

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-E040373-00-K

Advanced LIGO UK

16th Sept 2004

OSEM

Interface Control Document

David Hoyland / Stuart Aston

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Chilton, Didcot, Oxon OX12 0NA Phone +44 (0) 1235 44 5297 Fax +44 (0) 1235 445843 Department of Physics and Space Research University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk Particle Physics and Astronomy Research Council (PPARC)

http://www.ligo.caltech.edu/

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm.

1	Intr	roduction	3
	1.1	Applicability of the System Interface Matrix to the OSEM	4
2	App	olicable Documents	5
3	OSI	EM to Suspension (SUS) Interfaces	6
	3.1	Physical Interface	6
	3.2	Mass Properties	6
	3.3	Actuator Properties	7
	3.4	Restriction on Usage of Magnetic Materials	7
	3.5 3.5.	Optical Sensor Properties1Degradation of Sensor Output with Time	7 8
	3.6	Thermal Considerations	8
	3.7	Flag Properties	8
4	OSI	EM to Suspension (SUS) and Seismic Isolation (SEI) Interfaces	9
	4.1	OSEM Connector Details and Pin Allocation	9
	4.2	OSEM Cable Harness (Pigtail)	9
	4.3	OSEM Cable Harness (Pigtail) Lengths	10
	4.3.	1 IMC Triple Suspensions	10
	4.3.	2 OMC Triple Suspensions	10
	4.3.	3 RM Triple Suspension	10
	4.3.	4 ITM Quad Suspension	11
	4.3.	5 FM Quad Suspension	11
	4.3.	6 BS Quad Suspension	11
	4.3.	7 ETM Quad Suspension	12
5	Ma	terials	12
6	Ma	nufacture and Cleaning	14
	6.1	Finished Item Packaging for Storage and Shipping	14
	6.2	Handling	14
7	OSI	EM to Support Equipment (SUP) Interfaces	14
	7.1	Automatic Test Equipment	14
8	Que	ality Assurance	14
	8.1	Requirements Verification Matrix	14

1 Introduction

The purpose of this document is to capture the interface definition for the advanced LIGO system. The nature of all Interface Control Documents (ICD) is to describe the design implementation of the requirements in the specifications (requirements and design descriptions) as they relate to interfaces. During the design phases of the program the ICD is a 'living' document; It must be actively maintained and controlled. Once the ICD has achieved a reasonable level of completion (at least for sections related to a few subsystems), it will be released with a Document Change Notice (DCN) which is signed by the leaders/managers for all subsystems involved. This places the ICD under configuration control. For each subsequent revision, a DCN is required. This DCN is initiated by the systems engineering group and signed by all the leaders/managers of the effected subsystems. The DCN lists the changes and the reasons for the changes. The DCN also indicates if the changes effects cost, schedule or performance. It is the responsibility of the systems engineering group to arrange for appropriate review or approval by a Material Review Board (MRB), Technical Review Board (TRB) or the Configuration Control Board (CCB) as required in the process of reviewing the DCN.

The advanced LIGO system is divided into subsystems as listed in Table 1. Of all the possible pair wise interactions, less than half have interface definition, as indicated in Table 1.

LIGO.4.	GO.4.				S	SUS AOS													
WBS	WBS Subsystems			FAC	SEI	UK	US	PSL	ю	COC	PhDr	ATC	COS	ISC	DAQ	SUP	LDAS	INS	SYS
1	Facilities		FAC		✓	✓	>	✓		✓					✓		✓		
2	Seismic Isolat	tion	SEI			✓	>					>	✓	>	✓	✓		✓	✓
3A	Suspensions	UK Scope	UK				>			✓	<	>	✓	1	✓	✓		✓	✓
3B	(SUS)	US Scope	US						✓	 ✓ 			✓	✓	✓	✓		\checkmark	✓
4	Pre-Stabilizaed Laser		PSL						~					>	✓				
5	5 Input Optics		ю										✓	>	✓				✓
6 Core Optics Components		COC																✓	
7A	Auxiliary	Photon Drive	PhDr											~	✓				✓
7B	Optics (AOS)	Active Thermal Compensation	ATC											~	✓				✓
70	;	Core Optics Support	COS											~					✓
8	8 Interferometer Sensing & Control		ISC												✓				
9 Data Acquisition		DAQ														✓			
10 Support Equipment		SUP																	
12 LIGO Data Analysis System		LDAS																✓	
13 Installation		INS																	
14.5 Systems Engineering			SYS																

Table 1: Subsystem interface matrix

Note: The cells in Table 1 should eventually cite the section in which the interface is defined.

