ad	var	200	All	ia	0
au	vai	ICE	u	19	U

DCC Number: E050129-00

Date Prepared: 4/25/2005

Originator		Cognizant Engineer	E	xt./Phone#	Project	Account Number	
Dennis Coyne	Dennis	Coyne	#2034		LIGO	LIGO.TEC-	1.3
Dwg/Part Number	Rev	Part Descrip	ption		Serial Nu	mber	Qty
		Electronic Devices for the S	SUS OSEM as	SSY.			
Centronics BPX65		Photodiode					80
Optek OP232		Emitter					80
Used In (next higher assembly)): To t	be used in the SUS OSEM assem	blies for adva	nced LIGO			
Vendor Name PO/Contract Number							
Ordered from Newark InOne. M	rs listed above.		P-card charges	: CP404378 and	CP403394		

Data Package, Receiving/Inspection Remarks:

Inspection	Visual Damage	Comments	Name/ Initials	Date Comp.
Required Y/N	Y/N			
N	N	This RGA	D. Coyne	4/25
		Specification sheets are attached to this traveller.		
		Note that the base of the photodiode TO18 package appears to encapsulated		
		with epoxy. Materials are not listed in the data sheets.		
		One of the leads for the emitter is insulated from the can (package) with a		
		dielectric – probably a polymer of some sort.		

Process Flow:

7	d Operation	Start Date	Work Area	Instructions	Name/ Initials	Date Comp.
1	Clean		CIT	per E960022	R. Taylor	
				Attempt to remove the ink markings on the electronic		
				packages with solvent.		
2	Vacuum Bake		CIT	per E960022 to a temperature of 125C (max storage	R. Taylor	
				temperature of the BPX65)		
3	Control Point		NA	Review/approve RGA scan #	D. Coyne	

N.B.: A copy of this traveller must be submitted to the DCC each time the original is shipped with the associated part(s) and when the traveller has been completed.

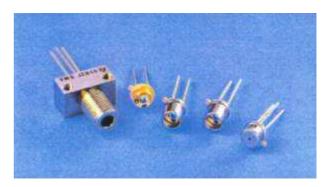
DCC Number: E050129-00

Date Prepared: 4/25/2005

#	Operation	Start Date	Work Area	Instructions	Name/ Initials	Date Comp.
4	Vent			To address concerns on the integrity of the hermetic package: Using a clean and air baked drill bit, make a small hole in the side of 40 PDs and 40 Emitters. Do this in a clean manner. Do not reclean the devices.	R. Taylor	
5	Re-Vacuum Bake			re-bake the intentionally vented devices per E960022 to a temperature of 125C (max storage temperature of the BPX65)	R. Taylor	
6	Control Point		NA	Review/approve RGA scan #	D. Coyne	
7	Wrap & Tag & Deliver			UHV Wrap/protect – use anti-static packaging. Deliver to Lee Cardenas for Optical Contamination Cavity Testing	R. Taylor	
8	Optical Contamination Cavity Testing		CIT	Test in the optical contamination exposure cavity per E960022. Include all devices (vented and not vented)	L. Cardenas	
9	Control Point			Review absorption and scatter loss versus time data approve release from the cavity	D. Coyne	
7	Wrap & Tag vacuum clean parts per E960022-A		CIT	Wrap (UHV foil) and bag (CP Stat or equiv.) per E960022. Keep the vented and unvented, PDs and emitters separate.	L. Cardenas	
5	Deliver			File one copy with the DCC. Original goes with devices to Dennis Coyne Note: Keep original traveler with these parts.	R. Taylor	
EN	D: Go to Traveler or procedure	associated wi		· ·		

Special Instructions (Handling/Packaging Constraints, Remarks, etc.) or Notes:

N.B.: A copy of this traveller must be submitted to the DCC each time the original is shipped with the associated part(s) and when the traveller has been completed.

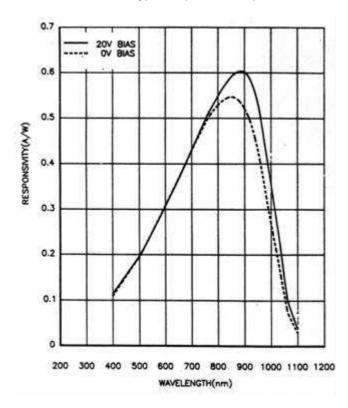

LICO	DCC Number: E050129-00 Date Prepared: 4/25/2005			
advancedligo				
Step 1: Remove ink markings Step 4: Drill holes to vent ½ of the devices				

N.B.: A copy of this traveller must be submitted to the DCC each time the original is shipped with the associated part(s) and when the traveller has been completed.

