LIGO-T000102-00-D

Amplitude Modulation Response of Gravitational Wave Interferometers

David Chin (U. Mich.) dwchin@umich.edu Keith Riles (U. Mich.) kriles@umich.edu

2000-07-28

Abstract

We describe an algorithm for computing AM response of interferometers. This algorithm is based on previous work by Livas (Liv) and [1] Schutz and Tinto (ST) [2]. Comparisons with work by ST, and Anderson, Brady, and Creighton (ABC) [3] is made.

– Typeset by Foil T_EX –

Goals

- compute the Amplitude Modulation response of any given interferometer to polarized sources of gravitational radiation
- implement for the LAL

Strategy

- follow Livas [1] and Schutz & Tinto [2].
- express the metric perturbation tensor, $h_{\mu\nu}$, in the basis of the Detector frame, and compute the sensitivities
- ignore orbital parallax, nutation of the Earth's rotation, and most other irregularities
- don't ignore the tilt of the plane of the IFO, which will be equivalent to an effective location different from the location of the IFO vertex
- ∴ the coordinate transformations reduce to a series of (Euler) rotations.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T} EX$ –

• sensitivities are given by Schutz & Tinto [2]:

$$F_{+} = -\sin 2\beta [A_X^x A_X^y - A_Y^x A_Y^y]$$

$$F_{\times} = \sin 2\beta [A_X^x A_Y^y + A_Y^x A_X^y]$$

$$\delta l/l_0 = F_{+}h_{+} + \exp(i\delta)F_{\times}h_{\times}$$

where

- A = the transformation matrix
- $\beta~=~$ half the angle between the arms

$$\delta$$
 = phase difference between the + and the $imes$ polarizations

$$\delta l = {
m difference}$$
 between the values of $\delta l_n, n=1,2$ for the two arms

Coordinate Conventions

- define conventions for the coordinate axes of the reference frames of the source, and the interferometer
- Source reference frame has Z-axis pointing from the source to the observer; orientations measured relative to meridians (lines of constant RA), *i.e.* w.r.t. equatorial coordinates

 view from the IFO location to the source would look like:

Figure 1: Source Frame

 Source position is given in RA-dec, orientation is measured w.r.t. meridian

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

- Detector reference frame has Z-axis pointing to its zenith, *i.e.* perpendicular to the plane of the detector
- the plan view of the Detector frame would be:

Figure 2: Detector Frame

2000-08-04

- NB: orientation angle is measured East of South (counter-clockwise) to the bisector of the arms, as per convention in Schutz & Tinto [2].
- tilt of detector is taken into account by making two additional rotations using LIGO survey data [4]

Coordinate Conventions: Schutz & Tinto

- in Section 2 of Schutz and Tinto's paper [2], they compute the single-detector response function
- their convention for the Source orientation is made relative to the vertical circle of the IFO, *i.e.* w.r.t. horizon coordinates
- vertical circle is the circle that passes through the IFO's zenith and the Source: it is not necessarily a meridian
- position of Source is given as altitude-azimuth, and orientation is measured w.r.t. vertical circle
- this is already implicitly in the Detector frame

Coord. Conventions: Anderson, et al.

- Source frame has Z-axis pointing from Source to Earth.
- Source position is given as RA-dec; orientation is measured w.r.t. Line of Nodes (see Fig. 1)
- IFO frame and orientation are derived by differential geometry using Earth model ellipsoid WGS-84, and LIGO survey data [4]

Euler Rotations

- make Euler rotations about the Z- and Y-axes.
- form of these rotation matrices:

$$R_{z}(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$R_{y}(\theta) = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$

• total transformation is a product of rotations:

$$R = R_z(\psi)R_y(\frac{\pi}{2} - lat)R_z(LMST)$$
$$R_z(\pi - RA)R_y(-(\frac{\pi}{2} + dec))R_z(-\Omega)$$

where

$$\psi$$
 = orientation angle of IFO

$$lat = latitude of IFO$$

- LMST = Local Mean Sidereal Time
 - dec = declination of Source

$$\Omega$$
 = orientation of Source

Plots of Response (Dec. vs. RA; Detector @ North Pole)

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Comparison Tests: Single Point

 compare results from the three different algorithms for special source location and orientation, and sidereal time

Comparison Tests: TestIFO, Source @ zenith, expect (1,0)

3: 2.2204460525248e-16 9.3434101133993e-02 2.2204460525248e-16	: :)/ST:	Plus 9.999999852530e-01 9.999999852530e-01 9.999999852530e-01 	Cross 	Circular 9.999999852530e-01 9.999999852530e-01 9.999999852530e-01 0.0000000000000e+00
	 ប	2.2204460525248e-16	9.3434101133993e-02	2.2204460525248e-16

– Typeset by FoilTEX –

2000-08-04

Comparison Tests: TestIFO, Source @ W hor., expect (0.5,0)

	Plus	Cross	Circular
 Livas:	5.0000000005132e-01	-2.6668524318568e-10	5.000000005132e-01
S&T:	5.000000005132e-01	4.4447543416675e-10	5.000000005132e-01
ABC:	5.000000005132e-01	2.6668534047758e-10	5.000000005132e-01
(L-ST)/ST: (L-ABC)/ABC:	 2.2204460490224e-16	 3.6481907184434e-07	