The Suspension subsystem is further divided into the United Kingdom (UK) team's scope and the United States (US) team's scope. In this way the interfaces between elements common to the overall assemblies produced by both teams are effectively captured in this ICD.

The Auxiliary Optics Subsystem (AOS) is also divided into its principal subsystem elements, due to the considerably different nature of these various elements, and the likelihood that different groups will address the design of each element.

1.1 Applicability of the System Interface Matrix to the OSEM

The OSEM represents a constituent part of the Suspension subsystem, and as such will interface to a subset of the subsystems (as detailed in table 1) to which the Suspension interfaces. This subset is listed below, and is used as the basis for this document.

- i) Suspension (SUS)
- ii) Seismic Isolation (SEI)
- iii) Support Equipment (SUP)

2 Applicable Documents

Ref No	Document Title	ID Number
	Existing Hybrid OSEM documentation	
1	Hybrid OSEM Test specification	E030084-02-D
2	Hybrid OSEM Manufacturing Specification	E030094-01-D
3	Hybrid OSEM Assy Drawing	D030105 Rev 2
	LIGO Design Guidelines	
4	LIGO Laboratory Electronics EMC Requirements	E020986-01-D
5	LIGO Vacuum Compatibility, Cleaning Methods and Qualification Procedures	Е960022-В-Е
6	LIGO Vacuum Compatible Materials List	Е960050-В-Е
7	Peter Fritschel Talk: Global Control issues for Adv LIGO Quad Suspensions	G010086-00-0
	AdvLIGO Documents	
8	Measurement of LIGO Hybrid OSEM Sensitivity	Т040106-01-К
9	Input to OSEM Selection Review	Т040110-01-К
10	AdvLIGO OSEM Manufacturing Specification	Exxxxx
11	AdvLIGO OSEM Test Specification	Exxxxx
	AdvLIGO Drawings	
12	AdvLIGO OSEM Top Level Assy Drawing	Dxxxxx
13	AdvLIGO OSEM Interface Drawing	Dxxxxx
14	AdvLIGO OSEM Flex Rigid PCB Schematic	Dxxxxx
15	AdvLIGO OSEM Flex Rigid PCB BOM	Dxxxxx
16	AdvLIGO OSEM Flex Rigid PCB Fabrication Drawing	Dxxxxx

Note: ICD INFORMATION: The drawings listed in table 2-1 contain interface information. Revisions must be coordinated with a revision to E03xxxx and with LIGO systems engineering

3 OSEM to Suspension (SUS) Interfaces

3.1 Physical Interface

Mounting interface details will be identical to those of the Hybrid OSEM, and as detailed in applicable document [13].

Further details may be found in applicable document [12].

3.2 Mass Properties

The Mass of the OSEM (with sensors fitted) and mounting plates are given below:-

Part	Mass (Kg)
OSEM	TBC
Mounting Plate	TBC

Tabl	le 3	3.2-	1

The Centre of Mass of the OSEM is given below. The Reference Point for the measurement is the central axis of the OSEM at the front surface:-

Dimension	Value (mm)
Х	TBC
Y	TBC
Ζ	TBC

Table 3.2-2

3.3 Actuator Properties

The actuator will be wound to the following specification:-

Number of Turns:-	400TBC (See note 1)
Winding sense:-	Clockwise with respect to the back face of the OSEM
Nominal Winding Tension:-	TBD
Wire Type:-	32QML (Supplied by MWS Industries)
Winding Inductance:-	3.1±0.2mH TBC (Measured at 1KHz)
Winding Capacitance:-	$TBD \pm TBD pF$
Winding Resistance:-	16±1Ω TBC
Coil Inner Diameter:-	TBC (Former Diameter)
Coil Length:-	4±0.25mmTBC
Maximum Current:-	150mA
Isolation:-	
Actuator Coil to the OSEM Body:	250ΜΩ

Note 1: It is clear that some OSEM locations will require a lower actuation force than the 'nominal' value. It is envisaged that this will be accommodated either by presetting the drive electronics gain or changing the size of the magnet, rather than the producing multiple build variants with different numbers of turns.