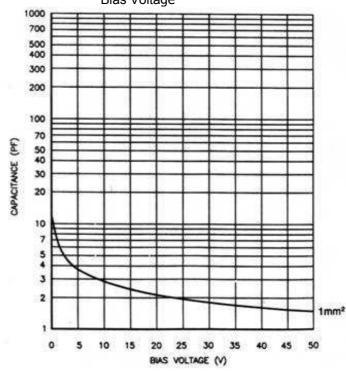
Silicon Photodetector

BPX65 Series

The BPX65 family of detectors feature Centronic's 1mm² high speed, high sensitivity chip already successful in a wide variety of applications. The chip can be packaged in various forms suitable for fibre-optic communication, such as the AX65-RF (precisely centred, isolated, low chip to window spacing) a standard 2 or 3 lead TO18 or even epoxy encapsulated. It has also been used for encoder designs and with MIL SPEC release at the heart of advanced laser warning systems.



ABSOLUTE MAXIMUM RATINGS


	Max. Rating
DC Reverse Voltage	50V
Peak Pulse Current (1 μs, 1% duty cycle)	200mA
Peak DC Current	10mA
Illumination level for saturation	5W/cm ²
Storage Temperature Range	-55°C to + 125°C
Operating Temperature Range	-55°C to + 120°C
Soldering Temperature Range	200°C

1

Series BPX65 – Typical Spectral Response

Series BPX65 – Typical Capacitance versus Bias Voltage

WWW: www.centronic.co.uk
email: eosales@centronic.co.uk

Tel: +44(0)1689 808022 Fax: +44(0)1689 845117

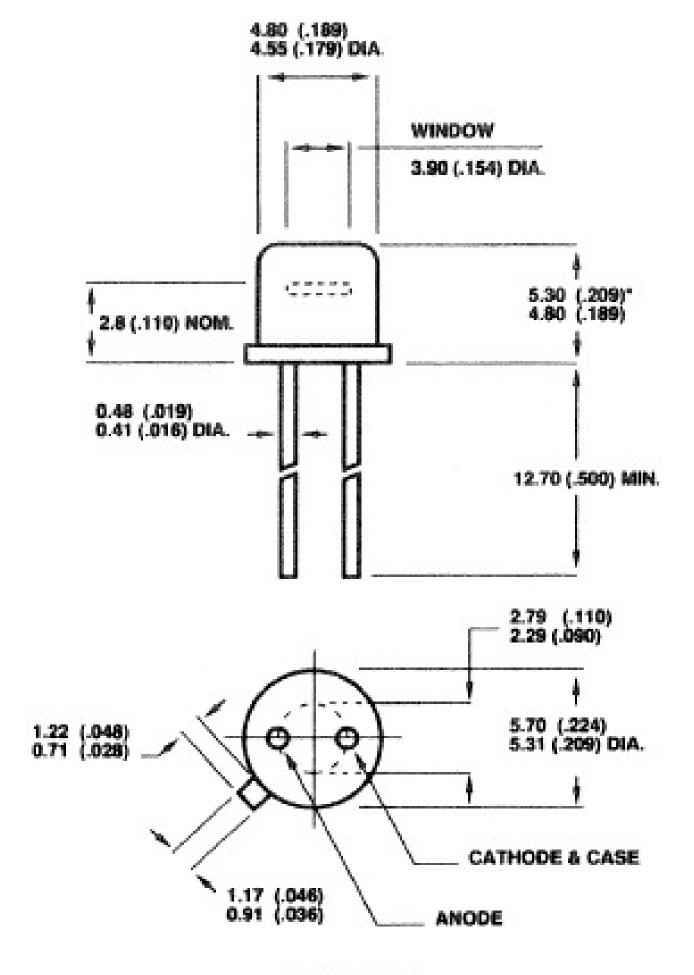
Silicon Photodetector

BPX65 Series

Electrical / Optical Specifications

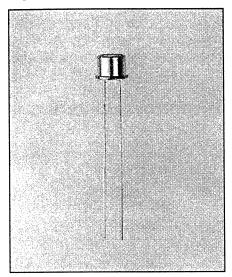
Characteristics measured at 22°C (±2) ambient.