- Typeset by FoilTEX -

2000-08-04

Comparison Tests: TestIFO, Source @ N hor., expect (-.5,0)

Circular	4.9999999989735e-01 4.999999989735e-01 4.999999989735e-01	1.1102230248531e-16 1.3322676298237e-15
Cross	-1.7548263092748e-05 1.7548260595732e-05 1.7548263092146e-05	 3.4299010485039e-11
Plus	-4.9999999958941e-01 -4.999999958941e-01 -4.999999958941e-01	 1.3322676306442e-15
	Livas: S&T: ABC:	(L-ST)/ST: (L-ABC)/ABC:

- Typeset by FoilTEX -

Comparison Tests: LHO, Source @ arb. loc.

	Plus	Cross	Circular
Livas:	3.8614832967608e-01	3.2538863475748e-01	5.0496365823787e-01
S&T:	2.9667660078718e-01	-4.0862120684851e-01	5.0496365823787e-01
ABC :	-3.8641299959412e-01	-3.2551740739826e-01	5.0524903639158e-01
(L-ST)/ST: (L-ABC)/ABC:			

– Typeset by FoilTEX –

Circ. Pol. Abs. Diff. Plots: Liv vs. ST [Dec vs. RA]

- grid: $82 \times 64 = 5248$ points
- rows = Right Ascension; cols = Declination
- plot abs. difference between abs. values

IFO: Test IFO Date: 1994-05-17 08:20:47 UTC Sun GMST: 0.255940 secs

RMS(Liv - ST) = 2.43446984541640e-16 Max|Liv - ST| = 1.47104550762833e-15

IFO: Test IFO Date: 1994-05-12 05:20:47 UTC Sun GMST: 74387.909680 secs

RMS(Liv - ST) = 3.68038732374855e-16 Max|Liv - ST| = 1.60982338570648e-15

IFO: LHO Date: 1994-05-17 08:20:47 UTC Sun GMST: 0.255940 secs

RMS(Liv - ST) = 1.05548758578373e-10Max|Liv - ST| = 9.55784895673162e-10

IFO: LHO Date: 1990-08-01 13:57:09 UTC GMST: 38444.883737 secs

RMS(Liv - ST) = 1.05548762808303e-10Max|Liv - ST| = 9.55784895673162e-10

Circ. Pol. Abs. Diff. Plots: Liv vs. ABC [Dec. vs RA]


```
IFO: Test IFO
Date: 1994-05-17 08:20:47 UTC Sun
GMST:      0.255940 secs
RMS(Liv - ABC) = 5.83166475061072e-16
Max|Liv - ABC| = 2.33146835171283e-15
```

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

IFO: Test IFO Date: 1994-05-12 05:20:47 UTC Sun GMST: 74387.909680 secs

RMS(Liv - ABC) = 6.02907949384043e-16 Max|Liv - ABC| = 2.33146835171283e-15

IFO: LHO Date: 1994-05-17 08:20:47 UTC Sun GMST: 0.255940 secs

RMS(Liv - ABC) = 2.22117795226517e-04 Max|Liv - ABC| = 5.34871669267287e-04

IFO: LHO Date: 1990-08-01 13:57:09 UTC GMST: 38444.883737 secs

RMS(Liv - ABC) = 2.22870725247795e-04 Max|Liv - ABC| = 5.34880396050097e-04

Related Packages: Date and Time

- date and time utility routines have been coded into LAL package: part of LAL beta-0.4 release
- converts time to and from seconds from GPS epoch and seconds from Unix epoch
- converts time in seconds from some epoch to time structure with day, date, residual nanoseconds, etc.

Future Refinements

- vector routine: given initial time, size of time step, and number of time steps, returns vector containing response at each of those time steps
- standardized IFO description parameter data structures, coordinated with J. Romano (UT-Brownsville)
- detailed documentation (LIGO tech note) in preparation

Acknowledgements

We thank W. Anderson, P. Brady, and J. Creighton for sharing their Maple worksheet

Bibliography

References

- [1] J.C. Livas, Upper Limits for Gravitational Radiation from some Astrophysical Sources, PhD dissertation, MIT, 1987
- [2] B.F. Schutz and M. Tinto, *Mon. Not. R. Astr. Soc.* (1987) **224**, 131-154
- [3] W. Anderson, P. Brady, and J. Creighton, Beam Pattern Response Functions and Times of Arrival for Earthbound Interferometers, unpublished Maple worksheet, 2000
- [4] W. Althouse, L. Jones, and A. Lazzarini, Determination of Global and Local Coordinate Axes for the LIGO Sites, LIGO Tech. Note LIGO-T980044-08-E, 1999

[–] Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

- [5] R.M. Green, *Spherical astronomy*, Cambridge University Press, Cambridge, 1985
- [6] Astronomical Almanac. Annual publication. Washington: US Government Printing Office, and London: Her Majesty's Stationery Office.
- [7] Explanatory Supplement to the Astronomical Almanac, P.K. Seidelmann, ed., University Science Books, Mill Valley, 1992