3.4 Restriction on Usage of Magnetic Materials

The use of magnetic materials in the construction of the OSEM shall be restricted to ensure that the residual actuation force (with actuator coil unbiased and actuator magnet positioned on the OSEM axis in line with the front face) is less than 5mN.

3.5 Optical Sensor Properties

The optical Sensor shall have the following properties:-

Minimum sensing range:-	0.35mm (pk to pk) (See AD [9])			
Target Sensing Range:-	0.7mm (pk to pk)			
Worst Case Sensitivity	3×10^{-10} m/ $\sqrt{\text{Hz}}$ in range 1 to 10 Hz TBC (In conjunction with the sensor electronics)			
Emitter Type	Optek OP232			
Max continuous Forward Current:	100mA			
Nominal Forward Current:	35mA			
Detector Type	TBD			
Maximum Bias:	TBD			

Nominal Photodiode bias:	0V					
Sensor Temperature Coefficient	1.5%/K					
Current transfer ratio	>0.05% TBC of view)	C (with flag fully retracted from the field				
Isolation:-						
Sensor IR emitter circuit to the OSEM	A body:	250ΜΩ				
Sensor IR detector circuit to the OSE	M body:	250ΜΩ				

3.5.1 Degradation of Sensor Output with Time

Degradation of the sensor output with can be attributed to the degradation of the Emitters optical output power with time. In order to minimize the risk of premature OSEM failure due to such effects, the Emitter batch used for the final deliverable product will be subject to a Lot Acceptance Test on 20 pieces TBC selected at random. The format of the test is TBD.

3.6 Thermal Considerations

The OSEM shall function under the following environmental conditions:- (TBC) (RODA?)

Operational temperature:-	22 [°] C (nominal ambient)
Seasonal variation:-	$\pm 2^{0}$ C (between sites)

In-situ, bake-out shall occur at the following temperatures:- (TBC) (RODA?)

Non-operational:- 20-30^oC above ambient

The Maximum dissipation from the OSEM shall be as follows-

Item	Maximum Dissipated Power	Notes
Coil	360mW TBC	At 150mA continuous forward current
IR Emitter	50mW	At 35mA continuous forward current

Table 3.6-1

Note: The Detector diode dissipation is considered negligible

3.7 Flag Properties

The Flag shall have the following dimensions:-

Length: TBC Shape: Flat edge cylinder Diameter: 3mm TBC

4 OSEM to Suspension (SUS) and Seismic Isolation (SEI) Interfaces

4.1 OSEM Connector Details and Pin Allocation

Electrical Connection to the OSEM is via a Glenair Micro D male 9 way connector Part Number MWDM2L9PCBRP.110 (TBC) mounted on the rear face of the device. The pin allocations are as shown below and are applicable to the connector at the OSEM and at the Seismic Isolation Bridge:-

Pin Number	Signal Name	Description
2	ST	Start of Coil winding
3		Not Connected
4	LED-A	IR Emitter Anode
5	PD-A	Photodiode Anode
6	FN	End of Coil winding
7		Not Connected
8	LED-K	IR Emitter Cathode
9	PD-K	Photodiode Cathode

Table 4.1-1

4.2 **OSEM Cable Harness (Pigtail)**

Cable Harnessing shall comply with the requirements of Applicable Document [4] where appropriate.

Each cable harness shall have the following properties:-

9 way Female Micro D, Pin out as Table 3.2-1
Part Number MWDM2L9SSx-MC216 (TBC)
9 way Male Micro D, Pin out as Table 3.2-1
Part Number MWDM2L9PSx (TBC)
None
CZ1104 Clear Teflon Coated Copper Wire TBC
None due to stiffness requirement.

4.3 OSEM Cable Harness (Pigtail) Lengths

Cables will be manufactured to suit the locations of OSEMs within the suspension stacks of the 6 TBC different suspension designs:

Details below are TBD pending completion of suspension designs and cable routing proposals. It is expected that there will be no more than 8 different cable lengths.

Cable clamping details and locations to be agreed with SUS design team.