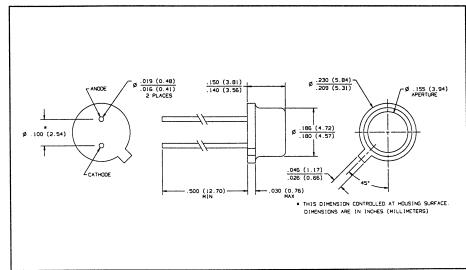
Single Elements BPX65 Series


Туре	Activ	e Area	•	sivity A/W 00 nm		urrent A	NEP WHz ^{-$\frac{1}{2}$} $\lambda = 900 \text{ nm}$	Capacit	ance pF	Risetime ns λ = 820 nm	Package
No.	mm ²	mm	Min.	Тур.	Max.	Тур.	Тур.	Vr = 0V Max.	Vr = 20V Max.	R _L = 50 Ω Typ.	1 ackage
BPX65	1	1 x 1 mm	0.52	0.55	5	1	3.3 x 10 ⁻¹⁴	20	3.5	3.5	TO18
AX65R2F	1	1 x 1 mm	0.52	0.55	5	1	3.3 x 10 ⁻¹⁴	20	3.5	3.5	TO46
BPX65RT	1	1 x 1 mm	0.52	0.55	5	1	3.3 x 10 ⁻¹⁴	20	3.5	8	TO18
X65EB	1	1 x 1 mm	0.52	0.55	5	1	3.3 x 10 ⁻¹⁴	20	3.5	3.5	1B

2

Highlighted items are Centronic standard products generally available from stock


WWW: www.centronic.co.uk
email: eosales@centronic.co.uk



1 (TO18)

GaAlAs Hermetic Infrared Emitting Diodes Types OP231W, OP232W, OP233W

Features

- · Wide irradiance pattern
- · Enhanced temperature range
- Mechanically and spectrally matched to the OP800WSL and OP830SL series devices
- Significantly higher power output than GaAs at equivalent drive currents
- TO-46 hermetically sealed package

Description

The OP231W series devices are 890nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed packages. The broad irradiance pattern provides relatively even illumination over a large area.

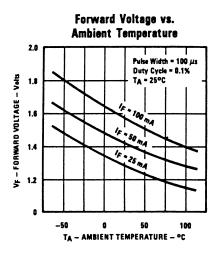
Replaces

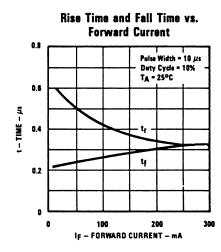
K6300 series

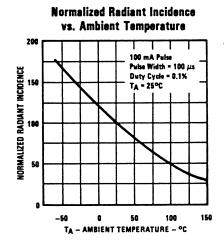
Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

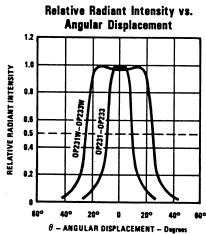
Reverse Voltage 2.0 V
Continuous Forward Current
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)
Storage Temperature Range65° C to +150° C
Operating Temperature Range65° C to +125° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes

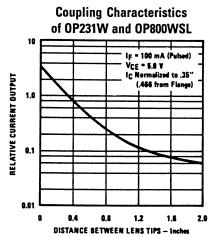
- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- (2) Derate linearly 2.0 mW/° C above 25° C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the measurement surface, a radius of 0.466" (11.84 mm) measured from the lens side of the tab to the sensing surface, and a sensing surface of 0.250" (6.35 mm) in diameter forming a 30° cone. E_{e(APT)} is not necessarily uniform within the measured area.
- (4) Measurement made with $100\mu s$ pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an IF = 100 mA.


Carrollton, Texas 75006


Types OP231W, OP232W, OP233W


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	OP231W OP232W OP233W	1.5 3.5 5.0		7.0	mW/cm ² mW/cm ² mW/cm ²	I _F = 100 mA ⁽³⁾⁽⁴⁾ I _F = 100 mA ⁽³⁾⁽⁴⁾ I _F = 100 mA ⁽³⁾⁽⁴⁾
V _F	Forward Voltage				2.0	V	I _F = 100 mA ⁽⁴⁾
l _R	Reverse Current				100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission			890		nm	IF = 10 mA
В	Spectral Bandwidth Half Power Po	oints		80		nm	I _F = 10 mA
Δλ _Ρ /ΔΤ	Spectral Shift with Temperature			+0.30		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Poi	nts		50		Deg.	I _F = 100 mA
t _r	Output Rise Time			500		ns	I _{F(PK)} = 100 mA,
tf	Output Fall Time			250		ns	PW = 10 μs, D.C. = 10%


Typical Performance Curves

