 secs

$$
\begin{aligned}
& \text { RMS (Liv - ABC) }=2.22117795226517 \mathrm{e}-04 \\
& \text { Max|Liv }-\mathrm{ABC} \mid=5.34871669267287 \mathrm{e}-04
\end{aligned}
$$

IFO: LHO
Date: 1990-08-01 13:57:09 UTC
GMST: 38444.883737 secs

$$
\begin{aligned}
& \text { RMS (Liv - ABC) }=2.22870725247795 \mathrm{e}-04 \\
& \text { Max|Liv }-\mathrm{ABC} \mid=5.34880396050097 \mathrm{e}-04
\end{aligned}
$$

Related Packages: Date and Time

- date and time utility routines have been coded into LAL package: part of LAL beta- 0.4 release
- converts time to and from seconds from GPS epoch and seconds from Unix epoch
- converts time in seconds from some epoch to time structure with day, date, residual nanoseconds, etc.

Future Refinements

- vector routine: given initial time, size of time step, and number of time steps, returns vector containing response at each of those time steps
- standardized IFO description parameter data structures, coordinated with J. Romano (UTBrownsville)
- detailed documentation (LIGO tech note) in preparation

Acknowledgements

We thank W. Anderson, P. Brady, and J. Creighton for sharing their Maple worksheet

Bibliography

References

[1] J.C. Livas, Upper Limits for Gravitational Radiation from some Astrophysical Sources, PhD dissertation, MIT, 1987
[2] B.F. Schutz and M. Tinto, Mon. Not. R. Astr. Soc. (1987) 224, 131-154
[3] W. Anderson, P. Brady, and J. Creighton, Beam Pattern Response Functions and Times of Arrival for Earthbound Interferometers, unpublished Maple worksheet, 2000
[4] W. Althouse, L. Jones, and A. Lazzarini, Determination of Global and Local Coordinate Axes for the LIGO Sites, LIGO Tech. Note LIGO-T980044-08-E, 1999
[5] R.M. Green, Spherical astronomy, Cambridge University Press, Cambridge, 1985
[6] Astronomical Almanac. Annual publication. Washington: US Government Printing Office, and London: Her Majesty's Stationery Office.
[7] Explanatory Supplement to the Astronomical Almanac, P.K. Seidelmann, ed., University Science Books, Mill Valley, 1992