4.3.1 IMC Triple Suspensions

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	6	Hybrid	TBD	TBD
Penultimate Mass	4	LIGO1	TBD	TBD
Bottom Mass	4	LIGO1	TBD	TBD

Table 4.3.1-1

4.3.2 OMC Triple Suspensions

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	6	Hybrid	TBD	TBD
Penultimate Mass	TBC	TBC	TBD	TBD
Bottom Mass	TBC	TBC	TBD	TBD

4.3.3 RM Triple Suspension

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	6	Hybrid	TBD	TBD
Penultimate Mass	4	LIGO1	TBD	TBD
Bottom Mass	4	LIGO1	TBD	TBD

Table 4.3.2-1

4.3.4 ITM Quad Suspension

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	12	Hybrid	TBD	TBD
Intermediate Mass	4	Hybrid	TBD	TBD
Penultimate Mass	4	Hybrid	TBD Note	TBD

Table 4.3.3-1

Note: Cable length will be split by in-line micro D connector to allow suspension to be assembled in 2 sections.

4.3.5 FM Quad Suspension

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	12	Hybrid	TBD	TBD
Intermediate Mass	4	Hybrid	TBD	TBD

Table 4.3.4-1

4.3.6 BS Quad Suspension

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	12	Hybrid	TBD	TBD
Intermediate Mass	4	Hybrid	TBD	TBD

Table 4.3.5-1

4.3.7 ETM Quad Suspension

OSEM Location	Qty	OSEM Type	Cable Length	Cable Drawing
Top Mass	12	Hybrid	TBD	TBD
Intermediate Mass	4	Hybrid	TBD	TBD
Penultimate Mass	4	Hybrid	TBD Note	TBD

Table 4.3.6-1

Note: Cable length will be split by in-line micro D connector to allow suspension to be assembled in 2 sections.

5 Materials

The following table lists all materials used in the OSEM manufacture, including connectors, electronic components and cable harness (pigtail).

Item	Material	Where Used	Vacuum Review Board Approval Status
1	Beryllium Copper (ASTM-B194)	Male Connector	Approved
2	Phos Bronze (ASTM 139)	Female Connector	Approved
3	Gold (ASTM-B488)	Connector pin/socket Plating	Approved
4	Aluminium (Alloy 6062)	Connector Body, Coil Former, Mounting Plates	Approved
5	Electroless Nickel (ASTM B733- 90,SC2,Type 1, Class J (MIL-C-26074)	Connector Body Finish	Approved
6	LCP (MIL-M-24519)	Connector Insulators and Inserts	
7	Hysol Epoxy #4215 (Black)	Connector Encapsulant	
8	Stainless Steel (300 per SAE-AMS-QQ-S-763)	Connector Jackscrews and Posts	Approved
9	Copper Wire (32QML)	Coil Winding	
10	Copper Wire (CZ1104)	Pigtail	Approved (initial LIGO)
10	Kapton	Flex Rigid PCB	
11	PEEK 450G	Coil Winding post Mounting Block	
12	FR4	Flex-Rigid PCB	
13	Kovar	Emitter and Detector Can TBC	
13	TBC	TBC	

Table 5-1

6 Manufacture and Cleaning

Parts will be manufactured and cleaned in accordance with ALIGO OSEM Manufacturing Specification Exxxxxx TBC. All machining fluids used in manufacture of subassemblies shall be water soluble and free of sulfur (sic), chlorine and silicone.

Note: Finished item cleanliness will be such that the devices are acceptable for use/testing in a Laboratory environment. It is envisaged that final UHV cleaning will be conducted at the LIGO sites.

6.1 Finished Item Packaging for Storage and Shipping

Packaging for storage and shipping shall comply with the requirements of Applicable Document [5] that are relevant to the state of cleanliness.

6.2 Handling

Finished parts should only be handled in a Clean, static safe working environment, using standard static safe handling precautions and clean item handling procedures.

7 OSEM to Support Equipment (SUP) Interfaces

7.1 Automatic Test Equipment

Due to the volume of devices to be manufactured, finished product setup and test will be assisted by a PC based Automated test system. The system will measure and record the following parameters:-

- i) Actuator Winding Inductance
- ii) Actuator Winding Self Capacitance
- iii) Actuator Winding Resistance
- iv) Actuator Winding isolation to OSEM body
- v) Sensor Current Transfer Ratio
- vi) Sensor Emitter isolation to OSEM body
- vii) Sensor Detector isolation to OSEM body

Test results will be provided with the finished product.

8 Quality Assurance

8.1 Requirements Verification Matrix

A Verification Matrix will be added once the content of the document is agreed